Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37420838

RESUMO

To solve the problem of sound field reconstruction with fewer measurement points, a sound field reconstruction method based on Bayesian compressive sensing is proposed. In this method, a sound field reconstruction model based on a combination of the equivalent source method and sparse Bayesian compressive sensing is established. The MacKay iteration of the relevant vector machine is used to infer the hyperparameters and estimate the maximum a posteriori probability of both the sound source strength and noise variance. The optimal solution for sparse coefficients with an equivalent sound source is determined to achieve the sparse reconstruction of the sound field. The numerical simulation results demonstrate that the proposed method has higher accuracy over the entire frequency range compared to the equivalent source method, indicating a better reconstruction performance and wider frequency applicability with undersampling. Moreover, in environments with low signal-to-noise ratios, the proposed method exhibits significantly lower reconstruction errors than the equivalent source method, indicating a superior anti-noise performance and greater robustness in sound field reconstruction. The experimental results further verify the superiority and reliability of the proposed method for sound field reconstruction with limited measurement points.


Assuntos
Acústica , Modelos Teóricos , Teorema de Bayes , Reprodutibilidade dos Testes , Som
2.
Sensors (Basel) ; 20(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041225

RESUMO

Near-field acoustic holography (NAH) based on equivalent source method (ESM) is an effective method for identifying sound sources. Conventional ESM focuses on relatively low frequencies and cannot provide a satisfactory solution at high frequencies. So its improved method called wideband acoustic holography (WBH) has been proposed, which has high reconstruction accuracy at medium-to-high frequencies. However, it is less accurate for coherent sound sources at low frequencies. To improve the reconstruction accuracy of conventional ESM and WBH, a sound source identification algorithm based on Bayesian compressive sensing (BCS) and ESM is proposed. This method uses a hierarchical Laplace sparse prior probability distribution, and adaptively adjusts the regularization parameter, so that the energy is concentrated near the correct equivalent source. Referring to the function beamforming idea, the original algorithm with order v can improve its dynamic range, and then more accurate position information is obtained. Based on the simulation of irregular microphone array, comparisons with conventional ESM and WBH show that the proposed method is more accurate, suitable for a wider range of frequencies, and has better reconstruction performance for coherent sources. By increasing the order v, the coherent sources can be located accurately. Finally, the stability and reliability of the proposed method are verified by experiments.

3.
Sensors (Basel) ; 12(5): 6447-62, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22778652

RESUMO

The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D) electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP) is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT) and the New Equivalent Source (NES) method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA). The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA