Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 185(2): 283-298.e17, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35021065

RESUMO

Gasdermins are a family of structurally related proteins originally described for their role in pyroptosis. Gasdermin B (GSDMB) is currently the least studied, and while its association with genetic susceptibility to chronic mucosal inflammatory disorders is well established, little is known about its functional relevance during active disease states. Herein, we report increased GSDMB in inflammatory bowel disease, with single-cell analysis identifying epithelial specificity to inflamed colonocytes/crypt top colonocytes. Surprisingly, mechanistic experiments and transcriptome profiling reveal lack of inherent GSDMB-dependent pyroptosis in activated epithelial cells and organoids but instead point to increased proliferation and migration during in vitro wound closure, which arrests in GSDMB-deficient cells that display hyper-adhesiveness and enhanced formation of vinculin-based focal adhesions dependent on PDGF-A-mediated FAK phosphorylation. Importantly, carriage of disease-associated GSDMB SNPs confers functional defects, disrupting epithelial restitution/repair, which, altogether, establishes GSDMB as a critical factor for restoration of epithelial barrier function and the resolution of inflammation.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/patologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose , Sequência de Bases , Estudos de Casos e Controles , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Epiteliais/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células HEK293 , Células HT29 , Humanos , Doenças Inflamatórias Intestinais/genética , Metotrexato/farmacologia , Mutação/genética , Fosforilação/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Piroptose/efeitos dos fármacos , Piroptose/genética , Reprodutibilidade dos Testes , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Regulação para Cima/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Cicatrização/genética
2.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899147

RESUMO

Constant remodeling of tight junctions to regulate trans-epithelial permeability is essential in maintaining intestinal barrier functions and thus preventing diffusion of small molecules and bacteria to host systemic circulation. Gut microbiota dysbiosis and dysfunctional gut barrier have been correlated to a large number of diseases such as obesity, type 2 diabetes and inflammatory bowel disease. This led to the hypothesis that gut bacteria-epithelial cell interactions are key regulators of epithelial permeability through the modulation of tight junctions. Nevertheless, the molecular basis of host-pathogen interactions remains unclear mostly due to the inability of most in vitro models to recreate the differentiated tissue structure and components observed in the normal intestinal epithelium. Recent advances have led to the development of a novel cellular model derived from intestinal epithelial stem cells, the so-called organoids, encompassing all epithelial cell types and reproducing physiological properties of the intestinal tissue. We summarize herein knowledge on molecular aspects of intestinal barrier functions and the involvement of gut bacteria-epithelial cell interactions. This review also focuses on epithelial organoids as a promising model for epithelial barrier functions to study molecular aspects of gut microbiota-host interaction.


Assuntos
Permeabilidade da Membrana Celular , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Mucosa Intestinal/fisiologia , Junções Íntimas/fisiologia , Animais , Humanos
3.
Gut Pathog ; 16(1): 16, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521943

RESUMO

BACKGROUND: Despite extensive research on microbiome alterations in ulcerative colitis (UC), the role of the constituent stable microbiota remains unclear. RESULTS: This study, employing 16S rRNA-gene sequencing, uncovers a persistent microbial imbalance in both active and quiescent UC patients compared to healthy controls. Using co-occurrence and differential abundance analysis, the study highlights microbial constituents, featuring Phocaeicola, Collinsella, Roseburia, Holdemanella, and Bacteroides, that are not affected during the course of UC. Co-cultivation experiments, utilizing commensal Escherichia coli and Phocaeicola vulgatus, were conducted with intestinal epithelial organoids derived from active UC patients and controls. These experiments reveal a tendency for a differential response in tight junction formation and maintenance in colonic epithelial cells, without inducing pathogen recognition and stress responses, offering further insights into the roles of these microorganisms in UC pathogenesis. These experiments also uncover high variation in patients' response to the same bacteria, which indicate the need for more comprehensive, stratified analyses with an expanded sample size. CONCLUSION: This study reveals that a substantial part of the gut microbiota remains stable throughout progression of UC. Functional experiments suggest that members of core microbiota - Escherichia coli and Phocaeicola vulgatus - potentially differentially regulate the expression of tight junction gene in the colonic epithelium of UC patients and healthy individuals.

4.
Cell Rep ; 43(8): 114621, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39153200

RESUMO

Resident memory T cells (TRMs) play a vital role in regional immune defense. Although laboratory rodents have been extensively used to study fundamental TRM biology, poor isolation efficiency and low cell survival rates have limited the implementation of TRM-focused high-throughput assays. Here, we engineer a murine vaginal epithelial organoid (VEO)-CD8 T cell co-culture system that supports CD8 TRM differentiation. These in-vitro-generated TRMs are phenotypically and transcriptionally similar to in vivo TRMs. Pharmacological and genetic approaches showed that transforming growth factor ß (TGF-ß) signaling plays a crucial role in their differentiation. The VEOs in our model are susceptible to viral infections and the CD8 T cells are amenable to genetic manipulation, both of which will allow a detailed interrogation of antiviral CD8 T cell biology. Altogether we have established a robust in vitro TRM differentiation system that is scalable and can be subjected to high-throughput assays that will rapidly add to our understanding of TRMs.


Assuntos
Linfócitos T CD8-Positivos , Diferenciação Celular , Organoides , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Organoides/metabolismo , Organoides/imunologia , Camundongos , Feminino , Células T de Memória/imunologia , Células T de Memória/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Camundongos Endogâmicos C57BL , Memória Imunológica , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/citologia , Transdução de Sinais , Vagina/imunologia , Vagina/citologia , Técnicas de Cocultura
5.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076957

RESUMO

Resident Memory T cells (TRM) play a vital role in regional immune defense in barrier organs. Although laboratory rodents have been extensively used to study fundamental TRM biology, poor isolation efficiency, sampling bias and low cell survival rates have limited our ability to conduct TRM-focused high-throughput assays. Here, we engineered a murine vaginal epithelial organoid (VEO)-CD8 T cell co-culture system that supports CD8 TRM differentiation in vitro. The three-dimensional VEOs established from murine adult stem cells resembled stratified squamous vaginal epithelium and induced gradual differentiation of activated CD8 T cells into epithelial TRM. These in vitro generated TRM were phenotypically and transcriptionally similar to in vivo TRM, and key tissue residency features were reinforced with a second cognate-antigen exposure during co-culture. TRM differentiation was not affected even when VEOs and CD8 T cells were separated by a semipermeable barrier, indicating soluble factors' involvement. Pharmacological and genetic approaches showed that TGF-ß signaling played a crucial role in their differentiation. We found that the VEOs in our model remained susceptible to viral infections and the CD8 T cells were amenable to genetic manipulation; both of which will allow detailed interrogation of antiviral CD8 T cell biology in a reductionist setting. In summary, we established a robust model which captures bonafide TRM differentiation that is scalable, open to iterative sampling, and can be subjected to high throughput assays that will rapidly add to our understanding of TRM.

6.
Front Immunol ; 14: 1097383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911731

RESUMO

There are many unanswered questions regarding responses to proinflammatory signals in intestinal epithelial cells (IECs). For example, chemokines secreted by IECs upon external stimuli play multifunctional roles in both homeostasis and during inflammation. Several chemokines are upregulated during active inflammatory bowel disease (IBD), which is associated with an increased influx of immune cells into the gut mucosa. Therefore, studies on how chemokines are regulated in the intestinal epithelium may identify putative treatment targets in IBD. More recently, patient-derived ex vivo models such as intestinal organoids have facilitated molecular analysis of epithelial alterations in IBD patients own cells. Here, we describe refined experimental protocols and methods for the generation and maintenance of IBD patient-derived colonic organoids (colonoids) culture. We also give detailed description of medium, and supplements needed for colonoid establishment, growth, and differentiation, including production of Wnt-3A and Rspondin1 enriched media. Further, we present protocols for RNA and protein isolation from human colonoids, and subsequent gene expression analysis and Western blotting for e.g., signal transduction studies. We also describe how to process colonoids for chemokine protein expression analysis such as immunostaining, confocal imaging, and detection of secreted chemokines by e.g., enzyme-linked immunosorbent assay (ELISA). As proof of principle, we give examples of how the chemoattractant CCL20 can be regulated and expressed in colonoids derived from IBD-patients and healthy controls upon ligands-driven inflammation.


Assuntos
Colo , Doenças Inflamatórias Intestinais , Humanos , Colo/metabolismo , Células Epiteliais/metabolismo , Organoides , Inflamação/metabolismo
7.
Front Bioeng Biotechnol ; 10: 879024, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547177

RESUMO

The inner surface of the intestine is a dynamic system, composed of a single layer of polarized epithelial cells. The development of intestinal organoids was a major breakthrough since they robustly recapitulate intestinal architecture, regional specification and cell composition in vitro. However, the cyst-like organization hinders direct access to the apical side of the epithelium, thus limiting their use in functional assays. For the first time, we show an intestinal organoid model from pluripotent stem cells with reversed polarity where the apical side faces the surrounding culture media and the basal side faces the lumen. These inside-out organoids preserve a distinct apico-basolateral orientation for a long period and differentiate into the major intestinal cell types. This novel model lays the foundation for developing new in vitro functional assays particularly targeting the apical surface of the epithelium and thus offers a new research tool to study nutrient/drug uptake, metabolism and host-microbiome/pathogen interactions.

8.
Cell Rep ; 40(9): 111281, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36044863

RESUMO

Organoid-based models of murine and human innate lymphoid cell precursor (ILCP) maturation are presented. First, murine intestinal and pulmonary organoids are harnessed to demonstrate that the epithelial niche is sufficient to drive tissue-specific maturation of all innate lymphoid cell (ILC) groups in parallel, without requiring subset-specific cytokine supplementation. Then, more complex human induced pluripotent stem cell (hiPSC)-based gut and lung organoid models are used to demonstrate that human epithelial cells recapitulate maturation of ILC from a stringent systemic human ILCP population, but only when the organoid-associated stromal cells are depleted. These systems offer versatile and reductionist models to dissect the impact of environmental and mucosal niche cues on ILC maturation. In the future, these could provide insight into how ILC activity and development might become dysregulated in chronic inflammatory diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Animais , Diferenciação Celular , Humanos , Imunidade Inata , Imunoterapia , Linfócitos , Camundongos
9.
EBioMedicine ; 84: 104238, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36081283

RESUMO

Abnormal Uterine Bleeding (AUB) is a common debilitating condition that significantly reduces quality of life of women across the reproductive age span. AUB creates significant morbidity, medical, social, and economic problems for women, their families, workplace, and health services. Despite the profoundly negative effects of AUB on public health, advancement in understanding the pathophysiology of AUB and the discovery of novel effective therapies is slow due to lack of reliable pre-clinical models. This review discusses currently available laboratory-based pre-clinical scientific models and how they are used to study AUB. Human and animal in vitro, ex vivo, and in vivo models will be described along with advantages and limitations of each method.


Assuntos
Qualidade de Vida , Hemorragia Uterina , Feminino , Humanos , Hemorragia Uterina/diagnóstico , Hemorragia Uterina/etiologia , Hemorragia Uterina/terapia
10.
EBioMedicine ; 69: 103463, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34224973

RESUMO

BACKGROUND: Family with Sequence Similarity 13, Member A (FAM13A) gene has been consistently associated with COPD by Genome-wide association studies (GWAS). Our previous study demonstrated that FAM13A was mainly expressed in the lung epithelial progenitors including Club cells and alveolar type II epithelial (ATII) cells. Fam13a-/- mice were resistant to cigarette smoke (CS)-induced emphysema through promoting ß-catenin/Wnt activation. Given the important roles of ß-catenin/Wnt activation in alveolar regeneration during injury, it is unclear when and where FAM13A regulates the Wnt pathway, the requisite pathway for alveolar epithelial repair, in vivo during CS exposure in lung epithelial progenitors. METHODS: Fam13a+/+ or Fam13a-/- mice were crossed with TCF/Lef:H2B-GFP Wnt-signaling reporter mouse line to indicate ß-catenin/Wnt-activated cells labeled with GFP followed by acute (1 month) or chronic (7 months) CS exposure. Fluorescence-activated flow cytometry analysis, immunofluorescence and organoid culture system were performed to identify the ß-catenin/Wnt-activated cells in Fam13a+/+ or Fam13a-/- mice exposed to CS. Fam13a;SftpcCreERT2;Rosa26RmTmG mouse line, where GFP labels ATII cells, was generated for alveolar organoid culture followed by analyses of organoid number, immunofluorescence and gene expression. Single cell RNA-seq data from COPD ever smokers and nonsmoker control lungs were further analyzed. FINDINGS: We found that FAM13A-deficiency significantly increased Wnt activation mainly in lung epithelial cells. Consistently, after long-term CS exposure in vivo, FAM13A deficiency bestows alveolar epithelial progenitor cells with enhanced proliferation and differentiation in the ex vivo organoid model. Importantly, expression of FAM13A is significantly increased in human COPD-derived ATII cells compared to healthy ATII cells as suggested by single cell RNA-sequencing data. INTERPRETATION: Our findings suggest that FAM13A-deficiency promotes the Wnt pathway-mediated ATII cell repair/regeneration, and thereby possibly mitigating CS-induced alveolar destruction. FUND: This project is funded by the National Institutes of Health of United States of America (NIH) grants R01HL127200, R01HL137927, R01HL148667 and R01HL147148 (XZ).


Assuntos
Células Epiteliais Alveolares/metabolismo , Autorrenovação Celular , Proteínas Ativadoras de GTPase/metabolismo , Enfisema Pulmonar/metabolismo , Células-Tronco/metabolismo , Via de Sinalização Wnt , Células Epiteliais Alveolares/citologia , Animais , Feminino , Proteínas Ativadoras de GTPase/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Enfisema Pulmonar/etiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Poluição por Fumaça de Tabaco/efeitos adversos
11.
Methods Mol Biol ; 1576: 135-144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-27787775

RESUMO

The intestinal epithelium isolated from chicken embryos in last 3 days of development can be used to establish the 3D culture of intestinal organoids. When fragments of epithelial tissue released by incubation with EGTA (2.5 mM, 2 h) are embedded in Matrigel matrix on cell culture inserts the formation of empty spheres covered by epithelial cells is observed in first 24 h of culture. The growth and survival of organoids are supported by the addition of R-spondin 1, Noggin, and prostaglandin E2 to the culture medium. The organoids are accompanied by myofibroblasts which become visible in the next 2 days of culture. The intestinal enteroids (free of myofibroblasts) can be obtained from adult chicken intestine.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células Epiteliais/citologia , Intestinos/citologia , Miofibroblastos/citologia , Organoides/citologia , Engenharia Tecidual/métodos , Animais , Células Cultivadas , Embrião de Galinha , Galinhas
12.
Cell Rep ; 26(9): 2509-2520.e4, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30811997

RESUMO

Human enteroids-epithelial spheroids derived from primary gastrointestinal tissue-are a promising model to study pathogen-epithelial interactions. However, accessing the apical enteroid surface is challenging because it is enclosed within the spheroid. We developed a technique to reverse enteroid polarity such that the apical surface everts to face the media. Apical-out enteroids maintain proper polarity and barrier function, differentiate into the major intestinal epithelial cell (IEC) types, and exhibit polarized absorption of nutrients. We used this model to study host-pathogen interactions and identified distinct polarity-specific patterns of infection by invasive enteropathogens. Salmonella enterica serovar Typhimurium targets IEC apical surfaces for invasion via cytoskeletal rearrangements, and Listeria monocytogenes, which binds to basolateral receptors, invade apical surfaces at sites of cell extrusion. Despite different modes of entry, both pathogens exit the epithelium within apically extruding enteroid cells. This model will enable further examination of IECs in health and disease.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Mucosa Intestinal/citologia , Técnicas de Cultura de Células , Diferenciação Celular , Polaridade Celular , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Humanos , Listeria monocytogenes/fisiologia , Modelos Biológicos , Salmonella typhimurium/fisiologia , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Esferoides Celulares/microbiologia
13.
EBioMedicine ; 36: 461-474, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30236449

RESUMO

BACKGROUND: Despite compelling data describing pro-regenerative effects of all-trans retinoic acid (ATRA) in pre-clinical models of chronic obstructive pulmonary disease (COPD), clinical trials using retinoids for emphysema patients have failed. Crucial information about the specific role of RA signaling in adult rodent and human lung epithelial progenitor cells is largely missing. METHODS: Adult lung organoid cultures were generated from isolated primary mouse and human lung epithelial cells, and incubated with pharmacological pathway modulators and recombinant proteins. Organoid number and size were measured, and differentiation was assessed with quantitative immunofluorescence and gene expression analyses. FINDINGS: We unexpectedly found that ATRA decreased lung organoid size, whereas RA pathway inhibition increased mouse and human lung organoid size. RA pathway inhibition stimulated mouse lung epithelial proliferation via YAP pathway activation and epithelial-mesenchymal FGF signaling, while concomitantly suppressing alveolar and airway differentiation. HDAC inhibition rescued differentiation in growth-augmented lung organoids. INTERPRETATION: In contrast to prevailing notions, our study suggests that regenerative pharmacology using transient RA pathway inhibition followed by HDAC inhibition might hold promise to promote lung epithelial regeneration in diseased adult lung tissue. FUND: This project is funded by the Lung Foundation Netherlands (Longfonds) grant 6.1.14.009 (RG, MK, JS, PSH) and W2/W3 Professorship Award by the Helmholtz Association, Berlin, Germany (MK).


Assuntos
Diferenciação Celular , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Tretinoína/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Humanos , Camundongos , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/terapia , Regeneração
14.
Stem Cell Reports ; 10(1): 314-328, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29233552

RESUMO

Gut epithelial organoids are routinely used to investigate intestinal biology; however, current culture methods are not amenable to genetic manipulation, and it is difficult to generate sufficient numbers for high-throughput studies. Here, we present an improved culture system of human induced pluripotent stem cell (iPSC)-derived intestinal organoids involving four methodological advances. (1) We adopted a lentiviral vector to readily establish and optimize conditioned medium for human intestinal organoid culture. (2) We obtained intestinal organoids from human iPSCs more efficiently by supplementing WNT3A and fibroblast growth factor 2 to induce differentiation into definitive endoderm. (3) Using 2D culture, followed by re-establishment of organoids, we achieved an efficient transduction of exogenous genes in organoids. (4) We investigated suspension organoid culture without scaffolds for easier harvesting and assays. These techniques enable us to develop, maintain, and expand intestinal organoids readily and quickly at low cost, facilitating high-throughput screening of pathogenic factors and candidate treatments for gastrointestinal diseases.


Assuntos
Técnicas de Cultura de Células/métodos , Células Epiteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucosa Intestinal/metabolismo , Organoides/metabolismo , Animais , Células Epiteliais/citologia , Vetores Genéticos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Mucosa Intestinal/citologia , Lentivirus , Camundongos , Organoides/citologia , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA