Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cell ; 179(6): 1330-1341.e13, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31761532

RESUMO

Non-coding regions amplified beyond oncogene borders have largely been ignored. Using a computational approach, we find signatures of significant co-amplification of non-coding DNA beyond the boundaries of amplified oncogenes across five cancer types. In glioblastoma, EGFR is preferentially co-amplified with its two endogenous enhancer elements active in the cell type of origin. These regulatory elements, their contacts, and their contribution to cell fitness are preserved on high-level circular extrachromosomal DNA amplifications. Interrogating the locus with a CRISPR interference screening approach reveals a diversity of additional elements that impact cell fitness. The pattern of fitness dependencies mirrors the rearrangement of regulatory elements and accompanying rewiring of the chromatin topology on the extrachromosomal amplicon. Our studies indicate that oncogene amplifications are shaped by regulatory dependencies in the non-coding genome.


Assuntos
Cromossomos Humanos/genética , Elementos Facilitadores Genéticos , Amplificação de Genes , Oncogenes , Acetilação , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Cromatina/metabolismo , DNA de Neoplasias/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Genes Neoplásicos , Loci Gênicos , Glioblastoma/genética , Glioblastoma/patologia , Histonas/metabolismo , Humanos , Neuroglia/metabolismo
2.
Am J Hum Genet ; 111(3): 544-561, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38307027

RESUMO

Cervical cancer is caused by human papillomavirus (HPV) infection, has few approved targeted therapeutics, and is the most common cause of cancer death in low-resource countries. We characterized 19 cervical and four head and neck cancer cell lines using long-read DNA and RNA sequencing and identified the HPV types, HPV integration sites, chromosomal alterations, and cancer driver mutations. Structural variation analysis revealed telomeric deletions associated with DNA inversions resulting from breakage-fusion-bridge (BFB) cycles. BFB is a common mechanism of chromosomal alterations in cancer, and our study applies long-read sequencing to this important chromosomal rearrangement type. Analysis of the inversion sites revealed staggered ends consistent with exonuclease digestion of the DNA after breakage. Some BFB events are complex, involving inter- or intra-chromosomal insertions or rearrangements. None of the BFB breakpoints had telomere sequences added to resolve the dicentric chromosomes, and only one BFB breakpoint showed chromothripsis. Five cell lines have a chromosomal region 11q BFB event, with YAP1-BIRC3-BIRC2 amplification. Indeed, YAP1 amplification is associated with a 10-year-earlier age of diagnosis of cervical cancer and is three times more common in African American women. This suggests that individuals with cervical cancer and YAP1-BIRC3-BIRC2 amplification, especially those of African ancestry, might benefit from targeted therapy. In summary, we uncovered valuable insights into the mechanisms and consequences of BFB cycles in cervical cancer using long-read sequencing.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/genética , Aberrações Cromossômicas , Telômero/genética , DNA
3.
Proc Natl Acad Sci U S A ; 120(20): e2210991120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155843

RESUMO

In 2021, the World Health Organization reclassified glioblastoma, the most common form of adult brain cancer, into isocitrate dehydrogenase (IDH)-wild-type glioblastomas and grade IV IDH mutant (G4 IDHm) astrocytomas. For both tumor types, intratumoral heterogeneity is a key contributor to therapeutic failure. To better define this heterogeneity, genome-wide chromatin accessibility and transcription profiles of clinical samples of glioblastomas and G4 IDHm astrocytomas were analyzed at single-cell resolution. These profiles afforded resolution of intratumoral genetic heterogeneity, including delineation of cell-to-cell variations in distinct cell states, focal gene amplifications, as well as extrachromosomal circular DNAs. Despite differences in IDH mutation status and significant intratumoral heterogeneity, the profiled tumor cells shared a common chromatin structure defined by open regions enriched for nuclear factor 1 transcription factors (NFIA and NFIB). Silencing of NFIA or NFIB suppressed in vitro and in vivo growths of patient-derived glioblastomas and G4 IDHm astrocytoma models. These findings suggest that despite distinct genotypes and cell states, glioblastoma/G4 astrocytoma cells share dependency on core transcriptional programs, yielding an attractive platform for addressing therapeutic challenges associated with intratumoral heterogeneity.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Cromatina/genética , Transcriptoma , Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Mutação , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo
4.
Trends Genet ; 38(2): 169-181, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34625299

RESUMO

Cells activate distinctive regulatory pathways that prevent excessive initiation of DNA replication to achieve timely and accurate genome duplication. Excess DNA synthesis is constrained by protein-DNA interactions that inhibit initiation at dormant origins. In parallel, specific modifications of pre-replication complexes prohibit post-replicative origin relicensing. Replication stress ensues when the controls that prevent excess replication are missing in cancer cells, which often harbor extrachromosomal DNA that can be further amplified by recombination-mediated processes to generate chromosomal translocations. The genomic instability that accompanies excess replication origin activation can provide a promising target for therapeutic intervention. Here we review molecular pathways that modulate replication origin dormancy, prevent excess origin activation, and detect, encapsulate, and eliminate persistent excess DNA.


Assuntos
Instabilidade Genômica , Origem de Replicação , DNA , Dano ao DNA , Replicação do DNA/genética , Instabilidade Genômica/genética , Humanos , Origem de Replicação/genética
5.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36757087

RESUMO

Extrachromosomal circular DNA (eccDNA) represents a large category of non-mitochondrial and non-plasmid circular extrachromosomal DNA, playing an indispensable role in various aspects such as tumorigenesis, immune responses. However, the information of characteristics and functions about eccDNA is fragmented, hiding behind abundant literatures and massive whole-genome sequencing (WGS) data, which has not been sufficiently used for the identification of eccDNAs. Therefore, establishing an integrated repository portal is essential for identifying and analyzing eccDNAs. Here, we developed eccDNA Atlas (http://lcbb.swjtu.edu.cn/eccDNAatlas), a user-friendly database of eccDNAs that aims to provide a high-quality and integrated resource for browsing, searching and analyzing eccDNAs from multiple species. eccDNA Atlas currently contains 629 987 eccDNAs and 8221 ecDNAs manually curated from literatures and 1105 ecDNAs predicted by AmpliconArchitect based on WGS data involved in 66 diseases, 57 tissues and 319 cell lines. The content of each eccDNA entry includes multiple aspects such as sequence, disease, function, characteristic, validation strategies. Furthermore, abundant annotations and analyzing utilities were provided to explore existing eccDNAs in eccDNA Atlas or user-defined eccDNAs including oncogenes, typical enhancers, super enhancers, CTCF-binding sites, SNPs, chromatin accessibility, eQTLs, gene expression, survival and genome visualization. Overall, eccDNA Atlas provides an integrated eccDNA data warehouse and serves as an important tool for future research.


Assuntos
DNA Circular , DNA , Cromossomos , Genoma , Linhagem Celular
6.
Plant Cell Physiol ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38808931

RESUMO

Transposable elements (TEs) are mobile DNA elements that are particularly abundant in the plant genomes. They have long been considered as junk DNA; however, a growing body of evidence suggests that TE insertions promote genetic diversity that is essential for the adaptive evolution of a species. Thus far, studies have mainly investigated the cis-acting regulatory roles of TEs generated by their insertions nearby or within the host genes. However, the trans-acting effects of TE-derived RNA and DNA remained obscure to date. TEs contain various regulatory elements within their sequences that can accommodate the binding of specific RNAs and proteins. Recently, it was suggested that some of these cellular regulators are shared between TEs and the host genes, and the competition for the common host factors underlies the fine-tuned developmental reprogramming. In this review, we will highlight and discuss the latest discoveries on the biological functions of plant TEs, with a particular focus on their competitive binding with specific developmental regulators.

7.
BMC Genomics ; 24(1): 47, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707765

RESUMO

BACKGROUND: Extrachromosomal circular DNA (eccDNA) is a kind of DNA that widely exists in eukaryotic cells. Studies in recent years have shown that eccDNA is often enriched during tumors and aging, and participates in the development of cell physiological activities in a special way, so people have paid more and more attention to the eccDNA, and it has also become a critical new topic in modern biological research. DESCRIPTION: We built a database to collect eccDNA, including animals, plants and fungi, and provide researchers with an eccDNA retrieval platform. The collected eccDNAs were processed in a uniform format and classified according to the species to which it belongs and the chromosome of the source. Each eccDNA record contained sequence length, start and end sites on the corresponding chromosome, order of the bases, genomic elements such as genes and transposons, and other information in the respective sequencing experiment. All the data were stored into the TeCD (The eccDNA Collection Database) and the BLAST (Basic Local Alignment Search Tool) sequence alignment function was also added into the database for analyzing the potential eccDNA sequences. CONCLUSION: We built TeCD, a platform for users to search and obtain eccDNA data, and analyzed the possible potential functions of eccDNA. These findings may provide a basis and direction for researchers to further explore the biological significance of eccDNA in the future.


Assuntos
DNA Circular , DNA , Animais , DNA Circular/genética , DNA/genética , Cromossomos , Células Eucarióticas , Plantas/genética
8.
Chromosoma ; 131(3): 107-125, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35487993

RESUMO

Advances in genome sequencing have revealed a type of extrachromosomal DNA, historically named double minutes (also referred to as ecDNA), to be common in a wide range of cancer types, but not in healthy tissues. These cancer-associated circular DNA molecules contain one or a few genes that are amplified when double minutes accumulate. Double minutes harbor oncogenes or drug resistance genes that contribute to tumor aggressiveness through copy number amplification in combination with favorable epigenetic properties. Unequal distribution of double minutes over daughter cells contributes to intratumoral heterogeneity, thereby increasing tumor adaptability. In this review, we discuss various models delineating the mechanism of generation of double minutes. Furthermore, we highlight how double minutes are maintained, how they evolve, and discuss possible mechanisms driving their elimination.


Assuntos
Amplificação de Genes , Neoplasias , Aberrações Cromossômicas , DNA , Humanos , Neoplasias/genética , Oncogenes
9.
Biochem Biophys Res Commun ; 675: 130-138, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37473527

RESUMO

The mechanism of dihydroartemisinin (DHA) inhibiting the migration and invasion of glioma in an ROS-DSB-dependent manner has been revealed. Extrachromosomal DNAs (ecDNAs) which are generated by DNA damage have great potential in glioma treatment. However, the role of ecDNAs in DHA's pharmacological mechanisms in glioma is still unknown. In this study, DHA was found to inhibit proliferative activity, increase ROS levels and promote apoptosis in U87 and U251 cells. Migration and invasion have also been suppressed. ecDNA expression profiles were found in gliomas. EcDNA-BASP1 was found, by means of bioinformatics analysis, to be present in GBM tissues and positively correlated with patient prognosis. Proliferation, migration and invasion were upregulated after knockdown of ecDNA-BASP1. The expression of vimentin and N-cadherin also had the same tendency. Finally, we found that the ecDNA-BASP1 content in nude mouse transplant tumors was significantly increased after DHA treatment, which might exert a better suppressive effect on glioma. The upregulation of tumor suppressor ecDNA-BASP1 played an important role in the suppression of glioma progression induced by DHA. EcDNA-BASP1 may inhibit glioma migration and invasion through repressing epithelial-mesenchymal transition (EMT).


Assuntos
Neoplasias Encefálicas , DNA de Forma B , Glioma , Animais , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos
10.
Plasmid ; 125: 102669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36572199

RESUMO

A subset of clinical isolates of Clostridioides difficile contains one or more plasmids and these plasmids can harbor virulence and antimicrobial resistance determinants. Despite their potential importance, C. difficile plasmids remain poorly characterized. Here, we provide the complete genome sequence of a human clinical isolate that carries three high-copy number plasmids from three different plasmid families that are therefore compatible. For two of these, we identify a region capable of sustaining plasmid replication in C. difficile that is also compatible with the plasmid pCD630 that is found in many laboratory strains. Together, our data advance our understanding of C. difficile plasmid biology.


Assuntos
Clostridioides difficile , Humanos , Plasmídeos/genética , Clostridioides difficile/genética , Clostridioides/genética , Virulência , Fatores de Virulência/genética , Antibacterianos
11.
J Pathol ; 257(4): 479-493, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35355264

RESUMO

Structural variants (SVs) represent a major source of aberration in tumour genomes. Given the diversity in the size and type of SVs present in tumours, the accurate detection and interpretation of SVs in tumours is challenging. New classes of complex structural events in tumours are discovered frequently, and the definitions of the genomic consequences of complex events are constantly being refined. Detailed analyses of short-read whole-genome sequencing (WGS) data from large tumour cohorts facilitate the interrogation of SVs at orders of magnitude greater scale and depth. However, the inherent technical limitations of short-read WGS prevent us from accurately detecting and investigating the impact of all the SVs present in tumours. The expanded use of long-read WGS will be critical for improving the accuracy of SV detection, and in fully resolving complex SV events, both of which are crucial for determining the impact of SVs on tumour progression and clinical outcome. Despite the present limitations, we demonstrate that SVs play an important role in tumourigenesis. In particular, SVs contribute significantly to late-stage tumour development and to intratumoural heterogeneity. The evolutionary trajectories of SVs represent a window into the clonal dynamics in tumours, a comprehensive understanding of which will be vital for influencing patient outcomes in the future. Recent findings have highlighted many clinical applications of SVs in cancer, from early detection to biomarkers for treatment response and prognosis. As the methods to detect and interpret SVs improve, elucidating the full breadth of the complex SV landscape and determining how these events modulate tumour evolution will improve our understanding of cancer biology and our ability to capitalise on the utility of SVs in the clinical management of cancer patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Genoma , Neoplasias , Carcinogênese/genética , Genoma Humano/genética , Genômica/métodos , Humanos , Neoplasias/genética , Sequenciamento Completo do Genoma/métodos
12.
J Pathol ; 257(4): 379-382, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35635736

RESUMO

The 2022 Annual Review Issue of The Journal of Pathology, Recent Advances in Pathology, contains 15 invited reviews on research areas of growing importance in pathology. This year, the articles include those that focus on digital pathology, employing modern imaging techniques and software to enable improved diagnostic and research applications to study human diseases. This subject area includes the ability to identify specific genetic alterations through the morphological changes they induce, as well as integrating digital and computational pathology with 'omics technologies. Other reviews in this issue include an updated evaluation of mutational patterns (mutation signatures) in cancer, the applications of lineage tracing in human tissues, and single cell sequencing technologies to uncover tumour evolution and tumour heterogeneity. The tissue microenvironment is covered in reviews specifically dealing with proteolytic control of epidermal differentiation, cancer-associated fibroblasts, field cancerisation, and host factors that determine tumour immunity. All of the reviews contained in this issue are the work of invited experts selected to discuss the considerable recent progress in their respective fields and are freely available online (https://onlinelibrary.wiley.com/journal/10969896). © 2022 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias , Humanos , Mutação , Neoplasias/genética , Neoplasias/patologia , Software , Microambiente Tumoral/genética , Reino Unido
13.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36835536

RESUMO

The advent of tyrosine kinase inhibitors (TKIs) for treating epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC) has been a game changer in lung cancer therapy. However, patients often develop resistance to the drugs within a few years. Despite numerous studies that have explored resistance mechanisms, particularly in regards to collateral signal pathway activation, the underlying biology of resistance remains largely unknown. This review focuses on the resistance mechanisms of EGFR-mutated NSCLC from the standpoint of intratumoral heterogeneity, as the biological mechanisms behind resistance are diverse and largely unclear. There exist various subclonal tumor populations in an individual tumor. For lung cancer patients, drug-tolerant persister (DTP) cell populations may have a pivotal role in accelerating the evolution of tumor resistance to treatment through neutral selection. Cancer cells undergo various changes to adapt to the new tumor microenvironment caused by drug exposure. DTP cells may play a crucial role in this adaptation and may be fundamental in mechanisms of resistance. Intratumoral heterogeneity may also be precipitated by DNA gains and losses through chromosomal instability, and the role of extrachromosomal DNA (ecDNA) may play an important role. Significantly, ecDNA can increase oncogene copy number alterations and enhance intratumoral heterogeneity more effectively than chromosomal instability. Additionally, advances in comprehensive genomic profiling have given us insights into various mutations and concurrent genetic alterations other than EGFR mutations, inducing primary resistance in the context of tumor heterogeneity. Understanding the mechanisms of resistance is clinically crucial since these molecular interlayers in cancer-resistance mechanisms may help to devise novel and individualized anticancer therapeutic approaches.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Microambiente Tumoral , /farmacologia
14.
Mol Microbiol ; 115(4): 574-590, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33053232

RESUMO

Extrachromosomal (ec) DNAs are genetic elements that exist separately from the genome. Since ecDNA can carry beneficial genes, they are a powerful adaptive mechanism in cancers and many pathogens. For the first time, we report ecDNA contributing to antimalarial resistance in Plasmodium falciparum, the most virulent human malaria parasite. Using pulse field gel electrophoresis combined with PCR-based copy number analysis, we detected two ecDNA elements that differ in migration and structure. Entrapment in the electrophoresis well and low susceptibility to exonucleases revealed that the biologically relevant ecDNA element is large and complex in structure. Using deep sequencing, we show that ecDNA originates from the chromosome and expansion of an ecDNA-specific sequence may improve its segregation or expression. We speculate that ecDNA is maintained using established mechanisms due to shared characteristics with the mitochondrial genome. Implications of ecDNA discovery in this organism are wide-reaching due to the potential for new strategies to target resistance development.


Assuntos
Resistência a Medicamentos/genética , Genoma de Protozoário , Malária Falciparum/prevenção & controle , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Adaptação Fisiológica , Antimaláricos/farmacologia , DNA de Protozoário , Amplificação de Genes , Humanos , Pirimidinas/farmacologia
15.
Biochem Soc Trans ; 50(6): 1911-1920, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36355400

RESUMO

The genome of cancer cells contains circular extrachromosomal DNA (ecDNA) elements not found in normal cells. Analysis of clinical samples reveal they are common in most cancers and their presence indicates poor prognosis. They often contain enhancers and driver oncogenes that are highly expressed. The circular ecDNA topology leads to an open chromatin conformation and generates new gene regulatory interactions, including with distal enhancers. The absence of centromeres leads to random distribution of ecDNAs during cell division and genes encoded on them are transmitted in a non-mendelian manner. ecDNA can integrate into and exit from chromosomal DNA. The numbers of specific ecDNAs can change in response to treatment. This dynamic ability to remodel the cancer genome challenges long-standing fundamentals, providing new insights into tumor heterogeneity, cancer genome remodeling, and drug resistance.


Assuntos
Neoplasias , Oncogenes , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Genômica , DNA Circular , DNA , Resistência a Medicamentos
16.
Clin Genet ; 99(4): 503-512, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33314031

RESUMO

The amplification of oncogenes on extrachromosomal DNA (ecDNA) provides a new mechanism for cancer cells to adapt to the changes in the tumor microenvironment and accelerate tumor evolution. These extrachromosomal elements contain oncogenes, and their chromatin structures are more open than linear chromosomes and therefore have stronger oncogene transcriptional activity. ecDNA always contains enhancer elements, and genes on ecDNA can be reintegrated into the linear genome to regulate the selective expression of genes. ecDNA lacks centromeres, and the inheritance from the parent cell to the daughter cell is uneven. This non-Mendelian genetic mechanism results in the increase of tumor heterogeneity with daughter cells that can gain a competitive advantage through a large number of copies of oncogenes. ecDNA promotes tumor invasiveness and provides a mechanism for drug resistance associated with poorer survival outcomes. Recent studies have demonstrated that the overall proportion of ecDNA in tumors is approximately 40%. In this review, we summarize the current knowledge of ecDNA in the field of tumorigenesis and development.


Assuntos
Carcinogênese/genética , DNA/genética , Herança Extracromossômica/genética , Animais , DNA/sangue , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Evolução Molecular , Amplificação de Genes , Humanos , Oncogenes
17.
J Cell Mol Med ; 24(24): 14205-14216, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33124133

RESUMO

Gene amplification chiefly manifests as homogeneously stained regions (HSRs) or double minutes (DMs) in cytogenetically and extrachromosomal DNA (ecDNA) in molecular genetics. Evidence suggests that gene amplification is becoming a hotspot for cancer research, which may be a new treatment strategy for cancer. DMs usually carry oncogenes or chemoresistant genes that are associated with cancer progression, occurrence and prognosis. Defining the molecular structure of DMs will facilitate understanding of the molecular mechanism of tumorigenesis. In this study, we re-identified the origin and integral sequence of DMs in human colorectal adenocarcinoma cell line NCI-H716 by genetic mapping and sequencing strategy, employing high-resolution array-based comparative genomic hybridization, high-throughput sequencing, multiplex-fluorescence in situ hybridization and chromosome walking techniques. We identified two distinct populations of DMs in NCI-H716, confirming their heterogeneity in cancer cells, and managed to construct their molecular structure, which were not investigated before. Research evidence of amplicons distribution in two different populations of DMs suggested that a multi-step evolutionary model could fit the module of DM genesis better in NCI-H716 cell line. In conclusion, our data implicated that DMs play a very important role in cancer progression and further investigation is necessary to uncover the role of the DMs.


Assuntos
Neoplasias Colorretais/genética , Evolução Molecular , Amplificação de Genes , Sequência de Bases , Linhagem Celular Tumoral , Aberrações Cromossômicas , Pontos de Quebra do Cromossomo , Passeio de Cromossomo , Cromossomos Humanos Par 10 , Cromossomos Humanos Par 8 , Neoplasias Colorretais/patologia , Hibridização Genômica Comparativa , Análise Citogenética/métodos , Humanos , Hibridização in Situ Fluorescente
18.
Ann Oncol ; 31(7): 884-893, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32275948

RESUMO

Oncogene amplification on extrachromosomal DNA (ecDNA) provides a mechanism by which cancer cells can rapidly adapt to changes in the tumour microenvironment. These circular structures contain oncogenes and their regulatory elements, and, lacking centromeres, they are subject to unequal segregation during mitosis. This non-Mendelian mechanism of inheritance results in increased tumour heterogeneity with daughter cells that can contain increasingly amplified oncogene copy number. These structures also contain favourable epigenetic modifications including transcriptionally active chromatin, further fuelling positive selection. ecDNA drives aggressive tumour behaviour, is related to poorer survival outcomes and provides mechanisms of drug resistance. Recent evidence suggests one in four solid tumours contain cells with ecDNA structures. The concept of tumour evolution is one in which cancer cells compete to survive in a diverse tumour microenvironment under the Darwinian principles of variation and fitness heritability. Unconstrained by conventional segregation constraints, ecDNA can accelerate intratumoral heterogeneity and cellular fitness. In this review, we highlight some of the recent discoveries underpinning this process.


Assuntos
Hereditariedade , Neoplasias , DNA , Amplificação de Genes , Humanos , Neoplasias/genética , Oncogenes , Microambiente Tumoral/genética
19.
Curr Genet ; 66(5): 889-894, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32296868

RESUMO

Carefully maintained and precisely inherited chromosomal DNA provides long-term genetic stability, but eukaryotic cells facing environmental challenges can benefit from the accumulation of less stable DNA species. Circular DNA molecules lacking centromeres segregate randomly or asymmetrically during cell division, following non-Mendelian inheritance patterns that result in high copy number instability and massive heterogeneity across populations. Such circular DNA species, variously known as extrachromosomal circular DNA (eccDNA), microDNA, double minutes or extrachromosomal DNA (ecDNA), are becoming recognised as a major source of the genetic variation exploited by cancer cells and pathogenic eukaryotes to acquire drug resistance. In budding yeast, circular DNA molecules derived from the ribosomal DNA (ERCs) have been long known to accumulate with age, but it is now clear that aged yeast also accumulate other high-copy protein-coding circular DNAs acquired through both random and environmentally-stimulated recombination processes. Here, we argue that accumulation of circular DNA provides a reservoir of heterogeneous genetic material that can allow rapid adaptation of aged cells to environmental insults, but avoids the negative fitness impacts on normal growth of unsolicited gene amplification in the young population.


Assuntos
Adaptação Fisiológica , Senescência Celular , DNA Circular/genética , DNA Circular/metabolismo , Células Eucarióticas/fisiologia , Saccharomyces cerevisiae/genética , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Variação Genética , Humanos , Recombinação Genética , Saccharomyces cerevisiae/fisiologia
20.
J Virol ; 92(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30185588

RESUMO

Viral and episomal DNAs, as signs of infections and dangers, induce a series of immune responses in the host, and cells must sense foreign DNAs to eliminate the invaders. The cell nucleus is not "immune privileged" and exerts intrinsic mechanisms to control nuclear-replicating DNA viruses. Thus, it is important to understand the action of viral DNA sensing in the cell nucleus. Here, we reveal a mechanism of restriction of DNA viruses and episomal plasmids mediated by PJA1, a RING-H2 E3 ubiquitin ligase. PJA1 restricts the DNA viruses hepatitis B virus (HBV) and herpes simplex virus 1 (HSV-1) but not the RNA viruses enterovirus 71 (EV71) and vesicular stomatitis virus (VSV). Similarly, PJA1 inhibits episomal plasmids but not chromosome-integrated reporters or endogenous genes. In addition, PJA1 has no effect on endogenous type I and II interferons (IFNs) and interferon-stimulated genes (ISGs), suggesting that PJA1 silences DNA viruses independent of the IFN pathways. Interestingly, PJA1 interacts with the SMC5/6 complex (a complex essential for chromosome maintenance and HBV restriction) to facilitate the binding of the complex to viral and episomal DNAs in the cell nucleus. Moreover, treatment with inhibitors of DNA topoisomerases (Tops) and knockdown of Tops release PJA1-mediated silencing of viral and extrachromosomal DNAs. Taken together, results of this work demonstrate that PJA1 interacts with SMC5/6 and facilitates the complex to bind and eliminate viral and episomal DNAs through DNA Tops and thus reveal a distinct mechanism underlying restriction of DNA viruses and foreign genes in the cell nucleus.IMPORTANCE DNA viruses, including hepatitis B virus and herpes simplex virus, induce a series of immune responses in the host and lead to human public health concerns worldwide. In addition to cytokines in the cytoplasm, restriction of viral DNA in the nucleus is an important approach of host immunity. However, the mechanism of foreign DNA recognition and restriction in the cell nucleus is largely unknown. This work demonstrates that an important cellular factor (PJA1) suppresses DNA viruses and transfected plasmids independent of type I and II interferon (IFN) pathways. Instead, PJA1 interacts with the chromosome maintenance complex (SMC5/6), facilitates the complex to recognize and bind viral and episomal DNAs, and recruits DNA topoisomerases to restrict the foreign molecules. These results reveal a distinct mechanism underlying the silencing of viral and episomal invaders in the cell nuclei and suggest that PJA1 acts as a potential agent to prevent infectious and inflammatory diseases.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Infecções por Vírus de DNA/genética , Vírus de DNA/genética , Plasmídeos/genética , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral , Antivirais/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Infecções por Vírus de DNA/tratamento farmacológico , Infecções por Vírus de DNA/virologia , Vírus de DNA/efeitos dos fármacos , DNA Viral/genética , Células Hep G2 , Interações Hospedeiro-Patógeno , Humanos , Interferons/farmacologia , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA