Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Am J Physiol Endocrinol Metab ; 324(4): E330-E338, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36856188

RESUMO

Lactate, which is an end product of glycolysis, has traditionally been considered a metabolic waste. However, numerous studies have demonstrated that lactate serves metabolic and nonmetabolic functions in physiological processes and multiple diseases. Cancer and pulmonary arterial hypertension have been shown to undergo metabolic reprogramming, which is accompanied by increased lactate production. Metabolic reprogramming and epigenetic modifications have been extensively linked; furthermore, posttranslational modifications of histones caused by metabolites play a vital role in epigenetic alterations. In this paper, we reviewed recent research on lactate-induced histone modifications and provided a new vision about the metabolic effect of glycolysis. Based on our review, the cross talk between the metabolome and epigenome induced by glycolysis may indicate novel epigenetic regulatory and therapeutic opportunities. There is a magnificent progress in the interaction between metabolomics and epigenomics in recent decades, but many questions still remained to be investigated. Lactylation is found in different pathophysiological states and leads to diverse biological effects; however, only a few mechanisms of lactylation have been illustrated. Further research on lactylation would provide us with a better understanding of the cross talk between metabolomics and epigenomics.


Assuntos
Epigenômica , Neoplasias , Humanos , Histonas/metabolismo , Epigênese Genética , Ácido Láctico
2.
Cell Mol Life Sci ; 79(11): 579, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319916

RESUMO

Sulforaphane has been investigated in human pathologies and preclinical models of airway diseases. To provide further mechanistic insights, we explored L-sulforaphane (LSF) in the ovalbumin (OVA)-induced chronic allergic airways murine model, with key hallmarks of asthma. Histological analysis indicated that LSF prevented or reversed OVA-induced epithelial thickening, collagen deposition, goblet cell metaplasia, and inflammation. Well-known antioxidant and anti-inflammatory mechanisms contribute to the beneficial effects of LSF. Fourier transform infrared microspectroscopy revealed altered composition of macromolecules, following OVA sensitization, which were restored by LSF. RNA sequencing in human peripheral blood mononuclear cells highlighted the anti-inflammatory signature of LSF. Findings indicated that LSF may alter gene expression via an epigenetic mechanism which involves regulation of protein acetylation status. LSF resulted in histone and α-tubulin hyperacetylation in vivo, and cellular and enzymatic assays indicated decreased expression and modest histone deacetylase (HDAC) inhibition activity, in comparison with the well-known pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). Molecular modeling confirmed interaction of LSF and LSF metabolites with the catalytic domain of metal-dependent HDAC enzymes. More generally, this study confirmed known mechanisms and identified potential epigenetic pathways accounting for the protective effects and provide support for the potential clinical utility of LSF in allergic airways disease.


Assuntos
Antioxidantes , Hipersensibilidade , Camundongos , Humanos , Animais , Leucócitos Mononucleares , Ovalbumina , Epigênese Genética , Anti-Inflamatórios
3.
Biol Reprod ; 107(1): 12-26, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35788258

RESUMO

Reproductive medicine in China has developed rapidly since 1988 due to support from the government and scientific exploration. However, the success rate of assisted reproduction technology is around 30-40% and many unknown "black boxes" in gametogenesis and embryo development are still present. With the development of single-cell and low-input sequencing technologies, the network of transcriptome and epigenetic regulation (DNA methylation, chromatin accessibility, and histone modifications) during the development of human primordial germ cells, gametes, and embryos has been investigated in depth. Furthermore, preimplantation genetic testing has also rapidly developed. In this review, we summarize and analyze China's outstanding progress in these fields.


Assuntos
Epigênese Genética , Gametogênese , Metilação de DNA , Desenvolvimento Embrionário , Feminino , Gametogênese/genética , Células Germinativas/fisiologia , Humanos , Gravidez
4.
Mol Ther ; 29(3): 1239-1257, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33221433

RESUMO

Epigenetic deregulation, especially mutagenesis or the abnormal expression of epigenetic regulatory factors (ERFs), plays an important role in malignant tumorigenesis. To screen natural inhibitors of breast cancer metastasis, we adopted small interfering RNAs (siRNAs) to transiently knock down 591 ERF-coding genes in luminal breast cancer MCF-7 cells and found that depletion of AF9 significantly promoted MCF-7 cell invasion and migration. A mouse model of metastasis further confirmed the suppressive role of AF9 in breast cancer metastasis. RNA profiling revealed enrichment of AF9 targets genes in the epithelial-mesenchymal transition (EMT). Mechanistically, tandem mass spectrometry showed that AF9 interacts with Snail, which hampers Snail transcriptional activity in basal-like breast cancer (BLBC) cells. AF9 reconstitutes an activated state on the promoter of Snail, which is a master regulator of EMT, and derepresses genes by recruiting CBP or GCN5. Additionally, microRNA-5694 (miR-5694) targeted and degraded AF9 messenger RNA (mRNA) in BLBC cells, further enhancing cell invasion and migration. Notably, AF9 and miR-5694 expression in BLBC clinical samples correlated inversely. Hence, miR-5694 mediates downregulation of AF9 and provides metastatic advantages in BLBC. Restoring expression of the metastasis suppressor AF9 is a possible therapeutic strategy against metastatic breast cancer.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Basocelular/patologia , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/secundário , MicroRNAs/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Proteínas Nucleares/genética , Prognóstico , RNA Interferente Pequeno/genética , Fatores de Transcrição da Família Snail/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Appl Microbiol Biotechnol ; 104(13): 5673-5688, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32372203

RESUMO

Human tissue plasminogen activator was the first recombinant therapy protein that successfully produced in Chinese hamster ovary cells in 1986 and approved for clinical use. Since then, more and more therapeutic proteins are being manufactured in mammalian cells, and the technologies for recombinant protein production in this expression system have developed rapidly, with the optimization of both upstream and downstream processes. One of the most promising strategies is expression vector cassette optimization based on the expression vector cassette. In this review paper, these approaches and developments are summarized, and the future strategy on the utilizing of expression cassettes for the production of recombinant therapeutic proteins in mammalian cells is discussed.


Assuntos
Vetores Genéticos/genética , Proteínas Recombinantes/biossíntese , Animais , Linhagem Celular , Epigênese Genética , Expressão Gênica , Engenharia Genética , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico , Elementos Reguladores de Transcrição
6.
Cell Mol Biol Lett ; 22: 18, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861108

RESUMO

In mammals, genomic DNA that is roughly 2 m long is folded to fit the size of the cell nucleus that has a diameter of about 10 µm. The folding of genomic DNA is mediated via assembly of DNA-protein complex, chromatin. In addition to the reduction of genomic DNA linear dimensions, the assembly of chromatin allows to discriminate and to mark active (transcribed) and repressed (non-transcribed) genes. Consequently, epigenetic regulation of gene expression occurs at the level of DNA packaging in chromatin. Taking into account the increasing attention of scientific community toward epigenetic systems of gene regulation, it is very important to understand how DNA folding in chromatin is related to gene activity. For many years the hierarchical model of DNA folding was the most popular. It was assumed that nucleosome fiber (10-nm fiber) is folded into 30-nm fiber and further on into chromatin loops attached to a nuclear/chromosome scaffold. Recent studies have demonstrated that there is much less regularity in chromatin folding within the cell nucleus. The very existence of 30-nm chromatin fibers in living cells was questioned. On the other hand, it was found that chromosomes are partitioned into self-interacting spatial domains that restrict the area of enhancers action. Thus, TADs can be considered as structural-functional domains of the chromosomes. Here we discuss the modern view of DNA packaging within the cell nucleus in relation to the regulation of gene expression. Special attention is paid to the possible mechanisms of the chromatin fiber self-assembly into TADs. We discuss the model postulating that partitioning of the chromosome into TADs is determined by the distribution of active and inactive chromatin segments along the chromosome. This article was specially invited by the editors and represents work by leading researchers.


Assuntos
Cromatina , Empacotamento do DNA , Regulação da Expressão Gênica , Genoma , Animais , Núcleo Celular , Humanos , Mamíferos/genética
7.
Fitoterapia ; 175: 105922, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552806

RESUMO

Type 2 diabetes (T2D) remains a major chronic metabolic disorder affecting hundreds of millions of the global population, mostly among adults, engendering high rates of morbidity and mortality. It is characterized by complex aetiologies including insulin deficiency and resistance, and hyperglycemia, and these significantly constitute therapeutic challenges. Several pathways have been implicated in its pathophysiology and treatment including the epigenetic regulatory mechanism, notably, deoxyribonucleic acid (DNA) methylation/demethylation, histone modification, non-coding ribonucleic acid (ncRNA) modulation and other relevant pathways. Many studies have recently documented the implications of phytochemicals on the aforementioned biomarkers in the pathogenesis and treatment of T2D. In this review, the cellular and molecular mechanisms of the epigenetic effects of some bioactive alkaloidal and phenolic phytochemicals as potential therapeutic alternatives for T2D have been overviewed from the recent literature (2019-2024). From the survey, the natural product-based compounds, C1-C32 were curated as potent epigenetic modulators for T2D. Their cellular and molecular mechanisms of anti-T2D activities with relevant epigenetic biomarkers were revealed. Although, more comprehensive experimental analyses are observably required for validating their activity and toxicological indices. Thus, perspectives and challenges were enumerated for such demanding future translational studies. The review reveals advances in scientific efforts towards reversing the global trend of T2D through epigenetic phytotherapeutics.


Assuntos
Diabetes Mellitus Tipo 2 , Epigênese Genética , Fenóis , Compostos Fitoquímicos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fenóis/farmacologia , Fenóis/química , Epigênese Genética/efeitos dos fármacos , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Hipoglicemiantes/farmacologia , Animais , Estrutura Molecular
8.
Sci China Life Sci ; 66(11): 2663-2679, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37233873

RESUMO

The methylation of lysine 4 of histone H3 (H3K4), catalyzed by the histone methyltransferase KMT2/SET1, has been functionally identified in many pathogenic fungi but remains unexplored in nematode-trapping fungi (NTFs). Here, we report a regulatory mechanism of an H3K4-specific SET1 orthologue, AoSET1, in the typical nematode-trapping fungus Arthrobotrys oligospora. When the fungus is induced by the nematode, the expression of AoSET1 is up-regulated. Disruption of AoSet1 led to the abolishment of H3K4me. Consequently, the yield of traps and conidia of ΔAoSet1 was significantly lower than that of the WT strain, and the growth rate and pathogenicity were also compromised. Moreover, H3K4 trimethylation was enriched mainly in the promoter of two bZip transcription factor genes (AobZip129 and AobZip350) and ultimately up-regulated the expression level of these two transcription factor genes. In the ΔAoSet1 and AoH3K4A strains, the H3K4me modification level was significantly decreased at the promoter of transcription factor genes AobZip129 and AobZip350. These results suggest that AoSET1-mediated H3KEme serves as an epigenetic marker of the promoter region of the targeted transcription factor genes. Furthermore, we found that AobZip129 negatively regulates the formation of adhesive networks and the pathogenicity of downstream AoPABP1 and AoCPR1. Our findings confirm that the epigenetic regulatory mechanism plays a pivotal role in regulating trap formation and pathogenesis in NTFs, and provide novel insights into the mechanisms of interaction between NTFs and nematodes.


Assuntos
Ascomicetos , Nematoides , Animais , Histonas/genética , Histonas/metabolismo , Nematoides/genética , Nematoides/microbiologia , Ascomicetos/fisiologia , Fatores de Transcrição/metabolismo , Metiltransferases
9.
Front Oncol ; 12: 848221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419278

RESUMO

Dysregulation of the epigenetic enzyme-mediated transcription of oncogenes or tumor suppressor genes is closely associated with the occurrence, progression, and prognosis of tumors. Based on the reversibility of epigenetic mechanisms, small-molecule compounds that target epigenetic regulation have become promising therapeutics. These compounds target epigenetic regulatory enzymes, including DNA methylases, histone modifiers (methylation and acetylation), enzymes that specifically recognize post-translational modifications, chromatin-remodeling enzymes, and post-transcriptional regulators. Few compounds have been used in clinical trials and exhibit certain therapeutic effects. Herein, we summarize the classification and therapeutic roles of compounds that target epigenetic regulatory enzymes in cancer treatment. Finally, we highlight how the natural compounds berberine and ginsenosides can target epigenetic regulatory enzymes to treat cancer.

10.
Front Bioeng Biotechnol ; 10: 840600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721852

RESUMO

Chinese hamster ovary (CHO) cells are currently the most widely used host cells for recombinant therapeutic protein (RTP) production. Currently, the RTP yields need to increase further to meet the market needs and reduce costs. In this study, three stabilizing and anti-repressor (SAR) elements from the human genome were selected, including human SAR7, SAR40, and SAR44 elements. SAR elements were cloned upstream of the promoter in the eukaryotic vector, followed by transfection into CHO cells, and were screened under G418 pressure. Flow cytometry was used to detect enhanced green fluorescent protein (eGFP) expression levels. The gene copy numbers and mRNA expression levels were determined through quantitative real-time PCR. Furthermore, the effect of the stronger SAR elements on adalimumab was investigated. The results showed that transgene expression levels in the SAR-containing vectors were higher than that of the control vector, and SAR7 and SAR40 significantly increased and maintained the long-term expression of the transgene in CHO cells. In addition, the transgene expression level increase was related with gene copy numbers and mRNA expression levels. Collectively, SAR elements can enhance the transgene expression and maintain the long-term expression of a transgene in transfected CHO cells, which may be used to increase recombinant protein production in CHO cells.

11.
Aging (Albany NY) ; 13(5): 7397-7415, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33658396

RESUMO

In this study, we used public databases to investigate the prognostic significance of epigenetic regulatory gene expression in patients with non small-cell lung cancer (NSCLC). Oncomine database analysis showed that the mRNA levels of seven epigenetic regulatory genes, UHRF1, EZH2, TTF2, SUV39H2, PCNA, WHSC1 and RAD54L, genes were significantly upregulated in NSCLC patients as compared to normal lung tissues. Functional enrichment analysis of these seven genes showed that the most enriched GO terms were DNA repair and rhythmic process, whereas, the most enriched KEGG pathway was lysine degradation pathway. The mRNA and protein expression levels of UHRF1, EZH2, TTF2, WHSC1 and RAD54L significantly correlated with tumor stage in NSCLC patients. Moreover, NSCLC patients exhibiting higher UHRF1, EZH2, WHSC1 and RAD54L mRNA and protein expression levels had poorer progression-free survival and overall survival. These findings demonstrate that UHRF1, EZH2, WHSC1 and RAD54L are potential prognostic biomarkers to distinguish high-risk from low-risk NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/genética , Adenosina Trifosfatases/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , DNA Helicases/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Predisposição Genética para Doença/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Prognóstico , Antígeno Nuclear de Célula em Proliferação/genética , Proteínas Repressoras/genética , Análise de Sobrevida , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética
12.
Front Genet ; 11: 569232, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133155

RESUMO

BACKGROUND: The epigenetic effects of transmission of certain regulatory molecules, such as miRNAs, through maternal milk on future generations, are still unknown and have not been fully understood yet. We hypothesized that breastfeeding regularly by adoptive-mother may cause transmission of miRNAs as epigenetic regulating factors to the infant, and the marriage of milk-siblings may cause various pathologies in the future generations. RESULTS: A cross-fostering model using a/a and A vy /a mice had been established. F2 milk-sibling and F2 control groups were obtained from mating of milk-siblings or unrelated mice. Randomized selected animals in the both F2 groups were sacrificed for miRNA expression studies and the remainings were followed for phenotypic changes (coat color, obesity, hyperglycemia, liver pathology, and life span). The lifespan in the F2 milk-sibling group was shorter than the control group (387 vs 590 days, p = 0.011) and they were more obese during the aging period. Histopathological examination of liver tissues revealed abnormal findings in F2 milk-sibling group. In order to understand the epigenetic mechanisms leading to these phenotypic changes, we analyzed miRNA expression differences between offspring of milk-sibling and control matings and focused on the signaling pathways regulating lifespan and metabolism. Bioinformatic analysis demonstrated that differentially expressed miRNAs were associated with pathways regulating metabolism, survival, and cancer development such as the PI3K-Akt, ErbB, mTOR, and MAPK, insulin signaling pathways. We further analyzed the expression patterns of miR-186-5p, miR-141-3p, miR-345-5p, and miR-34c-5p and their candidate target genes Mapk8, Gsk3b, and Ppargc1a in ovarian and liver tissues. CONCLUSION: Our findings support for the first time that the factors modifying the epigenetic mechanisms may be transmitted by breast milk and these epigenetic interactions may be transferred transgenerationally. Results also suggested hereditary epigenetic effects of cross-fostering on future generations and the impact of mother-infant dyad on epigenetic programming.

13.
Eur J Med Chem ; 191: 112152, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32088495

RESUMO

Protein kinase inhibitors and epigenetic regulatory molecules are two main kinds of anticancer drugs developed in recent years. Both kinds of drugs harbor their own advantages and disadvantages in the treatment of cancer, and the development of small molecules which could target at kinases and epigenetic targets simultaneously can avoid the defects of drugs which only targets at kinases or epigenetic proteins. In this study, a series of 4,5-dihydro-[1,2,4]triazolo [4,3-f]pteridine derivatives were designed and synthesized based on the structure of PLK1 inhibitor BI-2536. Subsequent targets affinity screen and antiproliferative activity test led to the discovery of the most potent dual PLK1/BRD4 inhibitor 9b with good potency for both PLK1 (IC50 = 22 nM) and BRD4 (IC50 = 109 nM) as well as favorable antiproliferative activity against a panel of cancer cell lines. 9b could induce cell cycle arrest and apoptosis in acute myeloid leukemia cell line MV 4-11 in a concentration dependent manner. It could also downregulate the transcription of several proliferation-related oncogenes, including c-MYC, MYCN and BCL-2. Finally, in a MV4-11 mouse xenograft model, 9b exhibited favorable in vivo antitumor activity with 66% tumor growth inhibition (TGI) at a dose of 60 mg/kg while without obvious toxicity. This study thus provided us a start point for the development of new dual PLK1/BRD4 inhibitors as anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pteridinas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Pteridinas/síntese química , Pteridinas/química , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Triazóis/síntese química , Triazóis/química , Células Tumorais Cultivadas , Quinase 1 Polo-Like
14.
Genome Biol Evol ; 11(3): 786-797, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753418

RESUMO

We previously showed that the first intron of genes exhibits several interesting characteristics not seen in other introns: 1) it is the longest intron on average in almost all eukaryotes, 2) it presents the highest number of conserved sites, and 3) it exhibits the highest density of regulatory chromatin marks. Here, we expand on our previous study by integrating various multiomics data, leading to further evidence supporting the functionality of sites in the first intron. We first show that trait-associated single-nucleotide polymorphisms (TASs) are significantly enriched in the first intron. We also show that within the first intron, the density of epigenetic chromatin signals is higher near TASs than in distant regions. Furthermore, the distribution of several chromatin regulatory marks is investigated in relation to gene expression specificity (i.e., housekeeping vs. tissue-specific expression), essentiality (essential genes vs. nonessential genes), and levels of gene expression; housekeeping genes or essential genes contain greater proportions of active chromatin marks than tissue-specific genes or nonessential genes, and highly expressed genes exhibit a greater density of chromatin regulatory marks than genes with low expression. Moreover, we observe that genes carrying multiple first-intron TASs interact with each other within a large protein-protein interaction network, ultimately connecting to the UBC protein, a well-established protein involved in ubiquitination. We believe that our results shed light on the functionality of first introns as a genomic entity involved in gene expression regulation.


Assuntos
Genoma Humano , Íntrons , Polimorfismo de Nucleotídeo Único , Epigênese Genética , Genes Essenciais , Código das Histonas , Humanos
15.
Oncoimmunology ; 3(1): e27414, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24701376

RESUMO

Histone deacetylase inhibitors (HDACis) are known to exert immunomodulatory effects. We have recently demonstrated that the therapeutic efficacy of HDACis against aggressive B-cell lymphoma and colon carcinoma relies on a functional immune system, in particular on the production of interferon γ (IFNγ). Our findings provide a rationale for the combination of HDACis with immunotherapeutic agents in the clinic.

16.
Int Rev Neurobiol ; 115: 117-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25131544

RESUMO

Stress response is considered to have adaptive value for organisms faced with stressful condition. Chronic stress however adversely affects the physiology and may lead to neuropsychiatric disorders. Repeated stressful events in animal models have been shown to cause long-lasting changes in neural circuitries at molecular, cellular, and physiological level, leading to disorders of mood as well as cognition. Molecular studies in recent years have implicated diverse epigenetic mechanisms, including histone modifications, DNA methylation, and noncoding RNAs, that underlie dysregulation of genes in the affected neural circuitries in chronic stress-induced pathophysiology. A review of the myriad epigenetic regulatory mechanisms associated with neural and behavioral responses in animal models of stress-induced neuropsychiatric disorders is presented here. The review also deals with clinical evidence of the epigenetic dysregulation of genes in psychiatric disorders where chronic stress appears to underlie the etiopathology.


Assuntos
Epigênese Genética , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia , Acetilação , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Montagem e Desmontagem da Cromatina , Metilação de DNA , Humanos , Estresse Psicológico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA