Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cancer Metastasis Rev ; 42(2): 427-443, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37286865

RESUMO

The last few years have seen an increasing number of discoveries which collectively demonstrate that histone and DNA modifying enzyme modulate different stages of metastasis. Moreover, epigenomic alterations can now be measured at multiple scales of analysis and are detectable in human tumors or liquid biopsies. Malignant cell clones with a proclivity for relapse in certain organs may arise in the primary tumor as a consequence of epigenomic alterations which cause a loss in lineage integrity. These alterations may occur due to genetic aberrations acquired during tumor progression or concomitant to therapeutic response. Moreover, evolution of the stroma can also alter the epigenome of cancer cells. In this review, we highlight current knowledge with a particular emphasis on leveraging chromatin and DNA modifying mechanisms as biomarkers of disseminated disease and as therapeutic targets to treat metastatic cancers.


Assuntos
Epigenômica , Neoplasias , Humanos , Histonas/genética , Histonas/metabolismo , Neoplasias/genética , Neoplasias/terapia , Metilação de DNA , DNA , Epigênese Genética
2.
Semin Cancer Biol ; 83: 15-35, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33359485

RESUMO

Somatic mutations accumulating over a patient's lifetime are well-defined causative factors that fuel carcinogenesis. It is now clear, however, that epigenomic signature is also largely perturbed in many malignancies. These alterations support the transcriptional program crucial for the acquisition and maintenance of cancer hallmarks. Epigenetic instability may arise due to the genetic mutations or transcriptional deregulation of the proteins implicated in epigenetic signaling. Moreover, external stimulation and physiological aging may also participate in this phenomenon. The epigenomic signature is frequently associated with a cell of origin, as well as with tumor stage and differentiation, which all reflect its high heterogeneity across and within various tumors. Here, we will overview the current understanding of the causes and effects of the altered and heterogeneous epigenomic landscape in cancer. We will focus mainly on DNA methylation and post-translational histone modifications as the key regulatory epigenetic signaling marks. In addition, we will describe how this knowledge is translated into the clinic. We will particularly concentrate on the applicability of epigenetic alterations as biomarkers for improved diagnosis, prognosis, and prediction. Finally, we will also review current developments regarding epi-drug usage in clinical and experimental settings.


Assuntos
Epigênese Genética , Neoplasias , Metilação de DNA , Epigenoma , Epigenômica , Humanos , Neoplasias/genética
3.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175555

RESUMO

Chromatin remodeling is the one of the main epigenetic mechanisms of gene expression regulation both in normal cells and in pathological conditions. In recent years, a growing number of investigations have confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. Genes encoding protein subunits of chromatin remodeling complexes are often mutated and change their expression in diseases, as well as non-coding RNAs (ncRNAs). Moreover, different mechanisms of their mutual regulation have already been described. Further understanding of these processes may help apply their clinical potential for establishment of the diagnosis, prognosis, and treatment of the diseases. The therapeutic targeting of the chromatin structure has many limitations because of the complexity of its regulation, with the involvement of a large number of genes, proteins, non-coding transcripts, and other intermediary molecules. However, several successful strategies have been proposed to target subunits of chromatin remodeling complexes and genes encoding them, as well as the ncRNAs that regulate the operation of these complexes and direct them to the target gene regions. In our review, we focus on chromatin remodeling complexes and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.


Assuntos
Montagem e Desmontagem da Cromatina , RNA não Traduzido , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Cromatina/genética
4.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076918

RESUMO

Epigenetic modifications are known to regulate cell phenotype during cancer progression, including breast cancer. Unlike genetic alterations, changes in the epigenome are reversible, thus potentially reversed by epi-drugs. Breast cancer, the most common cause of cancer death worldwide in women, encompasses multiple histopathological and molecular subtypes. Several lines of evidence demonstrated distortion of the epigenetic landscape in breast cancer. Interestingly, mammary cells isolated from breast cancer patients and cultured ex vivo maintained the tumorigenic phenotype and exhibited aberrant epigenetic modifications. Recent studies indicated that the therapeutic efficiency for breast cancer regimens has increased over time, resulting in reduced mortality. Future medical treatment for breast cancer patients, however, will likely depend upon a better understanding of epigenetic modifications. The present review aims to outline different epigenetic mechanisms including DNA methylation, histone modifications, and ncRNAs with their impact on breast cancer, as well as to discuss studies highlighting the central role of epigenetic mechanisms in breast cancer pathogenesis. We propose new research areas that may facilitate locus-specific epigenome editing as breast cancer therapeutics.


Assuntos
Neoplasias da Mama , Epigenoma , Biomarcadores , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Metilação de DNA , Detecção Precoce de Câncer , Epigênese Genética , Feminino , Humanos
5.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614080

RESUMO

DNA methylation represents a crucial mechanism of epigenetic regulation in hematologic malignancies. The methylation process is controlled by specific DNA methyl transferases and other regulators, which are often affected by genetic alterations. Global hypomethylation and hypermethylation of tumor suppressor genes are associated with hematologic cancer development and progression. Several epi-drugs have been successfully implicated in the treatment of hematologic malignancies, including the hypomethylating agents (HMAs) decitabine and azacytidine. However, combinations with other treatment modalities and the discovery of new molecules are still the subject of research to increase sensitivity to anti-cancer therapies and improve patient outcomes. In this review, we summarized the main functions of DNA methylation regulators and genetic events leading to changes in methylation landscapes. We provide current knowledge about target genes with aberrant methylation levels in leukemias, myelodysplastic syndromes, and malignant lymphomas. Moreover, we provide an overview of the clinical trials, focused mainly on the combined therapy of HMAs with other treatments and its impact on adverse events, treatment efficacy, and survival rates among hematologic cancer patients. In the era of precision medicine, a transition from genes to their regulation opens up the possibility of an epigenetic-based approach as a diagnostic, prognostic, and therapeutic tool.


Assuntos
Neoplasias Hematológicas , Leucemia , Linfoma , Síndromes Mielodisplásicas , Humanos , Metilação de DNA , Decitabina , Epigênese Genética , Prognóstico , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Leucemia/diagnóstico , Leucemia/tratamento farmacológico , Leucemia/genética , Azacitidina/uso terapêutico , Neoplasias Hematológicas/genética , Linfoma/diagnóstico , Linfoma/tratamento farmacológico , Linfoma/genética
6.
Toxicol Appl Pharmacol ; 417: 115467, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33631231

RESUMO

Owing to the technological advancements, including next generation sequencing, the significance of deregulated epigenetic mechanisms in cancer initiation, progression and treatment has become evident. The accumulating knowledge relating to the epigenetic markers viz. DNA methylation, Histone modifications and non-coding RNAs make them one of the most interesting candidates for developing anti-cancer therapies. The reversibility of deregulated epigenetic mechanisms through environmental and dietary factors opens numerous avenues in the field of chemoprevention and drug development. Recent studies have proven that plant-derived natural products encompass a great potential in targeting epigenetic signatures in cancer and numerous natural products are being explored for their possibility to be considered as "epi-drug". This review intends to highlight the major aberrant epigenetic mechanisms and summarizes the essential functions of natural products like Resveratrol, Quercetin, Genistein, EGCG, Curcumin, Sulforaphane, Apigenin, Parthenolide and Berberine in modulating these aberrations. This knowledge along with the challenges and limitations in this field has potential and wider implications in developing novel and successful therapeutic strategies. The increased focus in the area will possibly provide a better understanding for the development of dietary supplements and/or drugs either alone or in combination. The interaction of epigenetics with different hallmarks of cancer and how natural products can be utilized to target them will also be interesting in the future therapeutic approaches.


Assuntos
Anticarcinógenos/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Reprogramação Celular/efeitos dos fármacos , Dieta , Epigênese Genética/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Animais , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/patologia
7.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478063

RESUMO

Cancer is a major cause of death worldwide. Epigenetic changes in response to external (diet, sports activities, etc.) and internal events are increasingly implicated in tumor initiation and progression. In this review, we focused on post-translational changes in histones and, more particularly, the tri methylation of lysine from histone 3 (H3K27me3) mark, a repressive epigenetic mark often under- or overexpressed in a wide range of cancers. Two actors regulate H3K27 methylation: Jumonji Domain-Containing Protein 3 demethylase (JMJD3) and Enhancer of zeste homolog 2 (EZH2) methyltransferase. A number of studies have highlighted the deregulation of these actors, which is why this scientific review will focus on the role of JMJD3 and, consequently, H3K27me3 in cancer development. Data on JMJD3's involvement in cancer are classified by cancer type: nervous system, prostate, blood, colorectal, breast, lung, liver, ovarian, and gastric cancers.


Assuntos
Histona Desmetilases com o Domínio Jumonji/fisiologia , Neoplasias/genética , Animais , Metilação de DNA/genética , Proteína Potenciadora do Homólogo 2 de Zeste/fisiologia , Epigênese Genética/genética , Feminino , Histona Desmetilases/fisiologia , Histonas/metabolismo , Humanos , Masculino , Neoplasias/metabolismo , Neoplasias/patologia
8.
Mol Cancer ; 19(1): 79, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32340605

RESUMO

Epigenetics is dynamic and heritable modifications to the genome that occur independently of DNA sequence. It requires interactions cohesively with various enzymes and other molecular components. Aberrant epigenetic alterations can lead to inappropriate onset of genetic expressions and promote tumorigenesis. As the epigenetic modifiers are susceptible to extrinsic factors and reversible, they are becoming promising targets in multiple cancer therapies. Recently, various epi-drugs have been developed and implicated in clinical use. The use of epi-drugs alone, or in combination with chemotherapy or immunotherapy, has shown compelling outcomes, including augmentation of anti-tumoral effects, overcoming drug resistance, and activation of host immune response.


Assuntos
Antineoplásicos/uso terapêutico , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/genética , Neoplasias/patologia
9.
Adv Exp Med Biol ; 1202: 259-279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32034718

RESUMO

Signal transduction pathways directly communicate and transform chromatin to change the epigenetic landscape and regulate gene expression. Chromatin acts as a dynamic platform of signal integration and storage. Histone modifications and alteration of chromatin structure play the main role in chromatin-based gene expression regulation. Alterations in genes coding for histone modifying enzymes and chromatin modifiers result in malfunction of proteins that regulate chromatin modification and remodeling. Such dysregulations culminate in profound changes in chromatin structure and distorted patterns of gene expression. Gliomagenesis is a multistep process, involving both genetic and epigenetic alterations. Recent applications of next generation sequencing have revealed that many chromatin regulation-related genes, including ATRX, ARID1A, SMARCA4, SMARCA2, SMARCC2, BAF155 and hSNF5 are mutated in gliomas. In this review we summarize newly identified mechanisms affecting expression or functions of selected histone modifying enzymes and chromatin modifiers in gliomas. We focus on selected examples of pathogenic mechanisms involving ATRX, histone methyltransferase G9a, histone acetylases/deacetylases and chromatin remodeling complexes SMARCA2/4. We discuss the impact of selected epigenetics alterations on glioma pathobiology, signaling and therapeutic responses. We assess the attempts of targeting defective pathways with new inhibitors.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Cromatina/metabolismo , Glioma/tratamento farmacológico , Glioma/patologia , Histonas/metabolismo , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Cromatina/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Glioma/enzimologia , Glioma/genética , Código das Histonas/efeitos dos fármacos , Histonas/química , Humanos
10.
Int J Mol Sci ; 21(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283668

RESUMO

Tumors require a constant supply of nutrients to grow which are provided through tumor blood vessels. To metastasize, tumors need a route to enter circulation, that route is also provided by tumor blood vessels. Thus, angiogenesis is necessary for both tumor progression and metastasis. Angiogenesis is tightly regulated by a balance of angiogenic and antiangiogenic factors. Angiogenic factors of the vascular endothelial growth factor (VEGF) family lead to the activation of endothelial cells, proliferation, and neovascularization. Significant VEGF-A upregulation is commonly observed in cancer cells, also due to hypoxic conditions, and activates endothelial cells (ECs) by paracrine signaling stimulating cell migration and proliferation, resulting in tumor-dependent angiogenesis. Conversely, antiangiogenic factors inhibit angiogenesis by suppressing ECs activation. One of the best-known anti-angiogenic factors is thrombospondin-1 (TSP-1). In pathological angiogenesis, the balance shifts towards the proangiogenic factors and an angiogenic switch that promotes tumor angiogenesis. Here, we review the current literature supporting the notion of the existence of two different endothelial lineages: normal endothelial cells (NECs), representing the physiological form of vascular endothelium, and tumor endothelial cells (TECs), which are strongly promoted by the tumor microenvironment and are biologically different from NECs. The angiogenic switch would be also important for the explanation of the differences between NECs and TECs, as angiogenic factors, cytokines and growth factors secreted into the tumor microenvironment may cause genetic instability. In this review, we focus on the epigenetic differences between the two endothelial lineages, which provide a possible window for pharmacological targeting of TECs.


Assuntos
Células Endoteliais/metabolismo , Epigênese Genética , Epigenoma , Neoplasias/genética , Neoplasias/metabolismo , Animais , Biomarcadores Tumorais , Metabolismo Energético , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Transcriptoma
11.
Int J Mol Sci ; 21(11)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521716

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid malignancies due to the rapid rate of metastasis and high resistance to currently applied cancer therapies. The complex mechanism underlying the development and progression of PDAC includes interactions between genomic, epigenomic, and signaling pathway alterations. In this review, we summarize the current research findings on the deregulation of epigenetic mechanisms in PDAC and the influence of the epigenome on the dynamics of the gene expression changes underlying epithelial-mesenchymal transition (EMT), which is responsible for the invasive phenotype of cancer cells and, therefore, their metastatic potential. More importantly, we provide an overview of the studies that uncover potentially actionable pathways. These studies provide a scientific basis to test epigenetic drug efficacy in synergy with other anticancer therapies in future clinical trials, in order to reverse acquired therapy resistance. Thus, epigenomics has the potential to generate relevant new knowledge of both a biological and clinical impact. Moreover, the potential, hurdles, and challenges of predictive biomarker discoveries will be discussed, with a special focus on the promise of liquid biopsies.


Assuntos
Carcinoma Ductal Pancreático/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Detecção Precoce de Câncer , Epigenômica/métodos , Transição Epitelial-Mesenquimal/genética , Heterogeneidade Genética , Histonas/metabolismo , Humanos , Biópsia Líquida , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo
12.
Adv Exp Med Biol ; 1152: 293-310, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456191

RESUMO

Epigenetics refers to alterations in gene expression due to differential histone modifications and DNA methylation at promoter sites of genes. Epigenetic alterations are reversible and are heritable during somatic cell division, but do not involve changes in nucleotide sequence. Epigenetic regulation plays a critical role in normal growth and embryonic development by controlling transcriptional activities of several genes. In last two decades, these modifications have been well recognized to be involved in tumor initiation and progression, which has motivated many investigators to incorporate this novel field in cancer drug development. Recently, growing number of epigenetic changes have been reported that are involved in the regulations of genes involved in breast tumor growth and metastasis. Drugs possessing epigenetic modulatory activities known as epi-drugs, mainly the inhibitors of histone deacetylases (HDACs) and DNA methyltransferases (DNMTs). Some of these drugs are undergoing different clinical trials for breast cancer treatment. Several phytochemicals such as green tea polyphenols, curcumin, genistein, resveratrol and sulforaphane have also been shown to alter epigenetic modifications in multiple cancer types including breast cancer. In this chapter, we summarize the role of epigenetic changes in breast cancer progression and metastasis. We have also discussed about various epigenetic modulators possessing chemopreventive and therapeutic efficacy against breast cancer with future perspectives.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Epigênese Genética , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Metilação de DNA , Feminino , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases , Humanos , Compostos Fitoquímicos/farmacologia
13.
Angiogenesis ; 20(2): 245-267, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28378227

RESUMO

Cancer cells are often dependent on epigenetic pathways for their survival. Consequently, drugs that target the epigenome, rather than the underlying DNA sequence, are currently attracting considerable attention. In recent years, the first epigenetic drugs have been approved for cancer chemotherapy, mainly for hematological applications. Limitations in single-drug efficacies have thus far limited their application in the treatment of solid tumors. Nevertheless, promising activity for these compounds has been suggested when combined with other, distinctly targeted agents. In this review, we discuss the anti-angiogenic activity of histone deacetylase and DNA methyltransferase inhibitors and their combinations with other targeted (anti-angiogenic) therapeutics in treatment of solid tumors. The role that these inhibitors play in the inhibition of tumor angiogenesis, particularly in combination with other targeted agents, and the advantages they present over broad acting anticancer agents, are critically discussed.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias , Neovascularização Patológica , Animais , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/enzimologia , Neovascularização Patológica/patologia
14.
Future Oncol ; 11(18): 2587-601, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26289459

RESUMO

The epigenetic landscape is deregulated in cancer due to aberrant activation or inactivation of enzymes maintaining and modifying the epigenome. Histone modifications and global aberrations at the histone level may result in distorted patterns of gene expression, and malfunction of proteins that regulate chromatin modification and remodeling. Recent whole genome studies demonstrated that histones and chaperone proteins harbor mutations that may result in gross alterations of the epigenome leading to genome instability. Glioma development is a multistep process, involving genetic and epigenetic alterations. This review summarizes newly identified mechanisms affecting expression/functions of histone-modifying enzymes and chromatin modifiers in gliomas. We discuss recent approaches to overcome epigenetic alterations with histone-modifying enzyme inhibitors and their prospects for glioma therapy.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Glioma/etiologia , Glioma/metabolismo , Histonas/metabolismo , Fatores Etários , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/tratamento farmacológico , Glioma/mortalidade , Glioma/patologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histonas/genética , Humanos , Mutação , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Nucleossomos/metabolismo
15.
Heliyon ; 10(1): e23679, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187314

RESUMO

Nowadays nanoparticles (NPs) due to their multidimensional applications in enormous different fields, has become an exciting research topic. In particular, they could attract a noticeable interest as drug deliver with increased bioavailability, therapeutic efficacy and drug specificity. Epigenetic can be considered as a complex network of molecular mechanism which are engaged in gene expression and have a vital role in regulation of environmental effects on ethology of different disorders like neurological disorders, cancers and cardiovascular diseases. For many of them epigenetic therapy was proposed although its application accompanied with limitations, due to drug toxicity. In this review we evaluate two aspects to epigenetic in the field of NPs: firstly, the role of epigenetic in regulation of nanotoxicity and secondly application of NPs as potential carriers for epidrugs.

16.
Chem Biol Interact ; 392: 110907, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395253

RESUMO

The regulation of gene expression is fundamental to health and life and is essentially carried out at the promoter region of the DNA of each gene. Depending on the molecular context, this region may be accessible or non-accessible (possibility of integration of RNA polymerase or not at this region). Among enzymes that control this process, DNA methyltransferase enzymes (DNMTs), are responsible for DNA demethylation at the CpG islands, particularly at the promoter regions, to regulate transcription. The aberrant activity of these enzymes, i.e. their abnormal expression or activity, can result in the repression or overactivation of gene expression. Consequently, this can generate cellular dysregulation leading to instability and tumor development. Several reports highlighted the involvement of DNMTs in human cancers. The inhibition or activation of DNMTs is a promising therapeutic approach in many human cancers. In the present work, we provide a comprehensive and critical summary of natural bioactive molecules as primary inhibitors of DNMTs in human cancers. The active compounds hold the potential to be developed as anti-cancer epidrugs targeting DNMTs.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Neoplasias , Humanos , DNA (Citosina-5-)-Metiltransferases/genética , Neoplasias/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Ilhas de CpG , Metilação de DNA , Epigênese Genética
17.
Breast Cancer ; 31(5): 869-885, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38861041

RESUMO

BACKGROUND: Breast cancer (BC) presents persistent challenges due to subtype-specific limited efficacy and potential resistance to standard therapy, influenced by the dynamic reversible nature of epigenetic plasticity. This study aims to comprehensively explore the evolving BC epigenetic landscape, analyzing trends and evaluating the therapeutic potential of epigenetic drugs (epi-drugs) for BC treatment. METHODS: We conducted a cross-sectional study of BC epigenetic trials using ClinicalTrials.gov until July 18, 2023. Additionally, results from randomized controlled trials were retrieved from the registry or PubMed using trial registration numbers. RESULTS: In total, 22 epi-drugs were investigated in 100 trials, with 11 currently being studied in 38 ongoing trials for BC. Over the years, epigenetic clinical trials for BC have notably increased, with histone deacetylase inhibitors constituting 45.45% of the candidate agents in the development pipeline. All ongoing trials are enrolling human epidermal growth factor receptor2 (HER2)-negative BC patients. Epi-drugs are commonly explored in combination with multiple anti-cancer therapies, such as aromatase or microtubule inhibitors, using an intermittent sequential administration approach. Emerging strategies include new-generation epi-drugs and combination involving immunotherapy or targeted therapy. Among candidate drugs, tucidinostat and entinostat, in combination with exemestane, demonstrated significant improvements in progression-free survival in phase III trials for hormone receptor-positive, HER2-negative BC patients. CONCLUSION: This study highlights the growing interest in BC epigenetics, suggesting a potential shift from a one-size-fits-all approach to precision medicine, and emphasizes the necessity for robust evidence on their efficacy and safety to support continuous development and approval, addressing the unmet needs in BC treatment.


Assuntos
Neoplasias da Mama , Epigênese Genética , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Inibidores de Histona Desacetilases/uso terapêutico , Estudos Transversais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Ensaios Clínicos como Assunto , Benzamidas , Piridinas
18.
Adv Biol (Weinh) ; 8(1): e2300211, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37794610

RESUMO

Although a large amount of data consistently shows that genes affect immunometabolic characteristics and outcomes, epigenetic mechanisms are also heavily implicated. Epigenetic changes, including DNA methylation, histone modification, and noncoding RNA, determine gene activity by altering the accessibility of chromatin to transcription factors. Various factors influence these alterations, including genetics, lifestyle, and environmental cues. Moreover, acquired epigenetic signals can be transmitted across generations, thus contributing to early disease traits in the offspring. A closer investigation is critical in this aspect as it can help to understand the underlying molecular mechanisms further and gain insights into potential therapeutic targets for preventing and treating diseases arising from immuno-metabolic dysregulation. In this review, the role of chromatin alterations in the transcriptional modulation of genes involved in insulin resistance, systemic inflammation, macrophage polarization, endothelial dysfunction, metabolic cardiomyopathy, and nonalcoholic fatty liver disease (NAFLD), is discussed. An overview of emerging chromatin-modifying drugs and the importance of the individual epigenetic profile for personalized therapeutic approaches in patients with immuno-metabolic disorders is also presented.


Assuntos
Metilação de DNA , Hepatopatia Gordurosa não Alcoólica , Humanos , Metilação de DNA/genética , Epigênese Genética , Hepatopatia Gordurosa não Alcoólica/genética , Cromatina , Inflamação/genética
19.
Epigenetics ; 19(1): 2400423, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39255363

RESUMO

A differential diet with royal jelly (RJ) during early larval development in honeybees shapes the phenotype, which is probably mediated by epigenetic regulation of gene expression. Evidence indicates that small molecules in RJ can modulate gene expression in mammalian cells, such as the fatty acid 10-hydroxy-2-decenoic acid (10-HDA), previously associated with the inhibition of histone deacetylase enzymes (HDACs). Therefore, we combined computational (molecular docking simulations) and experimental approaches for the screening of potential HDAC inhibitors (HDACi) among 32 RJ-derived fatty acids. Biochemical assays and gene expression analyses (Reverse Transcriptase - quantitative Polymerase Chain Reaction) were performed to evaluate the functional effects of the major RJ fatty acids, 10-HDA and 10-HDAA (10-hydroxy-decanoic acid), in two human cancer cell lines (HCT116 and MDA-MB-231). The molecular docking simulations indicate that these fatty acids might interact with class I HDACs, specifically with the catalytic domain of human HDAC2, likewise well-known HDAC inhibitors (HDACi) such as SAHA (suberoylanilide hydroxamic acid) and TSA (Trichostatin A). In addition, the combined treatment with 10-HDA and 10-HDAA inhibits the activity of human nuclear HDACs and leads to a slight increase in the expression of HDAC-coding genes in cancer cells. Our findings indicate that royal jelly fatty acids collectively contribute to HDAC inhibition and that 10-HDA and 10-HDAA are weak HDACi that facilitate the acetylation of lysine residues of chromatin, triggering an increase in gene expression levels in cancer cells.


Assuntos
Ácidos Graxos , Inibidores de Histona Desacetilases , Simulação de Acoplamento Molecular , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Ácidos Graxos/metabolismo , Abelhas , Linhagem Celular Tumoral , Animais , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos Monoinsaturados/química , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/antagonistas & inibidores , Células HCT116
20.
Biomed Pharmacother ; 174: 116432, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520868

RESUMO

Oxidative stress results from a persistent imbalance in oxidation levels that promotes oxidants, playing a crucial role in the early and sustained phases of DNA damage and genomic and epigenetic instability, both of which are intricately linked to the development of tumors. The molecular pathways contributing to carcinogenesis in this context, particularly those related to double-strand and single-strand breaks in DNA, serve as indicators of DNA damage due to oxidation in cancer cases, as well as factors contributing to epigenetic instability through ectopic expressions. Oxidative stress has been considered a therapeutic target for many years, and an increasing number of studies have highlighted the promising effectiveness of natural products in cancer treatment. In this regard, we present significant research on the therapeutic targeting of oxidative stress using natural molecules and underscore the essential role of oxidative stress in cancer. The consequences of stress, especially epigenetic instability, also offer significant therapeutic prospects. In this context, the use of natural epi-drugs capable of modulating and reorganizing the epigenetic network is beginning to emerge remarkably. In this review, we emphasize the close connections between oxidative stress, epigenetic instability, and tumor transformation, while highlighting the role of natural substances as antioxidants and epi-drugs in the anti-tumoral context.


Assuntos
Antioxidantes , Transformação Celular Neoplásica , Epigênese Genética , Neoplasias , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Humanos , Epigênese Genética/efeitos dos fármacos , Antioxidantes/farmacologia , Animais , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/genética , Neoplasias/metabolismo , Produtos Biológicos/farmacologia , Dano ao DNA/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA