Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(30): e2406993121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39018189

RESUMO

Humans update their social behavior in response to past experiences and changing environments. Behavioral decisions are further complicated by uncertainty in the outcome of social interactions. Faced with uncertainty, some individuals exhibit risk aversion while others seek risk. Attitudes toward risk may depend on socioeconomic status; and individuals may update their risk preferences over time, which will feedback on their social behavior. Here, we study how uncertainty and risk preferences shape the evolution of social behaviors. We extend the game-theoretic framework for behavioral evolution to incorporate uncertainty about payoffs and variation in how individuals respond to this uncertainty. We find that different attitudes toward risk can substantially alter behavior and long-term outcomes, as individuals seek to optimize their rewards from social interactions. In a standard setting without risk, for example, defection always overtakes a well-mixed population engaged in the classic Prisoner's Dilemma, whereas risk aversion can reverse the direction of evolution, promoting cooperation over defection. When individuals update their risk preferences along with their strategic behaviors, a population can oscillate between periods dominated by risk-averse cooperators and periods of risk-seeking defectors. Our analysis provides a systematic account of how risk preferences modulate, and even coevolve with, behavior in an uncertain social world.


Assuntos
Teoria dos Jogos , Comportamento Social , Humanos , Incerteza , Assunção de Riscos , Dilema do Prisioneiro , Comportamento Cooperativo
2.
Proc Natl Acad Sci U S A ; 121(19): e2322072121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683991

RESUMO

Previous models suggest that indirect reciprocity (reputation) can stabilize large-scale human cooperation [K. Panchanathan, R. Boyd, Nature 432, 499-502 (2004)]. The logic behind these models and experiments [J. Gross et al., Sci. Adv. 9, eadd8289 (2023) and O. P. Hauser, A. Hendriks, D. G. Rand, M. A. Nowak, Sci. Rep. 6, 36079 (2016)] is that a strategy in which individuals conditionally aid others based on their reputation for engaging in costly cooperative behavior serves as a punishment that incentivizes large-scale cooperation without the second-order free-rider problem. However, these models and experiments fail to account for individuals belonging to multiple groups with reputations that can be in conflict. Here, we extend these models such that individuals belong to a smaller, "local" group embedded within a larger, "global" group. This introduces competing strategies for conditionally aiding others based on their cooperative behavior in the local or global group. Our analyses reveal that the reputation for cooperation in the smaller local group can undermine cooperation in the larger global group, even when the theoretical maximum payoffs are higher in the larger global group. This model reveals that indirect reciprocity alone is insufficient for stabilizing large-scale human cooperation because cooperation at one scale can be considered defection at another. These results deepen the puzzle of large-scale human cooperation.


Assuntos
Comportamento Cooperativo , Humanos , Teoria dos Jogos , Relações Interpessoais , Modelos Psicológicos
3.
Proc Natl Acad Sci U S A ; 121(33): e2406885121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39116135

RESUMO

Models of indirect reciprocity study how social norms promote cooperation. In these models, cooperative individuals build up a positive reputation, which in turn helps them in their future interactions. The exact reputational benefits of cooperation depend on the norm in place, which may change over time. Previous research focused on the stability of social norms. Much less is known about how social norms initially evolve when competing with many others. A comprehensive evolutionary analysis, however, has been difficult. Even among the comparably simple space of so-called third-order norms, there are thousands of possibilities, each one inducing its own reputation dynamics. To address this challenge, we use large-scale computer simulations. We study the reputation dynamics of each third-order norm and all evolutionary transitions between them. In contrast to established work with only a handful of norms, we find that cooperation is hard to maintain in well-mixed populations. However, within group-structured populations, cooperation can emerge. The most successful norm in our simulations is particularly simple. It regards cooperation as universally positive, and defection as usually negative-unless defection takes the form of justified punishment. This research sheds light on the complex interplay of social norms, their induced reputation dynamics, and population structure.


Assuntos
Simulação por Computador , Comportamento Cooperativo , Normas Sociais , Humanos , Evolução Social , Teoria dos Jogos , Evolução Biológica
4.
Proc Natl Acad Sci U S A ; 121(20): e2400689121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38717858

RESUMO

Social reputations facilitate cooperation: those who help others gain a good reputation, making them more likely to receive help themselves. But when people hold private views of one another, this cycle of indirect reciprocity breaks down, as disagreements lead to the perception of unjustified behavior that ultimately undermines cooperation. Theoretical studies often assume population-wide agreement about reputations, invoking rapid gossip as an endogenous mechanism for reaching consensus. However, the theory of indirect reciprocity lacks a mechanistic description of how gossip actually generates consensus. Here, we develop a mechanistic model of gossip-based indirect reciprocity that incorporates two alternative forms of gossip: exchanging information with randomly selected peers or consulting a single gossip source. We show that these two forms of gossip are mathematically equivalent under an appropriate transformation of parameters. We derive an analytical expression for the minimum amount of gossip required to reach sufficient consensus and stabilize cooperation. We analyze how the amount of gossip necessary for cooperation depends on the benefits and costs of cooperation, the assessment rule (social norm), and errors in reputation assessment, strategy execution, and gossip transmission. Finally, we show that biased gossip can either facilitate or hinder cooperation, depending on the direction and magnitude of the bias. Our results contribute to the growing literature on cooperation facilitated by communication, and they highlight the need to study strategic interactions coupled with the spread of social information.


Assuntos
Comportamento Cooperativo , Humanos , Comunicação , Relações Interpessoais , Modelos Teóricos
5.
Proc Natl Acad Sci U S A ; 121(9): e2214160121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377206

RESUMO

Gossip, the exchange of personal information about absent third parties, is ubiquitous in human societies. However, the evolution of gossip remains a puzzle. The current article proposes an evolutionary cycle of gossip and uses an agent-based evolutionary game-theoretic model to assess it. We argue that the evolution of gossip is the joint consequence of its reputation dissemination and selfishness deterrence functions. Specifically, the dissemination of information about individuals' reputations leads more individuals to condition their behavior on others' reputations. This induces individuals to behave more cooperatively toward gossipers in order to improve their reputations. As a result, gossiping has an evolutionary advantage that leads to its proliferation. The evolution of gossip further facilitates these two functions of gossip and sustains the evolutionary cycle.


Assuntos
Comunicação , Comportamento Cooperativo , Humanos , Evolução Biológica
6.
Proc Natl Acad Sci U S A ; 120(23): e2302107120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253000

RESUMO

Helping strangers at a cost to oneself is a hallmark of many human interactions, but difficult to justify from the viewpoint of natural selection, particularly in anonymous one-shot interactions. Reputational scoring can provide the necessary motivation via "indirect reciprocity," but maintaining reliable scores requires close oversight to prevent cheating. We show that in the absence of such supervision, it is possible that scores might be managed by mutual consent between the agents themselves instead of by third parties. The space of possible strategies for such "consented" score changes is very large but, using a simple cooperation game, we search it, asking what kinds of agreement can i) invade a population from rare and ii) resist invasion once common. We prove mathematically and demonstrate computationally that score mediation by mutual consent does enable cooperation without oversight. Moreover, the most invasive and stable strategies belong to one family and ground the concept of value by incrementing one score at the cost of the other, thus closely resembling the token exchange that underlies money in everyday human transactions. The most successful strategy has the flavor of money except that agents without money can generate new score if they meet. This strategy is evolutionarily stable, and has higher fitness, but is not physically realizable in a decentralized way; when conservation of score is enforced more money-like strategies dominate. The equilibrium distribution of scores under any of this family of strategies is geometric, meaning that agents with score 0 are inherent to money-like strategies.


Assuntos
Comportamento Cooperativo , Sistema Linfático , Humanos , Motivação , Seleção Genética , Consentimento Livre e Esclarecido , Teoria dos Jogos , Evolução Biológica
7.
Proc Natl Acad Sci U S A ; 120(12): e2216218120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36927152

RESUMO

The concept of fitness is central to evolution, but it quantifies only the expected number of offspring an individual will produce. The actual number of offspring is also subject to demographic stochasticity-that is, randomness associated with birth and death processes. In nature, individuals who are more fecund tend to have greater variance in their offspring number. Here, we develop a model for the evolution of two types competing in a population of nonconstant size. The fitness of each type is determined by pairwise interactions in a prisoner's dilemma game, and the variance in offspring number depends upon its mean. Although defectors are preferred by natural selection in classical population models, since they always have greater fitness than cooperators, we show that sufficiently large offspring variance can reverse the direction of evolution and favor cooperation. Large offspring variance produces qualitatively new dynamics for other types of social interactions, as well, which cannot arise in populations with a fixed size or with a Poisson offspring distribution.


Assuntos
Comportamento Cooperativo , Teoria dos Jogos , Humanos , Dinâmica Populacional , Densidade Demográfica , Seleção Genética
8.
Proc Natl Acad Sci U S A ; 120(50): e2312242120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38055736

RESUMO

The evolution of cooperation is a major question in the biological and behavioral sciences. While most theoretical studies model cooperation in the context of an isolated interaction (e.g., a Prisoner's Dilemma), humans live in heterogeneous social environments, characterized by large variations in fitness interdependence-the extent to which one's fitness is affected by others. Theoretical and experimental work indicates that humans can infer, and respond to, variations in interdependence. In a heterogeneous ancestral environment, these psychological mechanisms to infer fitness interdependence could have provided a selective advantage, allowing individuals to maximize their fitness by deciding when and with whom to cooperate. Yet, to date, the link between cognitive inference, variation in fitness interdependence, and cooperation remains unclear. Here we introduce a theoretical framework to study the evolution of inference and cooperation in heterogeneous social environments, where individuals experience interactions with varying levels of corresponding interests. Using a combination of evolutionary game theory and agent-based modeling, we model the evolution of adaptive agents, who incur a cost to infer interdependence, in populations of fixed-behavior agents who always cooperate or defect. Our results indicate that natural selection could promote the evolution of psychological mechanisms to infer fitness interdependence, provided that there is enough variation in fitness interdependence to offset the cost of inference. Under certain conditions, the fixation of adaptive agents results in higher levels of cooperation. This depends crucially on the type of inference performed and the features of the interdependence landscape.


Assuntos
Evolução Biológica , Comportamento Cooperativo , Humanos , Teoria dos Jogos , Modelos Teóricos , Seleção Genética
9.
Proc Natl Acad Sci U S A ; 120(24): e2303546120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37285394

RESUMO

Individual and societal reactions to an ongoing pandemic can lead to social dilemmas: In some cases, each individual is tempted to not follow an intervention, but for the whole society, it would be best if they did. Now that in most countries, the extent of regulations to reduce SARS-CoV-2 transmission is very small, interventions are driven by individual decision-making. Assuming that individuals act in their best own interest, we propose a framework in which this situation can be quantified, depending on the protection the intervention provides to a user and to others, the risk of getting infected, and the costs of the intervention. We discuss when a tension between individual and societal benefits arises and which parameter comparisons are important to distinguish between different regimes of intervention use.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Comportamento Cooperativo , Pandemias/prevenção & controle , Teoria dos Jogos , SARS-CoV-2
10.
Proc Natl Acad Sci U S A ; 120(24): e2219480120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276388

RESUMO

Reputations provide a powerful mechanism to sustain cooperation, as individuals cooperate with those of good social standing. But how should someone's reputation be updated as we observe their social behavior, and when will a population converge on a shared norm for judging behavior? Here, we develop a mathematical model of cooperation conditioned on reputations, for a population that is stratified into groups. Each group may subscribe to a different social norm for assessing reputations and so norms compete as individuals choose to move from one group to another. We show that a group initially comprising a minority of the population may nonetheless overtake the entire population-especially if it adopts the Stern Judging norm, which assigns a bad reputation to individuals who cooperate with those of bad standing. When individuals do not change group membership, stratifying reputation information into groups tends to destabilize cooperation, unless individuals are strongly insular and favor in-group social interactions. We discuss the implications of our results for the structure of information flow in a population and for the evolution of social norms of judgment.


Assuntos
Comportamento Cooperativo , Modelos Psicológicos , Humanos , Comportamento Social , Normas Sociais , Evolução Biológica , Teoria dos Jogos
11.
Proc Natl Acad Sci U S A ; 120(42): e2308496120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812720

RESUMO

Human diseases involve metabolic alterations. Metabolomic profiles have served as a vital biomarker for the early identification of high-risk individuals and disease prevention. However, current approaches can only characterize individual key metabolites, without taking into account the reality that complex diseases are multifactorial, dynamic, heterogeneous, and interdependent. Here, we leverage a statistical physics model to combine all metabolites into bidirectional, signed, and weighted interaction networks and trace how the flow of information from one metabolite to the next causes changes in health state. Viewing a disease outcome as the consequence of complex interactions among its interconnected components (metabolites), we integrate concepts from ecosystem theory and evolutionary game theory to model how the health state-dependent alteration of a metabolite is shaped by its intrinsic properties and through extrinsic influences from its conspecifics. We code intrinsic contributions as nodes and extrinsic contributions as edges into quantitative networks and implement GLMY homology theory to analyze and interpret the topological change of health state from symbiosis to dysbiosis and vice versa. The application of this model to real data allows us to identify several hub metabolites and their interaction webs, which play a part in the formation of inflammatory bowel diseases. The findings by our model could provide important information on drug design to treat these diseases and beyond.


Assuntos
Ecossistema , Metabolômica , Humanos , Modelos Estatísticos , Biomarcadores/metabolismo , Física
12.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983850

RESUMO

How cooperation emerges in human societies is both an evolutionary enigma and a practical problem with tangible implications for societal health. Population structure has long been recognized as a catalyst for cooperation because local interactions facilitate reciprocity. Analysis of population structure typically assumes bidirectional social interactions. But human social interactions are often unidirectional-where one individual has the opportunity to contribute altruistically to another, but not conversely-as the result of organizational hierarchies, social stratification, popularity effects, and endogenous mechanisms of network growth. Here we expand the theory of cooperation in structured populations to account for both uni- and bidirectional social interactions. Even though unidirectional interactions remove the opportunity for reciprocity, we find that cooperation can nonetheless be favored in directed social networks and that cooperation is provably maximized for networks with an intermediate proportion of unidirectional interactions, as observed in many empirical settings. We also identify two simple structural motifs that allow efficient modification of interaction directions to promote cooperation by orders of magnitude. We discuss how our results relate to the concepts of generalized and indirect reciprocity.


Assuntos
Comportamento Cooperativo , Modelos Teóricos , Interação Social , Rede Social , Humanos
13.
Proc Biol Sci ; 291(2024): 20240182, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864335

RESUMO

In contemporary society, the effective utilization of public resources remains a subject of significant concern. A common issue arises from defectors seeking to obtain an excessive share of these resources for personal gain, potentially leading to resource depletion. To mitigate this tragedy and ensure sustainable development of resources, implementing mechanisms to either reward those who adhere to distribution rules or penalize those who do not, appears advantageous. We introduce two models: a tax-reward model and a tax-punishment model, to address this issue. Our analysis reveals that in the tax-reward model, the evolutionary trajectory of the system is influenced not only by the tax revenue collected but also by the natural growth rate of the resources. Conversely, the tax-punishment model exhibits distinct characteristics when compared with the tax-reward model, notably the potential for bistability. In such scenarios, the selection of initial conditions is critical, as it can determine the system's path. Furthermore, our study identifies instances where the system lacks stable points, exemplified by a limit cycle phenomenon, underscoring the complexity and dynamism inherent in managing public resources using these models.


Assuntos
Recompensa , Impostos , Punição , Humanos , Modelos Teóricos
14.
Theor Popul Biol ; 156: 131-147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387802

RESUMO

Altruism and spite are costly to the actor, making their evolution unlikely without specific mechanisms. Nonetheless, both altruistic and spiteful behaviors are present in individuals, which suggests the existence of an underlying mechanism that drives their evolution. If altruistic individuals are more likely to be recipients of altruism than non-altruistic individuals, then altruism can be favored by natural selection. Similarly, if spiteful individuals are less likely to be recipients of spite than non-spiteful individuals, then spite can be favored by natural selection. Spite is altruism's evil twin, ugly sister of altruism, or a shady relative of altruism. In some mechanisms, such as repeated interactions, if altruism is favored by natural selection, then spite is also favored by natural selection. However, there has been limited investigation into whether both behaviors evolve to the same extent. In this study, we focus on the mechanism by which individuals choose to keep or stop the interaction according to the opponent's behavior. Using the evolutionary game theory, we investigate the evolution of altruism and spite under this mechanism. Our model revealed that the evolution of spite is less likely than the evolution of altruism.


Assuntos
Altruísmo , Evolução Biológica , Humanos , Seleção Genética , Teoria dos Jogos
15.
Theor Popul Biol ; 155: 10-23, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38000514

RESUMO

Cooperation usually becomes harder to sustain as groups become larger because incentives to shirk increase with the number of potential contributors to collective action. But is this always the case? Here we study a binary-action cooperative dilemma where a public good is provided as long as not more than a given number of players shirk from a costly cooperative task. We find that at the stable polymorphic equilibrium, which exists when the cost of cooperation is low enough, the probability of cooperating increases with group size and reaches a limit of one when the group size tends to infinity. Nevertheless, increasing the group size may increase or decrease the probability that the public good is provided at such an equilibrium, depending on the cost value. We also prove that the expected payoff to individuals at the stable polymorphic equilibrium (i.e., their fitness) decreases with group size. For low enough costs of cooperation, both the probability of provision of the public good and the expected payoff converge to positive values in the limit of large group sizes. However, we also find that the basin of attraction of the stable polymorphic equilibrium is a decreasing function of group size and shrinks to zero in the limit of very large groups. Overall, we demonstrate non-trivial comparative statics with respect to group size in an otherwise simple collective action problem.


Assuntos
Comportamento Cooperativo , Teoria dos Jogos , Humanos , Evolução Biológica , Probabilidade
16.
Theor Popul Biol ; 158: 109-120, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823527

RESUMO

Social behavior is divided into four types: altruism, spite, mutualism, and selfishness. The former two are costly to the actor; therefore, from the perspective of natural selection, their existence can be regarded as mysterious. One potential setup which encourages the evolution of altruism and spite is repeated interaction. Players can behave conditionally based on their opponent's previous actions in the repeated interaction. On the one hand, the retaliatory strategy (who behaves altruistically when their opponent behaved altruistically and behaves non-altruistically when the opponent player behaved non-altruistically) is likely to evolve when players choose altruistic or selfish behavior in each round. On the other hand, the anti-retaliatory strategy (who is spiteful when the opponent was not spiteful and is not spiteful when the opponent player was spiteful) is likely to evolve when players opt for spiteful or mutualistic behavior in each round. These successful conditional behaviors can be favored by natural selection. Here, we notice that information on opponent players' actions is not always available. When there is no such information, players cannot determine their behavior according to their opponent's action. By investigating the case of altruism, a previous study (Kurokawa, 2017, Mathematical Biosciences, 286, 94-103) found that persistent altruistic strategies, which choose the same action as the own previous action, are favored by natural selection. How, then, should a spiteful conditional strategy behave when the player does not know what their opponent did? By studying the repeated game, we find that persistent spiteful strategies, which choose the same action as the own previous action, are favored by natural selection. Altruism and spite differ concerning whether retaliatory or anti-retaliatory strategies are favored by natural selection; however, they are identical concerning whether persistent strategies are favored by natural selection.


Assuntos
Altruísmo , Teoria dos Jogos , Humanos , Seleção Genética , Comportamento Social , Evolução Biológica
17.
J Theor Biol ; 577: 111670, 2024 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-37981098

RESUMO

Understanding the evolution of cooperation is a major question in Evolutionary Biology. Here, we extend a previously proposed mathematical model in Evolutionary Game Theory that investigated how resource use by a single species composed of cooperators and defectors may lead to its maintenance or extinction. We include another species in the model, so as to investigate how different intra and interspecific interactions of cooperative or competitive nature among individuals that share the same essential resource may drive the survival and evolution of the species. Several outcomes emerge from the model, depending on the configuration of the payoff matrix, the individual contribution to the resource pool, the competition intensity between species, and the initial conditions of the system dynamics. Observed results include scenarios in which species thrive due to the action of cooperators, but also scenarios in which both species collapse due to lack of cooperation and, consequently, of resources. In particular, a high initial availability of resources may be the determinant factor to the survival of both species. Interestingly, cooperation may be more favored when individuals have less incentive to cooperate with others, and the survival of their populations may depend crucially on their competitive capacities.


Assuntos
Evolução Biológica , Comportamento Cooperativo , Humanos , Modelos Teóricos , Densidade Demográfica , Teoria dos Jogos
18.
J Theor Biol ; 579: 111717, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38122926

RESUMO

This article studies the effect of travel costs on population distribution in a patchy environment. The Ideal Free Distribution with travel costs is defined in the article as the distribution under which it is not profitable for individuals to move, i.e., the movement between patches ceases. It is shown that depending on the travel costs between patches, the Ideal Free Distribution may be unique, there may be infinitely many possible IFDs, or no Ideal Free Distribution exists. In the latter case, animal distribution can converge to an equilibrium of distributional dynamics at which individuals do disperse, but the net movement between patches ceases. Such distributional equilibrium corresponds to balanced dispersal.


Assuntos
Ecossistema , Movimento , Humanos , Animais , Distribuição Animal , Dinâmica Populacional , Modelos Biológicos
19.
Bull Math Biol ; 86(9): 115, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102074

RESUMO

In this paper, we study the problem of cost optimisation of individual-based institutional incentives (reward, punishment, and hybrid) for guaranteeing a certain minimal level of cooperative behaviour in a well-mixed, finite population. In this scheme, the individuals in the population interact via cooperation dilemmas (Donation Game or Public Goods Game) in which institutional reward is carried out only if cooperation is not abundant enough (i.e., the number of cooperators is below a threshold 1 ≤ t ≤ N - 1 , where N is the population size); and similarly, institutional punishment is carried out only when defection is too abundant. We study analytically the cases t = 1 for the reward incentive under the small mutation limit assumption and two different initial states, showing that the cost function is always non-decreasing. We derive the neutral drift and strong selection limits when the intensity of selection tends to zero and infinity, respectively. We numerically investigate the problem for other values of t and for population dynamics with arbitrary mutation rates.


Assuntos
Comportamento Cooperativo , Teoria dos Jogos , Conceitos Matemáticos , Motivação , Punição , Recompensa , Humanos , Dinâmica Populacional/estatística & dados numéricos , Simulação por Computador , Densidade Demográfica , Mutação
20.
Bull Math Biol ; 86(6): 67, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700758

RESUMO

In biology, evolutionary game-theoretical models often arise in which players' strategies impact the state of the environment, driving feedback between strategy and the surroundings. In this case, cooperative interactions can be applied to studying ecological systems, animal or microorganism populations, and cells producing or actively extracting a growth resource from their environment. We consider the framework of eco-evolutionary game theory with replicator dynamics and growth-limiting public goods extracted by population members from some external source. It is known that the two sub-populations of cooperators and defectors can develop spatio-temporal patterns that enable long-term coexistence in the shared environment. To investigate this phenomenon and unveil the mechanisms that sustain cooperation, we analyze two eco-evolutionary models: a well-mixed environment and a heterogeneous model with spatial diffusion. In the latter, we integrate spatial diffusion into replicator dynamics. Our findings reveal rich strategy dynamics, including bistability and bifurcations, in the temporal system and spatial stability, as well as Turing instability, Turing-Hopf bifurcations, and chaos in the diffusion system. The results indicate that effective mechanisms to promote cooperation include increasing the player density, decreasing the relative timescale, controlling the density of initial cooperators, improving the diffusion rate of the public goods, lowering the diffusion rate of the cooperators, and enhancing the payoffs to the cooperators. We provide the conditions for the existence, stability, and occurrence of bifurcations in both systems. Our analysis can be applied to dynamic phenomena in fields as diverse as human decision-making, microorganism growth factors secretion, and group hunting.


Assuntos
Evolução Biológica , Comportamento Cooperativo , Teoria dos Jogos , Conceitos Matemáticos , Modelos Biológicos , Animais , Humanos , Análise Espaço-Temporal , Simulação por Computador , Dinâmica Populacional/estatística & dados numéricos , Retroalimentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA