Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687162

RESUMO

Visualization of the chemical space is useful in many aspects of chemistry, including compound library design, diversity analysis, and exploring structure-property relationships, to name a few. Examples of notable research areas where the visualization of chemical space has strong applications are drug discovery and natural product research. However, the sheer volume of even comparatively small sub-sections of chemical space implies that we need to use approximations at the time of navigating through chemical space. ChemMaps is a visualization methodology that approximates the distribution of compounds in large datasets based on the selection of satellite compounds that yield a similar mapping of the whole dataset when principal component analysis on a similarity matrix is performed. Here, we show how the recently proposed extended similarity indices can help find regions that are relevant to sample satellites and reduce the amount of high-dimensional data needed to describe a library's chemical space.

2.
J Comput Aided Mol Des ; 36(3): 157-173, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35288838

RESUMO

Extended (or n-ary) similarity indices have been recently proposed to extend the comparative analysis of binary strings. Going beyond the traditional notion of pairwise comparisons, these novel indices allow comparing any number of objects at the same time. This results in a remarkable efficiency gain with respect to other approaches, since now we can compare N molecules in O(N) instead of the common quadratic O(N2) timescale. This favorable scaling has motivated the application of these indices to diversity selection, clustering, phylogenetic analysis, chemical space visualization, and post-processing of molecular dynamics simulations. However, the current formulation of the n-ary indices is limited to vectors with binary or categorical inputs. Here, we present the further generalization of this formalism so it can be applied to numerical data, i.e. to vectors with continuous components. We discuss several ways to achieve this extension and present their analytical properties. As a practical example, we apply this formalism to the problem of feature selection in QSAR and prove that the extended continuous similarity indices provide a convenient way to discern between several sets of descriptors.


Assuntos
Desenho de Fármacos , Relação Quantitativa Estrutura-Atividade , Filogenia
3.
Mol Inform ; 42(7): e2300056, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37202375

RESUMO

Understanding structure-activity landscapes is essential in drug discovery. Similarly, it has been shown that the presence of activity cliffs in compound data sets can have a substantial impact not only on the design progress but also can influence the predictive ability of machine learning models. With the continued expansion of the chemical space and the currently available large and ultra-large libraries, it is imperative to implement efficient tools to analyze the activity landscape of compound data sets rapidly. The goal of this study is to show the applicability of the n-ary indices to quantify the structure-activity landscapes of large compound data sets using different types of structural representation rapidly and efficiently. We also discuss how a recently introduced medoid algorithm provides the foundation to finding optimum correlations between similarity measures and structure-activity rankings. The applicability of the n-ary indices and the medoid algorithm is shown by analyzing the activity landscape of 10 compound data sets with pharmaceutical relevance using three fingerprints of different designs, 16 extended similarity indices, and 11 coincidence thresholds.


Assuntos
Algoritmos , Descoberta de Drogas , Relação Estrutura-Atividade , Aprendizado de Máquina
4.
J Cheminform ; 13(1): 32, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892802

RESUMO

Quantification of the similarity of objects is a key concept in many areas of computational science. This includes cheminformatics, where molecular similarity is usually quantified based on binary fingerprints. While there is a wide selection of available molecular representations and similarity metrics, there were no previous efforts to extend the computational framework of similarity calculations to the simultaneous comparison of more than two objects (molecules) at the same time. The present study bridges this gap, by introducing a straightforward computational framework for comparing multiple objects at the same time and providing extended formulas for as many similarity metrics as possible. In the binary case (i.e. when comparing two molecules pairwise) these are naturally reduced to their well-known formulas. We provide a detailed analysis on the effects of various parameters on the similarity values calculated by the extended formulas. The extended similarity indices are entirely general and do not depend on the fingerprints used. Two types of variance analysis (ANOVA) help to understand the main features of the indices: (i) ANOVA of mean similarity indices; (ii) ANOVA of sum of ranking differences (SRD). Practical aspects and applications of the extended similarity indices are detailed in the accompanying paper: Miranda-Quintana et al. J Cheminform. 2021. https://doi.org/10.1186/s13321-021-00504-4 . Python code for calculating the extended similarity metrics is freely available at: https://github.com/ramirandaq/MultipleComparisons .

5.
J Cheminform ; 13(1): 33, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892799

RESUMO

Despite being a central concept in cheminformatics, molecular similarity has so far been limited to the simultaneous comparison of only two molecules at a time and using one index, generally the Tanimoto coefficent. In a recent contribution we have not only introduced a complete mathematical framework for extended similarity calculations, (i.e. comparisons of more than two molecules at a time) but defined a series of novel idices. Part 1 is a detailed analysis of the effects of various parameters on the similarity values calculated by the extended formulas. Their features were revealed by sum of ranking differences and ANOVA. Here, in addition to characterizing several important aspects of the newly introduced similarity metrics, we will highlight their applicability and utility in real-life scenarios using datasets with popular molecular fingerprints. Remarkably, for large datasets, the use of extended similarity measures provides an unprecedented speed-up over "traditional" pairwise similarity matrix calculations. We also provide illustrative examples of a more direct algorithm based on the extended Tanimoto similarity to select diverse compound sets, resulting in much higher levels of diversity than traditional approaches. We discuss the inner and outer consistency of our indices, which are key in practical applications, showing whether the n-ary and binary indices rank the data in the same way. We demonstrate the use of the new n-ary similarity metrics on t-distributed stochastic neighbor embedding (t-SNE) plots of datasets of varying diversity, or corresponding to ligands of different pharmaceutical targets, which show that our indices provide a better measure of set compactness than standard binary measures. We also present a conceptual example of the applicability of our indices in agglomerative hierarchical algorithms. The Python code for calculating the extended similarity metrics is freely available at: https://github.com/ramirandaq/MultipleComparisons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA