Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 484
Filtrar
1.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36537081

RESUMO

Qualitative or quantitative prediction models of structure-activity relationships based on graph neural networks (GNNs) are prevalent in drug discovery applications and commonly have excellently predictive power. However, the network information flows of GNNs are highly complex and accompanied by poor interpretability. Unfortunately, there are relatively less studies on GNN attributions, and their developments in drug research are still at the early stages. In this work, we adopted several advanced attribution techniques for different GNN frameworks and applied them to explain multiple drug molecule property prediction tasks, enabling the identification and visualization of vital chemical information in the networks. Additionally, we evaluated them quantitatively with attribution metrics such as accuracy, sparsity, fidelity and infidelity, stability and sensitivity; discussed their applicability and limitations; and provided an open-source benchmark platform for researchers. The results showed that all attribution techniques were effective, while those directly related to the predicted labels, such as integrated gradient, preferred to have better attribution performance. These attribution techniques we have implemented could be directly used for the vast majority of chemical GNN interpretation tasks.


Assuntos
Benchmarking , Descoberta de Drogas , Humanos , Redes Neurais de Computação , Pesquisadores , Relação Estrutura-Atividade
2.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37204195

RESUMO

Ribonucleic acids (RNAs) play crucial roles in living organisms and some of them, such as bacterial ribosomes and precursor messenger RNA, are targets of small molecule drugs, whereas others, e.g. bacterial riboswitches or viral RNA motifs are considered as potential therapeutic targets. Thus, the continuous discovery of new functional RNA increases the demand for developing compounds targeting them and for methods for analyzing RNA-small molecule interactions. We recently developed fingeRNAt-a software for detecting non-covalent bonds formed within complexes of nucleic acids with different types of ligands. The program detects several non-covalent interactions and encodes them as structural interaction fingerprint (SIFt). Here, we present the application of SIFts accompanied by machine learning methods for binding prediction of small molecules to RNA. We show that SIFt-based models outperform the classic, general-purpose scoring functions in virtual screening. We also employed Explainable Artificial Intelligence (XAI)-the SHapley Additive exPlanations, Local Interpretable Model-agnostic Explanations and other methods to help understand the decision-making process behind the predictive models. We conducted a case study in which we applied XAI on a predictive model of ligand binding to human immunodeficiency virus type 1 trans-activation response element RNA to distinguish between residues and interaction types important for binding. We also used XAI to indicate whether an interaction has a positive or negative effect on binding prediction and to quantify its impact. Our results obtained using all XAI methods were consistent with the literature data, demonstrating the utility and importance of XAI in medicinal chemistry and bioinformatics.


Assuntos
Inteligência Artificial , RNA , Humanos , Ligantes , Aprendizado de Máquina , Precursores de RNA , RNA Mensageiro
3.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37253690

RESUMO

Great efforts have been made to develop precision medicine-based treatments using machine learning. In this field, where the goal is to provide the optimal treatment for each patient based on his/her medical history and genomic characteristics, it is not sufficient to make excellent predictions. The challenge is to understand and trust the model's decisions while also being able to easily implement it. However, one of the issues with machine learning algorithms-particularly deep learning-is their lack of interpretability. This review compares six different machine learning methods to provide guidance for defining interpretability by focusing on accuracy, multi-omics capability, explainability and implementability. Our selection of algorithms includes tree-, regression- and kernel-based methods, which we selected for their ease of interpretation for the clinician. We also included two novel explainable methods in the comparison. No significant differences in accuracy were observed when comparing the methods, but an improvement was observed when using gene expression instead of mutational status as input for these methods. We concentrated on the current intriguing challenge: model comprehension and ease of use. Our comparison suggests that the tree-based methods are the most interpretable of those tested.


Assuntos
Oncologia , Neoplasias , Feminino , Humanos , Masculino , Neoplasias/genética , Algoritmos , Genômica , Aprendizado de Máquina
4.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38113073

RESUMO

Researchers increasingly turn to explainable artificial intelligence (XAI) to analyze omics data and gain insights into the underlying biological processes. Yet, given the interdisciplinary nature of the field, many findings have only been shared in their respective research community. An overview of XAI for omics data is needed to highlight promising approaches and help detect common issues. Toward this end, we conducted a systematic mapping study. To identify relevant literature, we queried Scopus, PubMed, Web of Science, BioRxiv, MedRxiv and arXiv. Based on keywording, we developed a coding scheme with 10 facets regarding the studies' AI methods, explainability methods and omics data. Our mapping study resulted in 405 included papers published between 2010 and 2023. The inspected papers analyze DNA-based (mostly genomic), transcriptomic, proteomic or metabolomic data by means of neural networks, tree-based methods, statistical methods and further AI methods. The preferred post-hoc explainability methods are feature relevance (n = 166) and visual explanation (n = 52), while papers using interpretable approaches often resort to the use of transparent models (n = 83) or architecture modifications (n = 72). With many research gaps still apparent for XAI for omics data, we deduced eight research directions and discuss their potential for the field. We also provide exemplary research questions for each direction. Many problems with the adoption of XAI for omics data in clinical practice are yet to be resolved. This systematic mapping study outlines extant research on the topic and provides research directions for researchers and practitioners.


Assuntos
Inteligência Artificial , Proteômica , Perfilação da Expressão Gênica , Genômica , Redes Neurais de Computação
5.
Neuroimage ; : 120749, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39033787

RESUMO

Differential diagnosis of acute loss of consciousness (LOC) is crucial due to the need for different therapeutic strategies despite similar clinical presentations among etiologies such as nonconvulsive status epilepticus, metabolic encephalopathy, and benzodiazepine intoxication. While altered functional connectivity (FC) plays a pivotal role in the pathophysiology of LOC, there has been a lack of efforts to develop differential diagnosis artificial intelligence (AI) models that feature the distinctive FC change patterns specific to each LOC cause. Three approaches were applied for extracting features for the AI models: three-dimensional FC adjacency matrices, vectorized FC values, and graph theoretical measurements. Deep learning using convolutional neural networks (CNN) and various machine learning algorithms were implemented to compare classification accuracy using electroencephalography (EEG) data with different epoch sizes. The CNN model using FC adjacency matrices achieved the highest accuracy with an AUC of 0.905, with 20-s epoch data being optimal for classifying the different LOC causes. The high accuracy of the CNN model was maintained in a prospective cohort. Key distinguishing features among the LOC causes were found in the delta and theta brain wave bands. This research advances the understanding of LOC's underlying mechanisms and shows promise for enhancing diagnosis and treatment selection. Moreover, the AI models can provide accurate LOC differentiation with a relatively small amount of EEG data in 20-s epochs, which may be clinically useful.

6.
J Comput Chem ; 45(18): 1530-1539, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38491535

RESUMO

Inhibiting the enzymes carbonic anhydrase I (CA I) and carbonic anhydrase II (CA II) presents a potential avenue for addressing nervous system ailments such as glaucoma and Alzheimer's disease. Our study explored harnessing explainable artificial intelligence (XAI) to unveil the molecular traits inherent in CA I and CA II inhibitors. The PubChem molecular fingerprints of these inhibitors, sourced from the ChEMBL database, were subjected to detailed XAI analysis. The study encompassed training 10 regression models using IC50 values, and their efficacy was gauged using metrics including R2, RMSE, and time taken. The Decision Tree Regressor algorithm emerged as the optimal performer (R2: 0.93, RMSE: 0.43, time-taken: 0.07). Furthermore, the PFI method unveiled key molecular features for CA I inhibitors, notably PubChemFP432 (C(O)N) and PubChemFP6978 (C(O)O). The SHAP analysis highlighted the significance of attributes like PubChemFP539 (C(O)NCC), PubChemFP601 (C(O)OCC), and PubChemFP432 (C(O)N) in CA I inhibitiotable n. Likewise, features for CA II inhibitors encompassed PubChemFP528(C(O)OCCN), PubChemFP791 (C(O)OCCC), PubChemFP696 (C(O)OCCCC), PubChemFP335 (C(O)NCCN), PubChemFP580 (C(O)NCCCN), and PubChemFP180 (C(O)NCCC), identified through SHAP analysis. The sulfonamide group (S), aromatic ring (A), and hydrogen bonding group (H) exert a substantial impact on CA I and CA II enzyme activities and IC50 values through the XAI approach. These insights into the CA I and CA II inhibitors are poised to guide future drug discovery efforts, serving as a beacon for innovative therapeutic interventions.


Assuntos
Inteligência Artificial , Anidrase Carbônica II , Anidrase Carbônica I , Inibidores da Anidrase Carbônica , Desenho de Fármacos , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/metabolismo , Anidrase Carbônica II/química , Anidrase Carbônica I/antagonistas & inibidores , Anidrase Carbônica I/metabolismo , Humanos , Estrutura Molecular
7.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35106553

RESUMO

Feature representation and discriminative learning are proven models and technologies in artificial intelligence fields; however, major challenges for machine learning on large biological datasets are learning an effective model with mechanistical explanation on the model determination and prediction. To satisfy such demands, we developed Vec2image, an explainable convolutional neural network framework for characterizing the feature engineering, feature selection and classifier training that is mainly based on the collaboration of principal component coordinate conversion, deep residual neural networks and embedded k-nearest neighbor representation on pseudo images of high-dimensional biological data, where the pseudo images represent feature measurements and feature associations simultaneously. Vec2image has achieved better performance compared with other popular methods and illustrated its efficiency on feature selection in cell marker identification from tissue-specific single-cell datasets. In particular, in a case study on type 2 diabetes (T2D) by multiple human islet scRNA-seq datasets, Vec2image first displayed robust performance on T2D classification model building across different datasets, then a specific Vec2image model was trained to accurately recognize the cell state and efficiently rank feature genes relevant to T2D which uncovered potential T2D cellular pathogenesis; and next the cell activity changes, cell composition imbalances and cell-cell communication dysfunctions were associated to our finding T2D feature genes from both population-shared and individual-specific perspectives. Collectively, Vec2image is a new and efficient explainable artificial intelligence methodology that can be widely applied in human-readable classification and prediction on the basis of pseudo image representation of biological deep sequencing data.


Assuntos
Inteligência Artificial , Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/genética , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
8.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36215083

RESUMO

Antimicrobial peptides (AMPs) have received a great deal of attention given their potential to become a plausible option to fight multi-drug resistant bacteria as well as other pathogens. Quantitative sequence-activity models (QSAMs) have been helpful to discover new AMPs because they allow to explore a large universe of peptide sequences and help reduce the number of wet lab experiments. A main aspect in the building of QSAMs based on shallow learning is to determine an optimal set of protein descriptors (features) required to discriminate between sequences with different antimicrobial activities. These features are generally handcrafted from peptide sequence datasets that are labeled with specific antimicrobial activities. However, recent developments have shown that unsupervised approaches can be used to determine features that outperform human-engineered (handcrafted) features. Thus, knowing which of these two approaches contribute to a better classification of AMPs, it is a fundamental question in order to design more accurate models. Here, we present a systematic and rigorous study to compare both types of features. Experimental outcomes show that non-handcrafted features lead to achieve better performances than handcrafted features. However, the experiments also prove that an improvement in performance is achieved when both types of features are merged. A relevance analysis reveals that non-handcrafted features have higher information content than handcrafted features, while an interaction-based importance analysis reveals that handcrafted features are more important. These findings suggest that there is complementarity between both types of features. Comparisons regarding state-of-the-art deep models show that shallow models yield better performances both when fed with non-handcrafted features alone and when fed with non-handcrafted and handcrafted features together.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Humanos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Sequência de Aminoácidos
9.
Histopathology ; 85(1): 116-132, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38556922

RESUMO

AIMS: Deep learning holds immense potential for histopathology, automating tasks that are simple for expert pathologists and revealing novel biology for tasks that were previously considered difficult or impossible to solve by eye alone. However, the extent to which the visual strategies learned by deep learning models in histopathological analysis are trustworthy or not has yet to be systematically analysed. Here, we systematically evaluate deep neural networks (DNNs) trained for histopathological analysis in order to understand if their learned strategies are trustworthy or deceptive. METHODS AND RESULTS: We trained a variety of DNNs on a novel data set of 221 whole-slide images (WSIs) from lung adenocarcinoma patients, and evaluated their effectiveness at (1) molecular profiling of KRAS versus EGFR mutations, (2) determining the primary tissue of a tumour and (3) tumour detection. While DNNs achieved above-chance performance on molecular profiling, they did so by exploiting correlations between histological subtypes and mutations, and failed to generalise to a challenging test set obtained through laser capture microdissection (LCM). In contrast, DNNs learned robust and trustworthy strategies for determining the primary tissue of a tumour as well as detecting and localising tumours in tissue. CONCLUSIONS: Our work demonstrates that DNNs hold immense promise for aiding pathologists in analysing tissue. However, they are also capable of achieving seemingly strong performance by learning deceptive strategies that leverage spurious correlations, and are ultimately unsuitable for research or clinical work. The framework we propose for model evaluation and interpretation is an important step towards developing reliable automated systems for histopathological analysis.


Assuntos
Adenocarcinoma de Pulmão , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Redes Neurais de Computação , Mutação
10.
BMC Med Res Methodol ; 24(1): 114, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760718

RESUMO

BACKGROUND: Smoking is a critical risk factor responsible for over eight million annual deaths worldwide. It is essential to obtain information on smoking habits to advance research and implement preventive measures such as screening of high-risk individuals. In most countries, including Denmark, smoking habits are not systematically recorded and at best documented within unstructured free-text segments of electronic health records (EHRs). This would require researchers and clinicians to manually navigate through extensive amounts of unstructured data, which is one of the main reasons that smoking habits are rarely integrated into larger studies. Our aim is to develop machine learning models to classify patients' smoking status from their EHRs. METHODS: This study proposes an efficient natural language processing (NLP) pipeline capable of classifying patients' smoking status and providing explanations for the decisions. The proposed NLP pipeline comprises four distinct components, which are; (1) considering preprocessing techniques to address abbreviations, punctuation, and other textual irregularities, (2) four cutting-edge feature extraction techniques, i.e. Embedding, BERT, Word2Vec, and Count Vectorizer, employed to extract the optimal features, (3) utilization of a Stacking-based Ensemble (SE) model and a Convolutional Long Short-Term Memory Neural Network (CNN-LSTM) for the identification of smoking status, and (4) application of a local interpretable model-agnostic explanation to explain the decisions rendered by the detection models. The EHRs of 23,132 patients with suspected lung cancer were collected from the Region of Southern Denmark during the period 1/1/2009-31/12/2018. A medical professional annotated the data into 'Smoker' and 'Non-Smoker' with further classifications as 'Active-Smoker', 'Former-Smoker', and 'Never-Smoker'. Subsequently, the annotated dataset was used for the development of binary and multiclass classification models. An extensive comparison was conducted of the detection performance across various model architectures. RESULTS: The results of experimental validation confirm the consistency among the models. However, for binary classification, BERT method with CNN-LSTM architecture outperformed other models by achieving precision, recall, and F1-scores between 97% and 99% for both Never-Smokers and Active-Smokers. In multiclass classification, the Embedding technique with CNN-LSTM architecture yielded the most favorable results in class-specific evaluations, with equal performance measures of 97% for Never-Smoker and measures in the range of 86 to 89% for Active-Smoker and 91-92% for Never-Smoker. CONCLUSION: Our proposed NLP pipeline achieved a high level of classification performance. In addition, we presented the explanation of the decision made by the best performing detection model. Future work will expand the model's capabilities to analyze longer notes and a broader range of categories to maximize its utility in further research and screening applications.


Assuntos
Registros Eletrônicos de Saúde , Processamento de Linguagem Natural , Fumar , Humanos , Dinamarca/epidemiologia , Registros Eletrônicos de Saúde/estatística & dados numéricos , Fumar/epidemiologia , Aprendizado de Máquina , Feminino , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação
11.
J Biomed Inform ; 156: 104673, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38862083

RESUMO

OBJECTIVE: Pneumothorax is an acute thoracic disease caused by abnormal air collection between the lungs and chest wall. Recently, artificial intelligence (AI), especially deep learning (DL), has been increasingly employed for automating the diagnostic process of pneumothorax. To address the opaqueness often associated with DL models, explainable artificial intelligence (XAI) methods have been introduced to outline regions related to pneumothorax. However, these explanations sometimes diverge from actual lesion areas, highlighting the need for further improvement. METHOD: We propose a template-guided approach to incorporate the clinical knowledge of pneumothorax into model explanations generated by XAI methods, thereby enhancing the quality of the explanations. Utilizing one lesion delineation created by radiologists, our approach first generates a template that represents potential areas of pneumothorax occurrence. This template is then superimposed on model explanations to filter out extraneous explanations that fall outside the template's boundaries. To validate its efficacy, we carried out a comparative analysis of three XAI methods (Saliency Map, Grad-CAM, and Integrated Gradients) with and without our template guidance when explaining two DL models (VGG-19 and ResNet-50) in two real-world datasets (SIIM-ACR and ChestX-Det). RESULTS: The proposed approach consistently improved baseline XAI methods across twelve benchmark scenarios built on three XAI methods, two DL models, and two datasets. The average incremental percentages, calculated by the performance improvements over the baseline performance, were 97.8% in Intersection over Union (IoU) and 94.1% in Dice Similarity Coefficient (DSC) when comparing model explanations and ground-truth lesion areas. We further visualized baseline and template-guided model explanations on radiographs to showcase the performance of our approach. CONCLUSIONS: In the context of pneumothorax diagnoses, we proposed a template-guided approach for improving model explanations. Our approach not only aligns model explanations more closely with clinical insights but also exhibits extensibility to other thoracic diseases. We anticipate that our template guidance will forge a novel approach to elucidating AI models by integrating clinical domain expertise.

12.
J Biomed Inform ; 150: 104598, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38253228

RESUMO

OBJECTIVES: We aimed to investigate how errors from automatic speech recognition (ASR) systems affect dementia classification accuracy, specifically in the "Cookie Theft" picture description task. We aimed to assess whether imperfect ASR-generated transcripts could provide valuable information for distinguishing between language samples from cognitively healthy individuals and those with Alzheimer's disease (AD). METHODS: We conducted experiments using various ASR models, refining their transcripts with post-editing techniques. Both these imperfect ASR transcripts and manually transcribed ones were used as inputs for the downstream dementia classification. We conducted comprehensive error analysis to compare model performance and assess ASR-generated transcript effectiveness in dementia classification. RESULTS: Imperfect ASR-generated transcripts surprisingly outperformed manual transcription for distinguishing between individuals with AD and those without in the "Cookie Theft" task. These ASR-based models surpassed the previous state-of-the-art approach, indicating that ASR errors may contain valuable cues related to dementia. The synergy between ASR and classification models improved overall accuracy in dementia classification. CONCLUSION: Imperfect ASR transcripts effectively capture linguistic anomalies linked to dementia, improving accuracy in classification tasks. This synergy between ASR and classification models underscores ASR's potential as a valuable tool in assessing cognitive impairment and related clinical applications.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Percepção da Fala , Humanos , Fala , Idioma , Doença de Alzheimer/diagnóstico
13.
Biomed Eng Online ; 23(1): 37, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555421

RESUMO

BACKGROUND: The diagnostic test for vasovagal syncope (VVS), the most common cause of syncope is head-up tilt test (HUTT) assessment. During the test, subjects experienced clinical symptoms such as nausea, sweating, pallor, the feeling of palpitations, being on the verge of passing out, and fainting. The study's goal is to develop an algorithm to classify VVS patients based on physiological signals blood pressure (BP) and electrocardiography (ECG) obtained from the HUTT. METHODS: After 10 min of supine rest, the subject was tilted at a 70-degree angle on a tilt table for approximately a total of 35 min. 400 µg of glyceryl trinitrate (GTN) was administered sublingually after the first 20 min and monitoring continued for another 15 min. Mean imputation and K-nearest neighbors (KNN) imputation approaches to handle missing values. Next, feature selection techniques were implemented, including genetic algorithm, recursive feature elimination, and feature importance, to determine the crucial features. The Mann-Whitney U test was then performed to determine the statistical difference between two groups. Patients with VVS are categorized via machine learning models including Support Vector Machine (SVM), Gaussian Naïve Bayes (GNB), Multinomial Naïve Bayes (MNB), KNN, Logistic Regression (LR), and Random Forest (RF). The developed model is interpreted using an explainable artificial intelligence (XAI) model known as partial dependence plot. RESULTS: A total of 137 subjects aged between 9 and 93 years were recruited for this study, 54 experienced clinical symptoms were considered positive tests, while the remaining 83 tested negative. Optimal results were obtained by combining the KNN imputation technique and three tilting features with SVM with 90.5% accuracy, 87.0% sensitivity, 92.7% specificity, 88.6% precision, 87.8% F1 score, and 95.4% ROC (receiver operating characteristics) AUC (area under curve). CONCLUSIONS: The proposed algorithm effectively classifies VVS patients with over 90% accuracy. However, the study was confined to a small sample size. More clinical datasets are required to ensure that our approach is generalizable.


Assuntos
Síncope Vasovagal , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Síncope Vasovagal/diagnóstico , Síncope Vasovagal/etiologia , Inteligência Artificial , Teorema de Bayes , Teste da Mesa Inclinada/efeitos adversos , Teste da Mesa Inclinada/métodos , Eletrocardiografia
14.
Age Ageing ; 53(5)2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776213

RESUMO

INTRODUCTION: Post-operative delirium (POD) is a common complication in older patients, with an incidence of 14-56%. To implement preventative procedures, it is necessary to identify patients at risk for POD. In the present study, we aimed to develop a machine learning (ML) model for POD prediction in older patients, in close cooperation with the PAWEL (patient safety, cost-effectiveness and quality of life in elective surgery) project. METHODS: The model was trained on the PAWEL study's dataset of 878 patients (no intervention, age ≥ 70, 209 with POD). Presence of POD was determined by the Confusion Assessment Method and a chart review. We selected 15 features based on domain knowledge, ethical considerations and a recursive feature elimination. A logistic regression and a linear support vector machine (SVM) were trained, and evaluated using receiver operator characteristics (ROC). RESULTS: The selected features were American Society of Anesthesiologists score, multimorbidity, cut-to-suture time, estimated glomerular filtration rate, polypharmacy, use of cardio-pulmonary bypass, the Montreal cognitive assessment subscores 'memory', 'orientation' and 'verbal fluency', pre-existing dementia, clinical frailty scale, age, recent falls, post-operative isolation and pre-operative benzodiazepines. The linear SVM performed best, with an ROC area under the curve of 0.82 [95% CI 0.78-0.85] in the training set, 0.81 [95% CI 0.71-0.88] in the test set and 0.76 [95% CI 0.71-0.79] in a cross-centre validation. CONCLUSION: We present a clinically useful and explainable ML model for POD prediction. The model will be deployed in the Supporting SURgery with GEriatric Co-Management and AI project.


Assuntos
Delírio , Avaliação Geriátrica , Aprendizado de Máquina , Humanos , Idoso , Feminino , Masculino , Delírio/diagnóstico , Delírio/epidemiologia , Idoso de 80 Anos ou mais , Avaliação Geriátrica/métodos , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Medição de Risco , Fatores de Risco , Valor Preditivo dos Testes , Fatores Etários , Máquina de Vetores de Suporte , Algoritmos
15.
Mol Divers ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200203

RESUMO

Cyclooxygenase-2 (COX-2) inhibitors are nonsteroidal anti-inflammatory drugs that treat inflammation, pain and fever. This study determined the interaction mechanisms of COX-2 inhibitors and the molecular properties needed to design new drug candidates. Using machine learning and explainable AI methods, the inhibition activity of 1488 molecules was modelled, and essential properties were identified. These properties included aromatic rings, nitrogen-containing functional groups and aliphatic hydrocarbons. They affected the water solubility, hydrophobicity and binding affinity of COX-2 inhibitors. The binding mode, stability and ADME properties of 16 ligands bound to the Cyclooxygenase active site of COX-2 were investigated by molecular docking, molecular dynamics simulation and MM-GBSA analysis. The results showed that ligand 339,222 was the most stable and effective COX-2 inhibitor. It inhibited prostaglandin synthesis by disrupting the protein conformation of COX-2. It had good ADME properties and high clinical potential. This study demonstrated the potential of machine learning and bioinformatics methods in discovering COX-2 inhibitors.

16.
Health Care Manag Sci ; 27(1): 114-129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37921927

RESUMO

Overcrowding of emergency departments is a global concern, leading to numerous negative consequences. This study aimed to develop a useful and inexpensive tool derived from electronic medical records that supports clinical decision-making and can be easily utilized by emergency department physicians. We presented machine learning models that predicted the likelihood of hospitalizations within 24 hours and estimated waiting times. Moreover, we revealed the enhanced performance of these machine learning models compared to existing models by incorporating unstructured text data. Among several evaluated models, the extreme gradient boosting model that incorporated text data yielded the best performance. This model achieved an area under the receiver operating characteristic curve score of 0.922 and an area under the precision-recall curve score of 0.687. The mean absolute error revealed a difference of approximately 3 hours. Using this model, we classified the probability of patients not being admitted within 24 hours as Low, Medium, or High and identified important variables influencing this classification through explainable artificial intelligence. The model results are readily displayed on an electronic dashboard to support the decision-making of emergency department physicians and alleviate overcrowding, thereby resulting in socioeconomic benefits for medical facilities.


Assuntos
Inteligência Artificial , Listas de Espera , Humanos , Hospitalização , Serviço Hospitalar de Emergência , Aprendizado de Máquina , Estudos Retrospectivos
17.
Am J Emerg Med ; 77: 29-38, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38096637

RESUMO

OBJECTIVE: The manual recording of electronic health records (EHRs) by clinicians in the emergency department (ED) is time-consuming and challenging. In light of recent advancements in large language models (LLMs) such as GPT and BERT, this study aimed to design and validate LLMs for automatic clinical diagnoses. The models were designed to identify 12 medical symptoms and 2 patient histories from simulated clinician-patient conversations within 6 primary symptom scenarios in emergency triage rooms. MATERIALS AND METHOD: We developed classification models by fine-tuning BERT, a transformer-based pre-trained model. We subsequently analyzed these models using eXplainable artificial intelligence (XAI) and the Shapley additive explanation (SHAP) method. A Turing test was conducted to ascertain the reliability of the XAI results by comparing them to the outcomes of tasks performed and explained by medical workers. An emergency medicine specialist assessed the results of both XAI and the medical workers. RESULTS: We fine-tuned four pre-trained LLMs and compared their classification performance. The KLUE-RoBERTa-based model demonstrated the highest performance (F1-score: 0.965, AUROC: 0.893) on human-transcribed script data. The XAI results using SHAP showed an average Jaccard similarity of 0.722 when compared with explanations of medical workers for 15 samples. The Turing test results revealed a small 6% gap, with XAI and medical workers receiving the mean scores of 3.327 and 3.52, respectively. CONCLUSION: This paper highlights the potential of LLMs for automatic EHR recording in Korean EDs. The KLUE-RoBERTa-based model demonstrated superior classification performance. Furthermore, XAI using SHAP provided reliable explanations for model outputs. The reliability of these explanations was confirmed by a Turing test.


Assuntos
Aprendizado Profundo , Processamento de Linguagem Natural , Humanos , Inteligência Artificial , Reprodutibilidade dos Testes , Triagem
18.
Postgrad Med J ; 100(1182): 219-227, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38244550

RESUMO

BACKGROUND: The lack of transparency is a prevalent issue among the current machine-learning (ML) algorithms utilized for predicting mortality risk. Herein, we aimed to improve transparency by utilizing the latest ML explicable technology, SHapley Additive exPlanation (SHAP), to develop a predictive model for critically ill patients. METHODS: We extracted data from the Medical Information Mart for Intensive Care IV database, encompassing all intensive care unit admissions. We employed nine different methods to develop the models. The most accurate model, with the highest area under the receiver operating characteristic curve, was selected as the optimal model. Additionally, we used SHAP to explain the workings of the ML model. RESULTS: The study included 21 395 critically ill patients, with a median age of 68 years (interquartile range, 56-79 years), and most patients were male (56.9%). The cohort was randomly split into a training set (N = 16 046) and a validation set (N = 5349). Among the nine models developed, the Random Forest model had the highest accuracy (87.62%) and the best area under the receiver operating characteristic curve value (0.89). The SHAP summary analysis showed that Glasgow Coma Scale, urine output, and blood urea nitrogen were the top three risk factors for outcome prediction. Furthermore, SHAP dependency analysis and SHAP force analysis were used to interpret the Random Forest model at the factor level and individual level, respectively. CONCLUSION: A transparent ML model for predicting outcomes in critically ill patients using SHAP methodology is feasible and effective. SHAP values significantly improve the explainability of ML models.


Assuntos
Inteligência Artificial , Estado Terminal , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Estado Terminal/terapia , Unidades de Terapia Intensiva , Algoritmos , Cuidados Críticos
19.
J Ultrasound Med ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032010

RESUMO

Artificial intelligence (AI) models can play a more effective role in managing patients with the explosion of digital health records available in the healthcare industry. Machine-learning (ML) and deep-learning (DL) techniques are two methods used to develop predictive models that serve to improve the clinical processes in the healthcare industry. These models are also implemented in medical imaging machines to empower them with an intelligent decision system to aid physicians in their decisions and increase the efficiency of their routine clinical practices. The physicians who are going to work with these machines need to have an insight into what happens in the background of the implemented models and how they work. More importantly, they need to be able to interpret their predictions, assess their performance, and compare them to find the one with the best performance and fewer errors. This review aims to provide an accessible overview of key evaluation metrics for physicians without AI expertise. In this review, we developed four real-world diagnostic AI models (two ML and two DL models) for breast cancer diagnosis using ultrasound images. Then, 23 of the most commonly used evaluation metrics were reviewed uncomplicatedly for physicians. Finally, all metrics were calculated and used practically to interpret and evaluate the outputs of the models. Accessible explanations and practical applications empower physicians to effectively interpret, evaluate, and optimize AI models to ensure safety and efficacy when integrated into clinical practice.

20.
J Korean Med Sci ; 39(5): e53, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317451

RESUMO

BACKGROUND: Worldwide, sepsis is the leading cause of death in hospitals. If mortality rates in patients with sepsis can be predicted early, medical resources can be allocated efficiently. We constructed machine learning (ML) models to predict the mortality of patients with sepsis in a hospital emergency department. METHODS: This study prospectively collected nationwide data from an ongoing multicenter cohort of patients with sepsis identified in the emergency department. Patients were enrolled from 19 hospitals between September 2019 and December 2020. For acquired data from 3,657 survivors and 1,455 deaths, six ML models (logistic regression, support vector machine, random forest, extreme gradient boosting [XGBoost], light gradient boosting machine, and categorical boosting [CatBoost]) were constructed using fivefold cross-validation to predict mortality. Through these models, 44 clinical variables measured on the day of admission were compared with six sequential organ failure assessment (SOFA) components (PaO2/FIO2 [PF], platelets (PLT), bilirubin, cardiovascular, Glasgow Coma Scale score, and creatinine). The confidence interval (CI) was obtained by performing 10,000 repeated measurements via random sampling of the test dataset. All results were explained and interpreted using Shapley's additive explanations (SHAP). RESULTS: Of the 5,112 participants, CatBoost exhibited the highest area under the curve (AUC) of 0.800 (95% CI, 0.756-0.840) using clinical variables. Using the SOFA components for the same patient, XGBoost exhibited the highest AUC of 0.678 (95% CI, 0.626-0.730). As interpreted by SHAP, albumin, lactate, blood urea nitrogen, and international normalization ratio were determined to significantly affect the results. Additionally, PF and PLTs in the SOFA component significantly influenced the prediction results. CONCLUSION: Newly established ML-based models achieved good prediction of mortality in patients with sepsis. Using several clinical variables acquired at the baseline can provide more accurate results for early predictions than using SOFA components. Additionally, the impact of each variable was identified.


Assuntos
Serviço Hospitalar de Emergência , Sepse , Humanos , Albuminas , Ácido Láctico , Aprendizado de Máquina , Sepse/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA