Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(7): 2165-2174, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329906

RESUMO

Magnetic nanoarrays promise to enable new energy-efficient computations based on spintronics or magnonics. In this work, we present a block copolymer-assisted strategy for fabricating ordered magnetic nanostructures on silicon and permalloy substrates. Block copolymer micelle-like structures were used as a template in which polyoxometalate (POM) clusters could assemble in an opal-like structure. A combination of microscopy and scattering techniques was used to confirm the structural and organizational features of the fabricated materials. The magnetic properties of these materials were investigated by polarized neutron reflectometry, nuclear magnetic resonance, and magnetometry measurements. The data show that a magnetic structural design was achieved and that a thin layer of patterned POMs strongly influenced an underlying permalloy layer. This work demonstrates that the bottom-up pathway is a potentially viable method for patterning magnetic substrates on a sub-100 nm scale, toward the magnetic nanostructures needed for spintronic or magnonic crystal devices.

2.
Nano Lett ; 24(14): 4165-4171, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38534019

RESUMO

An electrical-controllable antiferromagnet tunnel junction is a key goal in spintronics, holding immense promise for ultradense and ultrastable antiferromagnetic memory with high processing speed for modern information technology. Here, we have advanced toward this goal by achieving an electrical-controllable antiferromagnet-based tunnel junction of Pt/Co/Pt/Co/IrMn/MgO/Pt. The exchange coupling between antiferromagnetic IrMn and Co/Pt perpendicular magnetic multilayers results in the formation of an interfacial exchange bias and exchange spring in IrMn. Encoding information states "0" and "1" is realized through the exchange spring in IrMn, which can be electrically written by spin-orbit torque switching with high cyclability and electrically read by antiferromagnetic tunneling anisotropic magnetoresistance. Combining spin-orbit torque switching of both exchange spring and exchange bias, a 16 Boolean logic operation is successfully demonstrated. With both memory and logic functionalities integrated into our electrically controllable antiferromagnetic-based tunnel junction, we chart the course toward high-performance antiferromagnetic logic-in-memory.

3.
Nano Lett ; 24(25): 7706-7715, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869369

RESUMO

Field-free switching (FFS) and spin-orbit torque (SOT)-based neuromorphic characteristics were realized in a W/Pt/Co/NiO/Pt heterostructure with a perpendicular exchange bias (HEB) for brain-inspired neuromorphic computing (NC). Experimental results using NiO-based SOT devices guided the development of fully spin-based artificial synapses and sigmoidal neurons for implementation in a three-layer artificial neural network. This system achieved impressive accuracies of 91-96% when applied to the Modified National Institute of Standards and Technology (MNIST) image data set and 78.85-81.25% when applied to Fashion MNIST images, due presumably to the emergence of robust NiO antiferromagnetic (AFM) ordering. The emergence of AFM ordering favored the FFS with an enhanced HEB, which suppressed the memristivity and reduced the recognition accuracy. This indicates a trade-off between the requirements for solid-state memory and those required for brain-inspired NC devices. Nonetheless, our findings revealed opportunities by which the two technologies could be aligned via controllable exchange coupling.

4.
Nano Lett ; 24(27): 8320-8326, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38935843

RESUMO

Magnetic topological materials with coexisting magnetism and nontrivial band structures exhibit many novel quantum phenomena, including the quantum anomalous Hall effect, the axion insulator state, and the Weyl semimetal phase. As a stoichiometric layered antiferromagnetic topological insulator, thin films of MnBi2Te4 show fascinating even-odd layer-dependent physics. In this work, we fabricate a series of thin-flake MnBi2Te4 devices using stencil masks and observe the Chern insulator state at high magnetic fields. Upon magnetic field training, a large exchange bias effect is observed in odd but not in even septuple layer (SL) devices. Through theoretical calculations, we attribute the even-odd layer-dependent exchange bias effect to the contrasting surface and bulk magnetic properties of MnBi2Te4 devices. Our findings reveal the microscopic magnetic configuration of MnBi2Te4 thin flakes and highlight the challenges in replicating the zero magnetic field quantum anomalous Hall effect in odd SL MnBi2Te4 devices.

5.
Nano Lett ; 24(23): 6924-6930, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38820073

RESUMO

We have experimentally investigated the mechanism of the exchange bias in 2D van der Waals (vdW) ferromagnets by means of the anomalous Hall effect (AHE) together with the dynamical magnetization property. The temperature dependence of the AC susceptibility with its frequency response indicates a glassy transition of the magnetic property for the Te-rich FeGeTe vdW ferromagnet. We also found that the irreversible temperature dependence in the anomalous Hall voltage follows the de Almeida-Thouless line. Moreover, the freezing temperature of the spin-glass-like phase is found to correlate with the disappearance temperature of the exchange bias. These important signatures suggest that the emergence of magnetic exchange bias in the 2D van der Waals ferromagnets is induced by the presence of the spin-glass-like state in FeGeTe. The unprecedented insights gained from these findings shed light on the underlying principles governing exchange bias in vdW ferromagnets, contributing to the advancement of our understanding.

6.
Nanotechnology ; 35(27)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635294

RESUMO

The tuning of exchange bias (EB) in nanoparticles has garnered significant attention due to its diverse range of applications. Here, we demonstrate EB in single-phase CoO nanoparticles, where two magnetic phases naturally emerge as the crystallite size decreases from 34.6 ± 0.8 to 10.8 ± 0.9 nm. The Néel temperature (TN) associated with antiferromagnetic ordering decreases monotonically with the reduction in crystallite size, highlighting the significant influence of size effects. The 34.6 nm nanoparticles exhibit magnetization irreversibility between zero-field cooled (ZFC) and field-cooled (FC) states belowTN. With further reduction in size this irreversibility appears well aboveTN, resulting in the absence of true paramagnetic regime which indicates the occurnace of an additional magnetic phase. The frequency-dependent ac-susceptibility in 10.8 nm nanoparticles suggests slow dynamics of disordered surface spins aboveTN, coinciding with the establishment of long-range order in the core. The thermoremanent magnetization (TRM) and iso-thermoremanent magnetization (IRM) curves suggest a core-shell structure: the core is antiferromagnetic, and the shell consists of disordered surface spins causing ferromagnetic interaction. Hence, the EB in these CoO nanoparticles results from the exchange coupling between an antiferromagnetic core and a disordered shell that exhibits unconventional surface spin characteristics.

7.
Sensors (Basel) ; 24(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257718

RESUMO

Spin valves with a synthetic antiferromagnet were fabricated via magnetron sputtering. It was shown that the fabricated spin valve layers had a perfect microstructure and smooth interfaces, and therefore, an RKKY interaction dominated in the coupling of the ferromagnetic layers separated by a copper spacer. Rhombus-shaped micro-objects were fabricated from a single spin valve film. The thermomagnetic treatment procedure was found to form unidirectional anisotropy in the micro-object such that the values of the exchange bias fields in the rhombus' nonparallel sides were opposite in sign. For the CoFeNi/Ru/CoFeNi synthetic antiferromagnet, we determined the differences between the ferromagnetic layer thicknesses at which the thermomagnetic treatment formed the same exchange bias all over each rhombus' side. We also fabricated a sensor element in which each side of the rhombus was the shoulder of a Wheatstone bridge. After the thermomagnetic treatment procedure, each shoulder worked as an active magnetosensitive element, enabling the device to operate as a full Wheatstone bridge. The sensor output exhibited a step shape, high sensitivity to field changes, and significant magnetic hysteresis. Such characteristics are suitable for switching devices.

8.
Nano Lett ; 23(5): 1688-1695, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848327

RESUMO

Oxidized cobalt ferrite nanocrystals with a modified distribution of the magnetic cations in their spinel structure give place to an unusual exchange-coupled system with a double reversal of the magnetization, exchange bias, and increased coercivity, but without the presence of a clear physical interface that delimits two well-differentiated magnetic phases. More specifically, the partial oxidation of cobalt cations and the formation of Fe vacancies at the surface region entail the formation of a cobalt-rich mixed ferrite spinel, which is strongly pinned by the ferrimagnetic background from the cobalt ferrite lattice. This particular configuration of exchange-biased magnetic behavior, involving two different magnetic phases but without the occurrence of a crystallographically coherent interface, revolutionizes the established concept of exchange bias phenomenology.

9.
Nano Lett ; 23(3): 765-771, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36542799

RESUMO

Igniting interface magnetic ordering of magnetic topological insulators by building a van der Waals heterostructure can help to reveal novel quantum states and design functional devices. Here, we observe an interesting exchange bias effect, indicating successful interfacial magnetic coupling, in CrI3/MnBi2Te4 ferromagnetic insulator/antiferromagnetic topological insulator (FMI/AFM-TI) heterostructure devices. The devices originally exhibit a negative exchange bias field, which decays with increasing temperature and is unaffected by the back-gate voltage. When we change the device configuration to be half-covered by CrI3, the exchange bias becomes positive with a very large exchange bias field exceeding 300 mT. Such sensitive manipulation is explained by the competition between the FM and AFM coupling at the interface of CrI3 and MnBi2Te4, pointing to coverage-dependent interfacial magnetic interactions. Our work will facilitate the development of topological and antiferromagnetic devices.

10.
Nanotechnology ; 34(42)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37402363

RESUMO

CoMn2O4, known for its extensive range of applications, has been subject to limited investigations regarding its structure dependent magnetic properties. Here, we have examined the structure dependent magnetic properties of CoMn2O4nanoparticles synthesized through a facile coprecipitation technique and are characterized using x-ray diffractometer, x-ray photoelectron spectroscopy (XPS), RAMAN spectroscopy, transmission electron microscopy and magnetic measurements. Rietveld refinement of the x-ray diffraction pattern reveals the coexistence of 91.84% of tetragonal and 8.16% of cubic phase. The cation distribution for tetragonal and cubic phases are (Co0.94Mn0.06)[Co0.06Mn1.94]O4and (Co0.04Mn0.96)[Co0.96Mn1.04]O4, respectively. While Raman spectra and selected area electron diffraction pattern confirm the spinel structure, both +2 and +3 oxidation states for Co and Mn confirmed by XPS further corroborate the cation distribution. Magnetic measurement shows two magnetic transitions, Tc1at 165 K and Tc2at 93 K corresponding to paramagnetic to a lower magnetically ordered ferrimagnetic state followed by a higher magnetically ordered ferrimagnetic state, respectively. While Tc1is attributed to the cubic phase having inverse spinel structure, Tc2corresponds to the tetragonal phase with normal spinel. In contrast to general temperature dependentHCobserved in ferrimagnetic material, an unusual temperature dependentHCwith high spontaneous exchange bias of 2.971 kOe and conventional exchange bias of 3.316 kOe at 50 K are observed. Interestingly, a high vertical magnetization shift (VMS) of 2.5 emu g-1is observed at 5 K, attributed to the Yafet-Kittel spin structure of Mn3+in the octahedral site. Such unusual results are discussed on the basis of competition between the non-collinear triangular spin canting configuration of Mn3+cations of octahedral sites and collinear spins of tetrahedral site. The observed VMS has the potential to revolutionize the future of ultrahigh density magnetic recording technology.

11.
Nano Lett ; 22(21): 8437-8444, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36260522

RESUMO

Spintronics has been recently extended to neuromorphic computing because of its energy efficiency and scalability. However, a biorealistic spintronic neuron with probabilistic "spiking" and a spontaneous reset functionality has not been demonstrated yet. Here, we propose a biorealistic spintronic neuron device based on the heavy metal (HM)/ferromagnet (FM)/antiferromagnet (AFM) spin-orbit torque (SOT) heterostructure. The spintronic neuron can autoreset itself after firing due to the exchange bias of the AFM. The firing process is inherently stochastic because of the competition between the SOT and AFM pinning effects. We also implement a restricted Boltzmann machine (RBM) and stochastic integration multilayer perceptron (SI-MLP) using our proposed neuron. Despite the bit-width limitation, the proposed spintronic model can achieve an accuracy of 97.38% in pattern recognition, which is even higher than the baseline accuracy (96.47%). Our results offer a spintronic device solution to emulate biologically realistic spiking neurons.


Assuntos
Modelos Neurológicos , Neurônios , Neurônios/fisiologia , Redes Neurais de Computação , Imãs , Torque
12.
Nano Lett ; 22(15): 6166-6172, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35912475

RESUMO

Manipulating the exchange bias (EB) effect using an electronic gate is a significant goal in spintronics. The emergence of van der Waals (vdW) magnetic heterostructures has provided improved means to study interlayer magnetic coupling, but to date, these heterostructures have not exhibited electrical gate-controlled EB effects. Here, we report electrically controllable EB effects in a vdW heterostructure, FePS3-Fe5GeTe2. By applying a solid protonic gate, the EB effects were repeatably electrically tuned. The EB field reaches up to 23% of the coercivity and the blocking temperature ranges from 30 to 60 K under various gate-voltages. The proton intercalations not only tune the average magnetic exchange coupling but also change the antiferromagnetic configurations in the FePS3 layer. These result in a dramatic modulation of the total interface exchange coupling and the resultant EB effects. The study is a significant step toward vdW heterostructure-based magnetic logic for future low-energy electronics.

13.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108198

RESUMO

Tuning and controlling the magnetic properties of nanomaterials is crucial to implement new and reliable technologies based on magnetic hyperthermia, spintronics, or sensors, among others. Despite variations in the alloy composition as well as the realization of several post material fabrication treatments, magnetic heterostructures as ferromagnetic/antiferromagnetic coupled layers have been widely used to modify or generate unidirectional magnetic anisotropies. In this work, a pure electrochemical approach has been used to fabricate core (FM)/shell (AFM) Ni@(NiO,Ni(OH)2) nanowire arrays, avoiding thermal oxidation procedures incompatible with integrative semiconductor technologies. Besides the morphology and compositional characterization of these core/shell nanowires, their peculiar magnetic properties have been studied by temperature dependent (isothermal) hysteresis loops, thermomagnetic curves and FORC analysis, revealing the existence of two different effects derived from Ni nanowires' surface oxidation over the magnetic performance of the array. First of all, a magnetic hardening of the nanowires along the parallel direction of the applied magnetic field with respect their long axis (easy magnetization axis) has been found. The increase in coercivity, as an effect of surface oxidation, has been observed to be around 17% (43%) at 300 K (50 K). On the other hand, an increasing exchange bias effect on decreasing temperature has been encountered when field cooling (3T) the oxidized Ni@(NiO,Ni(OH)2) nanowires below 100 K along their parallel lengths.


Assuntos
Nanoporos , Nanofios , Nanofios/química , Óxido de Alumínio , Níquel/química , Nanotecnologia/métodos
14.
Small ; 18(16): e2107426, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35274450

RESUMO

Nanometric core@shell wüstite@ferrite (Fe1-x O@Fe3 O4 ) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain exchange-coupled antiferromagnetic@ferrimagnetic nanoparticles (NPs) with ordering temperature close to 300 K by replacing the divalent iron with other transition-metal ions. Here, the effect of the combined substitution of Fe(II)  with Co(II)  and Ni(II)  on the crystal structure and magnetic properties is studied. To this aim, a series of 20 nm NPs with a wüstite-based core and a ferrite shell, with tailored composition, (Co0.3 Fe0.7 O@Co0.8 Fe2.2 O4  and Ni0.17 Co0.21 Fe0.62 O@Ni0.4 Co0.3 Fe2.3 O4 ) is synthetized through a thermal-decomposition method. An extensive morphological and crystallographic characterization of the obtained NPs shows how a higher stability against the oxidation process in ambient condition is attained when divalent cation doping of the iron oxide lattice with Co(II)  and Ni(II)  ions is performed. The dual-doping is revealed to be an efficient way for tuning the magnetic properties of the final system, obtaining Ni-Co doped iron oxide core@shell NPs with high coercivity (and therefore, high energy product), and increased antiferromagnetic ordering transition temperature, close to room temperature.


Assuntos
Imãs , Nanopartículas , Compostos Férricos , Compostos Ferrosos , Nanopartículas/química , Tamanho da Partícula , Temperatura
15.
Small ; 18(47): e2204804, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36228100

RESUMO

Not only since the progressive reduction of structure sizes in modern micro- and nanotechnology, surface and interface effects have played an ever-increasing role and nowadays often dominate the behavior of entire systems. Therefore, understanding the nature of surface and interface effects and being able to fully control them is of fundamental importance, in particular in modern thin-film technology. In this study, it is revealed how Co/Pt multilayer-based synthetic antiferromagnets (SAFs) with perpendicular magnetic anisotropy in the regime of dominating antiferromagnetic interlayer exchange can be employed to control the collective magnetic reversal via systematically altering surface and interface effects. The specifically designed samples and experiments highlight the superior tunability of synthetic systems as compared to their intrinsic stoichiometric counterparts, where the antiferromagnetism is directly tied to the indivisible discrete atomic nature and crystal structure of the materials. Thus, it is demonstrated that in SAFs, it becomes possible to energetically heal the broken magnetic symmetry at the surface, thereby enabling either on demand suppression or controlled enhancement of respective surface and interface effects, as demonstrated here in this study for the surface spin-flop and the exchange bias effect.

16.
Nanotechnology ; 33(49)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36067708

RESUMO

Materials exhibiting an exchange bias effect are a class of magnetic systems that have a wide range of possible technological applications e.g. in sensors, read heads, and spintronic devices. In this study, we demonstrate the effect of laser interference patterning on the magnetic properties of Pd/CoO/Co/Pd multilayers. Laser patterning creates arrays of well-ordered stripes, rectangles, and squares on the substrate surface. We found that the laser treatment caused magnetic softening of the structure edges while the centers of the objects remained unchanged and exhibited the exchange bias effect. In this study we focused on the shape and configurational magnetic anisotropies induced by patterning and showed that the magnetic properties varied depending on the angle at which the external magnetic field was applied with respect to the pattern geometry.

17.
Nano Lett ; 21(4): 1672-1678, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33570963

RESUMO

van der Waals (vdW) magnetic materials provide an ideal platform to study low-dimensional magnetism. However, observations of magnetic characteristics of these layered materials truly distinguishing them from conventional magnetic thin film systems have been mostly lacking. In an effort to investigate magnetic properties unique to vdW magnetic materials, we examine the exchange bias effect, a magnetic phenomenon emerging at the ferromagnetic-antiferromagnetic interface. Exchange bias is observed in the naturally oxidized vdW ferromagnet Fe3GeTe2, owing to an antiferromagnetic ordering in the surface oxide layer. Interestingly, the magnitude and thickness dependence of the effect is unlike those expected in typical thin-film systems. We propose a possible mechanism for this behavior, based on the weak interlayer magnetic coupling inherent to vdW magnets, demonstrating the distinct properties of these materials. Furthermore, the robust and sizable exchange bias for vdW magnets persisting up to relatively high temperatures presents a significant advance for realizing practical two-dimensional spintronics.

18.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499152

RESUMO

Magnetically soft-soft MnFe2O4-Fe3O4 core-shell nanoparticles were synthesized through a seed-mediated method using the organometallic decomposition of metal acetyl acetonates. Two sets of core-shell nanoparticles (S1 and S2) of similar core sizes of 5.0 nm and different shell thicknesses (4.1 nm for S1 and 5.7 nm for S2) were obtained by changing the number of nucleating sites. Magnetic measurements were conducted on the nanoparticles at low and room temperatures to study the shell thickness and temperature dependence of the magnetic properties. Interestingly, both core-shell nanoparticles showed similar saturation magnetization, revealing the ineffective role of the shell thickness. In addition, the coercivity in both samples displayed similar temperature dependencies and magnitudes. Signatures of spin glass (SG) like behavior were observed from the field-cooled temperature-dependent magnetization measurements. It was suggested to be due to interface spin freezing. We observed a slight and non-monotonic temperature-dependent exchange bias in both samples with slightly higher values for S2. The effective magnetic anisotropy constant was calculated to be slightly larger in S2 than that in S1. The magnetothermal efficiency of the chitosan-coated nanoparticles was determined by measuring the specific absorption rate (SAR) under an alternating magnetic field (AMF) at 200-350 G field strengths and frequencies (495.25-167.30 kHz). The S2 nanoparticles displayed larger SAR values than the S1 nanoparticles at all field parameters. A maximum SAR value of 356.5 W/g was obtained for S2 at 495.25 kHz and 350 G for the 1 mg/mL nanoparticle concentration of ferrogel. We attributed this behavior to the larger interface SG regions in S2, which mediated the interaction between the core and shell and thus provided indirect exchange coupling between the core and shell phases. The SAR values of the core-shell nanoparticles roughly agreed with the predictions of the linear response theory. The concentration of the nanoparticles was found to affect heat conversion to a great extent. The in vitro treatment of the MDA-MB-231 human breast cancer cell line and HT-29 human colorectal cancer cell was conducted at selected frequencies and field strengths to evaluate the efficiency of the nanoparticles in killing cancer cells. The cellular cytotoxicity was estimated using flow cytometry and an MTT assay at 0 and 24 h after treatment with the AMF. The cells subjected to a 45 min treatment of the AMF (384.50 kHz and 350 G) showed a remarkable decrease in cell viability. The enhanced SAR values of the core-shell nanoparticles compared to the seeds with the most enhancement in S2 is an indication of the potential for tailoring nanoparticle structures and hence their magnetic properties for effective heat generation.


Assuntos
Hipertermia Induzida , Nanopartículas , Humanos , Compostos Férricos/química , Campos Magnéticos
19.
Sensors (Basel) ; 21(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34833678

RESUMO

Recently, Delta-E effect magnetic field sensors based on exchange-biased magnetic multilayers have shown the potential of detecting low-frequency and small-amplitude magnetic fields. Their design is compatible with microelectromechanical system technology, potentially small, and therefore, suitable for arrays with a large number N of sensor elements. In this study, we explore the prospects and limitations for improving the detection limit by averaging the output of N sensor elements operated in parallel with a single oscillator and a single amplifier to avoid additional electronics and keep the setup compact. Measurements are performed on a two-element array of exchange-biased sensor elements to validate a signal and noise model. With the model, we estimate requirements and tolerances for sensor elements using larger N. It is found that the intrinsic noise of the sensor elements can be considered uncorrelated, and the signal amplitude is improved if the resonance frequencies differ by less than approximately half the bandwidth of the resonators. Under these conditions, the averaging results in a maximum improvement in the detection limit by a factor of N. A maximum N≈200 exists, which depends on the read-out electronics and the sensor intrinsic noise. Overall, the results indicate that significant improvement in the limit of detection is possible, and a model is presented for optimizing the design of delta-E effect sensor arrays in the future.

20.
Nano Lett ; 20(7): 5315-5322, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32551677

RESUMO

Magnetic doping and proximity coupling can open a band gap in a topological insulator (TI) and give rise to dissipationless quantum conduction phenomena. Here, by combining these two approaches, we demonstrate a novel TI superlattice structure that is alternately doped with transition and rare earth elements. An unexpected exchange bias effect is unambiguously confirmed in the superlattice with a large exchange bias field using magneto-transport and magneto-optical techniques. Further, the Curie temperature of the Cr-doped layers in the superlattice is found to increase by 60 K compared to a Cr-doped single-layer film. This result is supported by density-functional-theory calculations, which indicate the presence of antiferromagnetic ordering in Dy:Bi2Te3 induced by proximity coupling to Cr:Sb2Te3 at the interface. This work provides a new pathway to realizing the quantum anomalous Hall effect at elevated temperatures and axion insulator state at zero magnetic field by interface engineering in TI heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA