RESUMO
Photosensitizer-mediated abiotic oxidation of Mn(II) can yield soluble reactive Mn(III) and solid Mn oxides. In eutrophic water systems, the ubiquitous algal extracellular organic matter (EOM) is a potential photosensitizer and may have a substantial impact on the oxidation of Mn(II). Herein, we focused on investigating the photochemical oxidation process from Mn(II) to solid Mn oxide driven by EOM. The results of irradiation experiments demonstrated that the generation of Mn(III) intermediate was crucial for the successful photo oxidization of Mn(II) to solid Mn oxide mediated by EOM. EOM can serve as both a photosensitizer and a ligand, facilitating the formation of the Mn(III)-EOM complex. The complex exhibited excellent efficiency in removing 17α-ethinylestradiol. Furthermore, the complex underwent decomposition as a result of reactions with reactive intermediates, forming a solid Mn oxide. The presence of nitrate can enhance the photochemical oxidation process, facilitating the conversion of Mn(II) to Mn(III) and then to solid Mn oxide. This study deepens our grasp of Mn(II) geochemical processes in eutrophic water and its impact on organic micropollutant fate.
Assuntos
Etinilestradiol , Óxidos , Óxidos/química , Fármacos Fotossensibilizantes , Compostos de Manganês/química , Oxirredução , Água/químicaRESUMO
In this study, a combined ecological floating bed (C-EFB) with alum sludge ceramsite (ASC) was designed to improve the water purification effect of traditional ecological floating beds (T-EFBs). During the ASC preparation stage, alum sludge was shaped into a ball, air-dried, and fired under 600 °C. The physical and chemical properties of the ASC meet the requirements of Artificial Ceramsite Filter Materials for Water Treatment (CJ/T229-2008). This study investigated the increased capability of this new-type artificial substrate (ASC) on the removal of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total phosphorus (TP), and total nitrogen (TN) from eutrophic landscape water. Compared with the T-EFB, the C-EFB owns a higher purification efficiency. The highest average efficiency of COD, NH4+-N, TN and TP removals during the four operating stages was 78.2%, 58.1%, 46.7% and 53.2%, respectively, in the C-EFB, which were all higher than those of 53.5%, 32.4%, 27.2% and 25.8%, respectively, for the T-EFB. Among them, the C-EFB showed a higher advantage in the removal of TP. The results showed that the potential benefits of utilizing ASC in seriously eutrophic bodies of water.
RESUMO
In this study, a new type of ecological floating bed (NT-EFB) employing ornamental plants (either Spathiphyllum floribundum, Hydrocotyle sibthorpioids, Chlorophytum comosum or Peperomia obtusifolia) was designed to purify confected eutrophic water for 39 days. The growth characteristics of the plants and the effect of water treatment were analyzed and compared. The results showed that: (1) all the four ornamental plants examined survived well in the eutrophic water and an increase of plant biomass was observed; (2) the degradation efficiency of TOC by adding plants was about 85.0%; (3) the removal rate of NH4+-N was about 97.0%; (4) all the four plants can be used as floating bed plants to treat eutrophic water and Hydrocotyle sibthorpioids had the best growth characteristics and treatment efficiency. The study provides an adequate reference for the treatment of eutrophication using ecological floating beds.
Assuntos
Fósforo , Purificação da Água , Eutrofização , Laboratórios , Nitrogênio , Nutrientes , ÁguaRESUMO
The integrated effects of water flow on submerged macrophytes (Vallisneria natans) and leaf biofilms were comprehensively investigated in eutrophic microcosm. Changes in aquatic environmental factors were analyzed and water flow was found to elevate eutrophic water quality, especially in terms of TP removal. The removal efficiency of TP reached 78.95% in flowing water, which was more than 10-fold higher than in static water. Water flow altered the morphological and physiological characteristics of plants, decreasing the cell wall thickness and rate of photosynthesis, while promoting the accumulation of soluble sugar and protein in leaves. The starch content also increased with water flow, and significantly larger starch granules were observed in chloroplast. Furthermore, oxidative damage was evidenced by the consistently higher content of malondialdehyde in flowing water. Superoxide dismutase (SOD), peroxidase (POD) and Catalase (CAT) were induced in plants exposed to water flow, as an antioxidant stress response. The results of 16S rRNA high-throughput sequencing analysis showed that the structure of the biofilm microbial community changed in response to water flow. These results expand our understanding of the effects of water flow on submerged macrophytes and periphyton biofilms in eutrophic environments.
Assuntos
Hydrocharitaceae/fisiologia , Microbiota , Perifíton/fisiologia , Antioxidantes/metabolismo , Biofilmes , Hydrocharitaceae/metabolismo , Malondialdeído/análise , Malondialdeído/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , RNA Ribossômico 16S/metabolismo , Água/química , Movimentos da ÁguaRESUMO
In this study, the efficiency and mechanism of aqueous phosphate removal by magnetic biochar derived from water hyacinth (MW) were investigated. The MW pyrolyzed at 450 °C (MW450) exhibited the most prominent phosphate sorption capacity, which was estimated to be 5.07 mg g-1 based on Langmuir-Freundlich model. At an initial phosphorus (P) concentration of 1 mg l-1, >90% P removal was achieved over pH 3-9, but the efficiency decreased sharply at pH > 10. The presence of arsenate and carbonate could remarkably decrease P sorption, while the inhibition effects of antimonate, nitrate and sulfate were less significant. In further application of MW450 to reclaim P from eutrophic lake waters (0.71-0.94 mg l-1 total P), â¼96% P removals were attained in the batch studies and the effluent P concentrations in the column tests were reduced to <0.05 mg l-1 within 509-1019 empty bed volumes. As indicated by XRD, MW450 surface was dominated by Fe3O4 and Fe2O3, resulting in a good ferromagnetic property of this composite (saturation magnetization 45.8 emu g-1). Based on XPS, P sorption onto MW450 occurred mainly by surface complexation with the hydroxyl via ligand exchange. These results highlighted that MW derived from highly damaging water hyacinth could provide a promising alternative for P removal from most eutrophic waters.
Assuntos
Carvão Vegetal/química , Eichhornia/química , Magnetismo , Fosfatos/química , Adsorção , Antimônio/química , Arseniatos/química , Biomassa , China , Compostos Férricos , Concentração de Íons de Hidrogênio , Cinética , Lagos , Nitratos/química , Fósforo/química , Eletricidade Estática , Água , Poluentes Químicos da Água/química , Purificação da Água/métodosRESUMO
Phytoremediation is an emerging technology applied for treatment of wastewater. It is a suitable option notably in developing countries as it is simple, sustainable and cost effective. In the present lab-based batch study the free floating aquatic plant water lettuce (Pistia stratiotes) is used for treatment of parboiled rice mill wastewater having low pH, high chemical oxygen demand (COD), nitrogen, and phosphate. In raw rice mill wastewater (undiluted) growth of water lettuce is found to be inhibited. Later on, two different dilution approaches (raw and facultative pond effluent 1:1; raw and tap water 1:1) are applied in order to effectively use this technology. In all cases a control (without plant) is maintained to compare the performance with the Aquatic Plant based Treatment (APT) system. In the APT system results reveal that removal of soluble COD (SCOD), ammoniacal nitrogen (NH4-N), nitrate nitrogen (NO3-N), and soluble phosphorus (sol. P) are upto 65%, 98%, 70%, and 65% respectively. The study highlights the efficacy of water lettuce in removing organics and nutrients from parboiled rice mill wastewater.
Assuntos
Araceae/metabolismo , Indústria de Processamento de Alimentos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Resíduos Industriais/análise , Oryza/químicaRESUMO
Iris pseudacorus L. has been widely used in aquatic ecosystem to remove nutrient and has achieved positive effects. However, little is known regarding the nutrient-removal performance and physiological responses of I. pseudacorus for brackish eutrophic water treatment due to high nutrients combined with certain salinity levels. In this study, I. pseudacorus-planted microcosms were established to evaluate the capacity of I. pseudacorus to remove excessive nutrients from fresh (salinity 0.05%) and brackish (salinity 0.5%) eutrophic waters. The degradation of total nitrogen and ammonia nitrogen were not affected by 0.5% salinity; 0.5% salinity promoted the degradation of nitrate nitrogen while severely inhibited the degradation of total phosphorus. Additionally, 0.5% salinity was found to induce stress responses quantified by measuring six physiological indexes. Compared to 0.05% salinity, 0.5% salinity resulted in significant decreases in the chlorophyll a, b and total chlorophyll contents of I. pseudacorus which closely related to photosynthesis (p < 0.05). Furthermore, the higher proline, malondialdehyde contents and antioxidant enzyme activities were detected in I. pseudacorus exposed to 0.5% salinity, which provided protection against reactive oxygen species. The results highlight that the cellular stress assays are efficient for monitoring the health of I. pseudacorus in salinity shock-associated constructed wetlands.
Assuntos
Gênero Iris/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Águas Salinas/química , Cloreto de Sódio/química , Poluentes do Solo/metabolismo , Estuários , Eutrofização , Tolerância ao Sal , Fatores de Tempo , Áreas AlagadasRESUMO
The problem of nitrogen removal in eutrophic water needs to be solved. Two new autotrophic nitrogen removal technologies, ammonia oxidation coupled with Fe(III) reduction (Feammox) and Nitrate-dependent Fe(II) oxidation (NDFO), have been shown to have the potential to treat eutrophic water. However, the continuous addition of iron sources not only costs more, but also leads to sludge mineralization. In this study, nano-sized iron powder was loaded on the surface of K3 filler as a solid iron source for the extracellular metabolism of iron-trophic bacteria. At the same time, due to the high selective adsorption of zeolite for ammonia can improve the low nitrogen metabolism rate caused by low nitrogen concentrations in eutrophic water, three kinds of modified functional biological carriers were prepared by mixing zeolite powder and iron powder in different proportions (Z1, Zeolite:iron = 1; Z2, Zeolite:iron = 2; Z3, Zeolite:iron = 3). Z3 exhibited the best performance, with removal efficiencies of 54.8% for total nitrogen during 70 days of cultivation. The chemical structure and state of iron compounds changed under microorganism activity. The ex-situ test detected high NDFO and Feammox activities, with values of 1.02 ± 0.23 and 0.16 ± 0.04 mgN/gVSS/h. The enrichment of NDFO bacteria (Gallionellaceae, 0.73%-1.43%-0.74%) and Feammox bacteria (Alicycliphilus, 1.51%-0.88%-2.30%) indicated that collaboration between various functional microorganisms led to autotrophic nitrogen removal. Hence, zeolite/iron-modified biocarrier could drive the Fe(II)/Fe(III) cycle to remove nitrogen autotrophically from eutrophic water without carbon and Fe resource addition.
Assuntos
Ferro , Zeolitas , Ferro/química , Amônia/metabolismo , Desnitrificação , Nitrogênio/química , Pós , Oxirredução , Compostos Ferrosos , Ciclo do NitrogênioRESUMO
Ecological floating bed (EFB) has been widely used to remove nitrogen and phosphorus from eutrophic water. However, its effects on nitrogen and phosphorus removal are different in various studies. Presently it has not been systematically clear what factors produce effects on EFB removing nitrogen and phosphorus from eutrophic water. In this study, we performed a meta-analysis of 169 articles to discuss the effects of EFB characteristics and experimental conditions on EFB removing nitrogen and phosphorus. Results showed that EFB generally decreased nitrogen and phosphorus concentrations in eutrophic water regardless of EFB characteristics and experimental conditions. EFB showed better effects on simultaneously removing TN, NH4+-N, and TP when it had one of the characteristics: constructed by monocots, 2-3 plant species, an area of 1.1-3.0 m2, and the coverage of 21%-40%. However, NO3--N removal by EFB was complicated due to the effects of nitrification and denitrification. Moreover, EFB plant density also showed different effects on nitrogen and phosphorus removal. Experimental conditions produced evident effects on EFB removing nitrogen and phosphorus, and it showed better effects under one of the conditions: water temperature of 16-25â, experimental duration of 31-60 days, long hydraulic retention time, and aeration. This study indicates that EFB can significantly remove nitrogen and phosphorus from eutrophic water, and it is an effective technology to control water eutrophication, but the effects of EFB characteristics and environmental conditions on EFB function should be considered in application.
Assuntos
Eutrofização , Nitrogênio , Fósforo , Poluentes Químicos da ÁguaRESUMO
Three common floating bed plants, Eichhornia crassipes, Pistia stratiotes, and Ipomoea aquatica, were selected in the present study to investigate their inhibitory effects on toxic Microcystis aeruginosa. The results showed that all three types of floating-bed plants could considerably inhibit the growth of M. aeruginosa and effectively remove the microcystins (MCs) from water systems, among which, E. crassipes and P. stratiotes were more effective in resisting M. aeruginosa, and the removal rate of the intracellular MCs could be up to 100%. In addition, the roots and leaves of the three plants were enriched with a large number of MCs and demonstrated significant antioxidant responses, as evidenced by the increase in the content of catalase (CAT), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), and malondialdehyde (MDA) in the roots, stems, and leaves of the plants. Furthermore, this study also showed that Proteobacteria, Bacteroidota, Myxococcota, Verrucomicrobiota, and Actinobacteriota dominated the root microorganisms of the three plants. Moreover, a variety of MC-degrading bacteria, including Sphingomonas, Acinetobacter, Novosphingobium, and Pseudomonas, were found at the genus level, which further provides important basic data for the regulation of eutrophic water bodies and the removal of MCs.
RESUMO
Novelty techniques of Fe(III) reduction coupled to anaerobic ammonium oxidation (i.e. Feammox) and nitrate-dependent Fe(II) oxidation (i.e. NDFO) provide new insights into autotrophic nitrogen removal from eutrophic waters. Given that Feammox and NDFO can theoretically complete the simultaneous NH+ 4-N and NO- 3-N removal via Fe(III)/Fe(II) cycle, this study introduces iron powder to the surface of the biocarrier as a solid-phase source of Fe, and biochar was used as an electron shuttle to mix with the iron powder to improve the bioavailability of iron. Batch experiments was carried out for 70 days using simulated eutrophic water as the medium to investigate the effects of the modified biocarrier for enhanced nitrogen removal. The results showed that BC1 (Fe:BC=1:1) with the highest relative Fe content exhibited the highest nitrogen removal efficiency of 66.74%. XPS and XRD results showed both Fe(III) and Fe(II) compounds on the biocarrier surface, confirming the occurrence of Fe(III)/Fe(II) cycle. The ex-situ activity test indicated that functional activity was positively correlated with the iron content of the biocarrier. The in-situ experiments with different substrates showed the occurrence of Feammox and NDFO. NDFO bacteria (Gallionellaceae), Feammox bacteria (Alicycliphilus), denitrifying and digesting bacteria were enriched, suggesting that the coupled nitrogen removal of NDFO and Feammox is the result of cooperation between different functional microorganisms. Thus, the Fe-modified biocarrier showed superior performance and application potential in catalyzing autotrophic nitrogen removal from eutrophic water by functional microorganisms.
Assuntos
Compostos de Amônio , Compostos Férricos , Nitrogênio , Pós , Compostos de Amônio/química , Ferro/química , Oxirredução , Compostos Ferrosos , DesnitrificaçãoRESUMO
A biological aluminum-based P-inactivation agent (BA-PIA) has been developed and demonstrated to effectively remove nitrogen and phosphorus; however, whether it can control the release of nitrogen and phosphorus in sediment still needs study. This study aimed to examine the effect of BA-PIA on controlling sediment nitrogen and phosphorus release. BA-PIA was prepared by artificial aeration. The use of BA-PIA in controlling nitrogen and phosphorus release was studied using water and sediment from a landscape lake in static simulation experiments. The sediment microbial community was analyzed using high-throughput sequencing. Static simulation showed that the reduction rates of total nitrogen (TN) and total phosphorus (TP) by BA-PIA were 66.8 ± 1.46% and 96.0 ± 0.98%, respectively. In addition, capping of BA-PIA promotes the conversion of easily released nitrogen (free nitrogen) in the sediment to stable nitrogen (acid-hydrolyzable nitrogen). The content of weakly adsorbed phosphorus and iron-adsorbed phosphorus in the sediment was reduced. The relative abundance of nitrifying bacteria, denitrifying bacteria, and microorganisms carrying phosphatase genes (such as Actinobacteria) in the sediment increased by 109.78%. The capping of BA-PIA not only effectively removed the nitrogen and phosphorus in water but greatly reduced the risk of nitrogen and phosphorus release from sediment. BA-PIA was able to make up for the deficiency of the aluminum-based phosphorus-locking agent (Al-PIA) that only removes phosphorus, giving it improved application prospects.
Assuntos
Alumínio , Poluentes Químicos da Água , Fósforo , Nitrogênio/análise , Fatores Biológicos , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Lagos , ÁguaRESUMO
In recent years, cyanobacteria blooms have continued to erupt frequently, seriously jeopardizing the safety of drinking water and human health. The safe, quick, and economical removal of cyanobacteria from water bodies, especially the dominant species of cyanobacteria, Microcystis aeruginosa, has captured a lot of scientists' attention. The application of advanced oxidation technology in water treatment is very promising, but it has not yet been used in production. To further promote the application of the advanced oxidation method in water treatment, this article combines the results of advanced research in China and abroad to review this emergent technology. Briefly, advanced oxidation process methods employ various mechanisms to remove the dominant species of cyanobacteria blooms Microcystis aeruginosa. This provides a theoretical reference and support for the efficient removal of harmful cyanobacteria from water.
Assuntos
Cianobactérias , Microcystis , Purificação da Água , Humanos , Microcistinas , Tecnologia , Purificação da Água/métodosRESUMO
Efficient and sustainable technologies for cleaning of contaminated water and sediments are in urgent demand. In this study, a new type of sediment microbial fuel cell coupled floating bed (FB-SMFC) was developed to repair eutrophic water and sediment in a cleaner way. The effect of electrode spacing on the power generation capacity and the synchronous remediation of pollutants from eutrophic water and sediment were studied. When the electrode distance was 60 cm, the maximum power generation and pollutant removal effects were obtained. At the end of the experiment, the maximum output voltage was 0.4 V, and the chemical oxygen demand (CODCr, potassium dichromate method), total nitrogen (TN), and total phosphorus (TP) contents in the overlying water were 8 mg/L, 0.7 mg/L, and 0.39 mg/L. The corresponding removal rates were 88.2%, 78.8%, and 59.0%, respectively. The removal rates of organic matter and TN in the sediment were 12.8% and 86.4%, respectively, and the fixation rate of TP was 29.2%. Proteobacteria was the dominant phylum of bacteria in the sediment and anode. Many anaerobic bacteria were found in the overlying water, which facilitated denitrification. Overall, the results of this research revealed a highly efficient and reliable strategy for eutrophic water and sediment remediation, aquatic ecosystems restoration, and human health protection.
Assuntos
Fontes de Energia Bioelétrica , Poluentes Químicos da Água , Ecossistema , Eletrodos , Sedimentos Geológicos/química , Humanos , Nitrogênio/análise , Fósforo , Água/químicaRESUMO
In this article, dynamic simulation experiments have studied the effects of three capping materials, quartz sand (QS), aluminum-based phosphorus-locking agent (Al-PIA), and lanthanum-modified bentonite (LMB) in reducing phosphorus load in eutrophic water bodies. The changes of various forms of phosphorus in Al-PIA and sediment before and after the test were analyzed, and the mechanism of phosphorus migration and transformation in different capping systems was described. The dynamic simulation test lasted 95 days. The results showed that when the initial concentration of total phosphorus (TP) was 3.55 mg/L, the capping strength was 2 kg/m2 and the hydraulic retention time of water circulation was 0.5 days, indicating that the average reduction rates of TP by LMB, Al-PIA and QS systems were 74.66%, 69.54%, and 3.64%, respectively, compared with the control system. The analysis of variance showed that there were significant differences (P < 0.05) in the TP concentration of the overlying water between the LMB, Al-PIA capping system, and the control system. Lanthanum ions in LMB can fix phosphorus. Al-PIA reduces the phosphorus concentration in water by means of ion exchange, adsorption, complexation, etc. LMB and Al-PIA promoted the migration of phosphorus in sediment. Among them, the phosphorus fixed by Al-PIA was mainly in the form of non-apatite inorganic phosphorus (NAIP) in inorganic phosphorus (IP), which can be seen; Al-PIA can effectively reduce the phosphorus load of eutrophic water.
Assuntos
Fósforo , Poluentes Químicos da Água , Eutrofização , Sedimentos Geológicos , Lagos , Água , Poluentes Químicos da Água/análiseRESUMO
Both submerged macrophytes (SMs) and artificial macrophytes (AMs) have been widely used to improve water quality in eutrophic water. However, in heavily eutrophic aquatic ecosystems, the purification function of SMs is often restricted by the poor growth state due to competition from algae, while the purification function of AMs is often restricted by the limited carbon source supply for biofilm microbes attached to the AM surface. The objective of this study was to develop a new strategy to increase pollutant removal efficiency (RE) by combining the use of SMs and AMs. Pilot-scale microcosms, including treatments with both SMs and AMs (S&A), only SMs (SO) and only AMs (AO), were established to identify the performance of the new strategy. The results suggest that treatment S&A obtained REs of 88.9% for total nitrogen (TN) and 48.1% for chemical oxygen demand (COD); as comparison, treatments SO and AO obtained REs of 77.4% and 81.2% for TN and REs of -13.7% and 39.0% for COD, respectively. Compared with SO, the S&A treatment benefited SM growth in biomass, leaf chlorophyll concentration and root activity by inhibiting algae growth. In addition, compared with treatment AO, S&A increased the biofilm microbial biomass and the relative abundance of nitrifiers of families Nitrosomonadaceae and Nitrospira attached to AM surfaces. Therefore, by the mutual promotion of SMs and biofilms on AMs, the synergic application of SMs and AMs is a useful strategy for improving TN and COD REs in eutrophic water bodies such as rivers and constructed wetlands. A strategy was developed to increase nitrogen and COD removal in eutrophic water by the mutual promotion of submerged macrophytes and biofilms on artificial macrophytes.
Assuntos
Nitrogênio , Água , Biofilmes , Análise da Demanda Biológica de Oxigênio , Ecossistema , Humanos , Nitrogênio/análise , Fósforo/análiseRESUMO
The degeneration of submerged macrophytes and the invasion of Eichhornia crassipes (E. crassipes) destroyed the balance of aquatic ecosystems environments. In this study, responses of Vallisneria natans (V. natans) and the leaf-epiphytic biofilms to E. crassipes were analyzed to provide a technical scheme for V. natans restoration and E. crassipes control in eutrophic water. The results showed that a significant improvement of water quality achieved in 1100 ind·m-2 E. crassipes density group and TN removal rate reached 63.53%. The presence of E. crassipes changed the morphological characteristics of V. natans, which stimulated the adaptive mechanisms via promotion of shoot height and root length. Concentrations of the antioxidant enzymes, peroxidase, superoxide dismutase, and catalase in the V. natans leaves remained stable. But E. crassipes greatly increased the microbial diversity on V. natans leave biofilms. Furthermore, the greatest richness in bacterial community diversity was observed at 700, 1100, and 1200 ind·m-2 E. crassipes densities in heatmap, which was beneficial to the stability of the water ecological environment. These results showed that the combination of V. natans with E. crassipes of 1100 ind m-2 providing more favorable conditions for the growth and restoration of submerged macrophytes and improve the water quality. PRACTITIONER POINTS: The responses of submerged macrophytes to floating plants were studied. The optimal density of Eichhornia crassipes was 1100 ind m-2 . The biofilm microbial community changed in response to Eichhornia crassipes.
Assuntos
Eichhornia , Hydrocharitaceae , Microbiota , Biofilmes , ÁguaRESUMO
Pollution of freshwaters poses a major threat to water quality and human health and thus, nutrients have been targeted for mitigation. One such control measure is floating treatment wetlands (FTWs), which are designed to employ vigorous macrophytes above the water surface and extensive plant root system below the water surface to increase plant uptake of nutrients. The efficacy of FTWs in purifying different water systems has been widely studied and reviewed, but most studies have been performed in warm periods when FTW macrophytes are actively growing. In low-temperature conditions, the metabolic processes of macrophytes and microbial activity are usually weakened or reduced by the winter months and are not actively assimilating pollutants. These circumstances hamper the purification ability of FTWs to perform as designed. Furthermore, decayed macrophytes could release pollutants into the water column. Hence, this paper aimed to systematically summarize strategies for use of enhanced FTWs in eutrophic water improvement at low temperature and identify future directions to be addressed in intensifying FTW performance in low-temperature conditions. Low-temperature FTW show variable nutrient removal efficiencies ranging from 22% to 98%. Current amendments to enhance FTW purification performance, ranging from direct strategies for internal components to indirect enhancement of external operation environments encourage the FTW efficacy to some extent. However, the sustainability and sufficiency of water purification efficiency remain a great challenge. Keeping in mind the need for optimizing the FTW components and dealing with high organic and inorganic chemicals, future research should be carried out at the large field-scale and focus on macrophyte- benthos- microorganism synergistic enhancement, breeding of cold-tolerant macrophytes, and combination of FTWs with many strategies, as well as rational design and operational approaches under cold conditions.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Biodegradação Ambiental , Humanos , Nitrogênio/análise , Melhoramento Vegetal , Temperatura , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Áreas AlagadasRESUMO
Anthropogenic nutrients released into water induce eutrophication and threaten aquatic life and human health. In this study, an Fe anode coagulation cell with nitrification and denitrification biocathodes was constructed for power generation and algae and nutrient removal. The nitrification and denitrification biocathodes achieved maximum power densities of 6.0 and 6.6 W/m3, respectively. The algae (99.2 ± 0.5%), phosphate (97.4 ± 0.6%), and ammonia (23.1 ± 0.2%) were removed by a spontaneous electrocoagulation process in the anode chamber. In the nitrification biocathode chamber, 95.3 ± 1.4% of the ammonia was oxidized within 6 h, and 88.2 ± 2.5% of the nitrate was removed in 10 h in the denitrification biocathode chamber. The microbial community analysis revealed that ammonia removal was attributed to nitrifying bacteria, including Acinetobacter sp., Phycisphaera sp., and Nitrosomonas sp., and the dominant denitrifying bacteria in the denitrifying biocathode chamber were Planococcus sp., Exiguobacterium sp., and Lysinibacillus sp. In this study, the combination of Fe anodes and biocathodes is shown to afford an efficient method for the simultaneous algae and nutrient removal and power generation.
Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Reatores Biológicos , Desnitrificação , Eletricidade , Humanos , Ferro , Nitrificação , Nitrogênio , Águas ResiduáriasRESUMO
Biological processes tend to dominate the oxygen regime of productive waters. However, in shallow aquatic ecosystems, it is unclear whether the oxygen regime is driven by oxygen production and consumption in the water column or by sediment oxygen demand (SOD). In managed eutrophic ecosystems, this question is especially important in the context of extreme daily oscillations of dissolved oxygen (DO) that could breach physiological limits of heterotrophic aerobic organisms. High-frequency measurement of DO, temperature, global radiation (Gl.Rad.), and pH in a 0.6 m deep, 22 ha eutrophic fishpond Rod (Czech Republic) shows that the oxygen regime depended on the ecosystem state. Over the clearwater period in the early season, the DO level reflected ecosystem heterotrophy with relatively low daily DO oscillations. However, during the summer phytoplankton bloom, the fishpond was primarily autotrophic with extreme DO fluctuation. During late summer, a collapse of the phytoplankton bloom and an associated shift towards heterotrophy and DO deficit frequently occur. In-situ mesocosm experiments in Rod fishpond were conducted throughout 2018 and 2019 growing seasons, to address the importance of SOD to the oxygen regime. We enclosed the water column in transparent and opaque/dark plastic cylinders open or closed to the sediment. The results show that the proportional contribution of SOD to total respiration decreased from 70 to 90% at low phytoplankton biomass (expressed as Chlorophyll-a (Chl-a) concentration) to approximately 10% at phytoplankton bloom. At night, the difference between the oxygen consumption in the cylinders with or without sediment was statistically significant, when the concentration of Chl-a was <100 µg·L-1. On the contrary, the difference was not significant when the concentration of Chl-a was >100 µg·L-1. This revealed that the impact of SOD is negligible at high phytoplankton biomass.