Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.450
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(7): 1157-1171.e22, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35259335

RESUMO

Enterococci are a part of human microbiota and a leading cause of multidrug resistant infections. Here, we identify a family of Enterococcus pore-forming toxins (Epxs) in E. faecalis, E. faecium, and E. hirae strains isolated across the globe. Structural studies reveal that Epxs form a branch of ß-barrel pore-forming toxins with a ß-barrel protrusion (designated the top domain) sitting atop the cap domain. Through a genome-wide CRISPR-Cas9 screen, we identify human leukocyte antigen class I (HLA-I) complex as a receptor for two members (Epx2 and Epx3), which preferentially recognize human HLA-I and homologous MHC-I of equine, bovine, and porcine, but not murine, origin. Interferon exposure, which stimulates MHC-I expression, sensitizes human cells and intestinal organoids to Epx2 and Epx3 toxicity. Co-culture with Epx2-harboring E. faecium damages human peripheral blood mononuclear cells and intestinal organoids, and this toxicity is neutralized by an Epx2 antibody, demonstrating the toxin-mediated virulence of Epx-carrying Enterococcus.


Assuntos
Toxinas Bacterianas/metabolismo , Enterococcus , Leucócitos Mononucleares , Fatores de Virulência/metabolismo , Animais , Bovinos , Enterococcus/metabolismo , Enterococcus/patogenicidade , Cavalos , Camundongos , Testes de Sensibilidade Microbiana , Suínos
2.
Cell ; 184(3): 615-627.e17, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33453153

RESUMO

The microbiota shields the host against infections in a process known as colonization resistance. How infections themselves shape this fundamental process remains largely unknown. Here, we show that gut microbiota from previously infected hosts display enhanced resistance to infection. This long-term functional remodeling is associated with altered bile acid metabolism leading to the expansion of taxa that utilize the sulfonic acid taurine. Notably, supplying exogenous taurine alone is sufficient to induce this alteration in microbiota function and enhance resistance. Mechanistically, taurine potentiates the microbiota's production of sulfide, an inhibitor of cellular respiration, which is key to host invasion by numerous pathogens. As such, pharmaceutical sequestration of sulfide perturbs the microbiota's composition and promotes pathogen invasion. Together, this work reveals a process by which the host, triggered by infection, can deploy taurine as a nutrient to nourish and train the microbiota, promoting its resistance to subsequent infection.


Assuntos
Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Contagem de Colônia Microbiana , Microbioma Gastrointestinal/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Imunidade , Camundongos Endogâmicos C57BL , Sulfetos/metabolismo , Taurina/farmacologia
3.
Clin Microbiol Rev ; : e0016823, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235238

RESUMO

SUMMARYInfective endocarditis (IE) is a life-threatening infection that has nearly doubled in prevalence over the last two decades due to the increase in implantable cardiac devices. Transcatheter aortic valve implantation (TAVI) is currently one of the most common cardiac procedures. TAVI usage continues to exponentially rise, inevitability increasing TAVI-IE. Patients with TAVI are frequently nonsurgical candidates, and TAVI-IE 1-year mortality rates can be as high as 74% without valve or bacterial biofilm removal. Enterococcus faecalis, a historically less common IE pathogen, is the primary cause of TAVI-IE. Treatment options are limited due to enterococcal intrinsic resistance and biofilm formation. Novel approaches are warranted to tackle current therapeutic gaps. We describe the existing challenges in treating TAVI-IE and how available treatment discovery approaches can be combined with an in silico "Living Heart" model to create solutions for the future.

4.
Mol Microbiol ; 122(2): 230-242, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38994873

RESUMO

Enterococcus faecalis is an opportunistic pathogen frequently causing nosocomial infections. The virulence of this organism is underpinned by its capacity to evade phagocytosis, allowing dissemination in the host. Immune evasion requires a surface polysaccharide produced by all enterococci, known as the enterococcal polysaccharide antigen (EPA). EPA consists of a cell wall-anchored rhamnose backbone substituted by strain-specific polysaccharides called 'decorations', essential for the biological activity of this polymer. However, the structural determinants required for innate immune evasion remain unknown, partly due to a lack of suitable validated assays. Here, we describe a quantitative, in vitro assay to investigate how EPA decorations alter phagocytosis. Using the E. faecalis model strain OG1RF, we demonstrate that a mutant with a deletion of the locus encoding EPA decorations can be used as a platform strain to express heterologous decorations, thereby providing an experimental system to investigate the inhibition of phagocytosis by strain-specific decorations. We show that the aggregation of cells lacking decorations is increasing phagocytosis and that this process does not involve the recognition of lipoproteins by macrophages. Collectively, our work provides novel insights into innate immune evasion by enterococci and paves the way for further studies to explore the structure/function relationship of EPA decorations.


Assuntos
Enterococcus faecalis , Evasão da Resposta Imune , Lipoproteínas , Macrófagos , Fagocitose , Enterococcus faecalis/imunologia , Enterococcus faecalis/metabolismo , Enterococcus faecalis/genética , Lipoproteínas/metabolismo , Lipoproteínas/genética , Macrófagos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/imunologia , Humanos , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Imunidade Inata , Virulência , Animais , Camundongos
5.
Mol Microbiol ; 121(5): 1021-1038, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38527904

RESUMO

Daptomycin is a last-line antibiotic commonly used to treat vancomycin-resistant Enterococci, but resistance evolves rapidly and further restricts already limited treatment options. While genetic determinants associated with clinical daptomycin resistance (DAPR) have been described, information on factors affecting the speed of DAPR acquisition is limited. The multiple peptide resistance factor (MprF), a phosphatidylglycerol-modifying enzyme involved in cationic antimicrobial resistance, is linked to DAPR in pathogens such as methicillin-resistant Staphylococcus aureus. Since Enterococcus faecalis encodes two paralogs of mprF and clinical DAPR mutations do not map to mprF, we hypothesized that functional redundancy between the paralogs prevents mprF-mediated resistance and masks other evolutionary pathways to DAPR. Here, we performed in vitro evolution to DAPR in mprF mutant background. We discovered that the absence of mprF results in slowed DAPR evolution and is associated with inactivating mutations in ftsH, resulting in the depletion of the chaperone repressor HrcA. We also report that ftsH is essential in the parental, but not in the ΔmprF, strain where FtsH depletion results in growth impairment in the parental strain, a phenotype associated with reduced extracellular acidification and reduced ability for metabolic reduction. This presents FtsH and HrcA as enticing targets for developing anti-resistance strategies.


Assuntos
Daptomicina , Enterococcus faecalis , Peptídeo Hidrolases , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Daptomicina/farmacologia , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/genética , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/metabolismo , Enterococcus faecalis/enzimologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Mutação , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética
6.
J Infect Dis ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578967

RESUMO

Enterococci have evolved resistance mechanisms to protect their cell envelopes against bacteriocins and host cationic antimicrobial peptides (CAMPs) produced in the gastrointestinal environment. Activation of the membrane stress response has also been tied to resistance to the lipopeptide antibiotic daptomycin. However, the actual effectors mediating resistance have not been elucidated. Here, we show that the MadRS (formerly YxdJK) membrane antimicrobial peptide defense system controls a network of genes, including a previously uncharacterized three gene operon (madEFG) that protects the E. faecalis cell envelope from antimicrobial peptides. Constitutive activation of the system confers protection against CAMPs and daptomycin in the absence of a functional LiaFSR system and leads to persistence of cardiac microlesions in vivo. Moreover, changes in the lipid cell membrane environment alter CAMP susceptibility and expression of the MadRS system. Thus, we provide a framework supporting a multilayered envelope defense mechanism for resistance and survival coupled to virulence.

7.
Infect Immun ; 92(5): e0000624, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38629806

RESUMO

Enterococci are common commensal bacteria that colonize the gastrointestinal tracts of most mammals, including humans. Importantly, these bacteria are one of the leading causes of nosocomial infections. This study examined the role of colonic macrophages in facilitating Enterococcus faecalis infections in mice. We determined that depletion of colonic phagocytes resulted in the reduction of E. faecalis dissemination to the gut-draining mesenteric lymph nodes. Furthermore, we established that trafficking of monocyte-derived CX3CR1-expressing macrophages contributed to E. faecalis dissemination in a manner that was not reliant on CCR7, the conventional receptor involved in lymphatic migration. Finally, we showed that E. faecalis mutants with impaired intracellular survival exhibited reduced dissemination, suggesting that E. faecalis can exploit host immune cell migration to disseminate systemically and cause disease. Our findings indicate that modulation of macrophage trafficking in the context of antibiotic therapy could serve as a novel approach for preventing or treating opportunistic infections by disseminating enteric pathobionts like E. faecalis.


Assuntos
Receptor 1 de Quimiocina CX3C , Colo , Enterococcus faecalis , Macrófagos , Receptores CCR2 , Receptores de Quimiocinas , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Macrófagos/microbiologia , Macrófagos/imunologia , Camundongos , Colo/microbiologia , Colo/imunologia , Receptores CCR2/metabolismo , Receptores CCR2/genética , Receptores de Quimiocinas/metabolismo , Receptores de Quimiocinas/genética , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/microbiologia , Camundongos Endogâmicos C57BL , Linfonodos/microbiologia , Linfonodos/imunologia , Receptores CCR7/metabolismo , Receptores CCR7/genética
8.
Infect Immun ; 92(7): e0019924, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38842305

RESUMO

Enterococcus faecalis is a common cause of healthcare-acquired bloodstream infections and catheter-associated urinary tract infections (CAUTIs) in both adults and children. Treatment of E. faecalis infection is frequently complicated by multi-drug resistance. Based on protein homology, E. faecalis encodes two putative hyaluronidases, EF3023 (HylA) and EF0818 (HylB). In other Gram-positive pathogens, hyaluronidases have been shown to contribute to tissue damage and immune evasion, but the function in E. faecalis has yet to be explored. Here, we show that both hylA and hylB contribute to E. faecalis pathogenesis. In a CAUTI model, ΔhylA exhibited defects in bladder colonization and dissemination to the bloodstream, and ΔhylB exhibited a defect in kidney colonization. Furthermore, a ΔhylAΔhylB double mutant exhibited a severe colonization defect in a model of bacteremia while the single mutants colonized to a similar level as the wild-type strain, suggesting potential functional redundancy within the bloodstream. We next examined enzymatic activity, and demonstrate that HylB is capable of digesting both hyaluronic acid (HA) and chondroitin sulfate in vitro, while HylA exhibits only a very modest activity against heparin. Importantly, HA degradation by HylB provided a modest increase in cell density during the stationary phase and also contributed to dampening of lipopolysaccharide-mediated NF-κB activation. Overall, these data demonstrate that glycosaminoglycan degradation is important for E. faecalis pathogenesis in the urinary tract and during bloodstream infection.


Assuntos
Bacteriemia , Infecções Relacionadas a Cateter , Enterococcus faecalis , Glicosaminoglicanos , Infecções por Bactérias Gram-Positivas , Infecções Urinárias , Enterococcus faecalis/genética , Enterococcus faecalis/enzimologia , Enterococcus faecalis/metabolismo , Infecções Urinárias/microbiologia , Bacteriemia/microbiologia , Infecções Relacionadas a Cateter/microbiologia , Animais , Infecções por Bactérias Gram-Positivas/microbiologia , Camundongos , Glicosaminoglicanos/metabolismo , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Feminino , Humanos , Ácido Hialurônico/metabolismo
9.
Clin Infect Dis ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041860

RESUMO

BACKGROUND: Current guidelines recommend adjunctive gentamicin for the treatment of Enterococcus faecalis infective endocarditis (EFIE) despite a risk of toxicity. We sought to revisit the evidence for adjunctive therapy in EFIE and to synthesize the comparative safety and effectiveness of adjunctive use of the aminoglycosides versus ceftriaxone by systematic review and meta-analysis. METHODS: For historical context, we reviewed the seminal case series and in vitro studies informing the evolution from penicillin monotherapy to modern-day regimens for EFIE. Next, we searched MEDLINE and Embase from inception to January 16, 2024 for studies of EFIE comparing 1) adjunctive aminoglycosides versus ceftriaxone or 2) adjunctive therapy versus monotherapy. Where possible, clinical outcomes were compared between regimens by random-effects meta-analysis. Otherwise, data were narratively summarized. RESULTS: Results for the systematic review and meta-analysis were limited to 10 observational studies totaling 911 patients. All studies were at high risk of bias. Relative to adjunctive ceftriaxone, gentamicin had similar all-cause mortality (Risk Difference [RD]=-0.8%, 95% Confidence interval [95%CI]=-5.0, 3.5), relapse (RD=-0.1%, 95%CI=-2.4, 2.3), and treatment failure (RD=1.1%, 95%CI=-1.6, 3.7), but higher discontinuation due to toxicity (RD=26.3%, 95%CI=19.8, 32.7). The 3 studies comparing adjunctive therapy to monotherapy included only 30 monotherapy patients and heterogeneity precluded meta-analysis. CONCLUSION: Adjunctive therapy with ceftriaxone appeared to be equally effective and less toxic than gentamicin for the treatment of EFIE. The existing evidence does not clearly establish the superiority of either adjunctive therapy or monotherapy. Pending randomized evidence, if adjunctive therapy is to be used, ceftriaxone appears to be a reasonable option.

10.
BMC Genomics ; 25(1): 261, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454321

RESUMO

Enterococcus faecalis, a formidable nosocomial and community-acquired opportunistic pathogen, can persist a wide range of extreme environments, including low pH and nutrient deficiency. Clarifying the survival mechanism of E. faecalis in low-pH conditions is the key to combating the infectious diseases caused by E. faecalis. In this study, we combined transcriptome profiling (RNA-seq) and transposon insertion sequencing (TIS) to comprehensively understand the genes that confer these features on E. faecalis. The metadata showed that genes whose products are involved in cation transportation and amino acid biosynthesis were predominantly differentially expressed under acid conditions. The products of genes such as opp1C and copY reduced the hydrion concentration in the cell, whereas those of gldA2, gnd2, ubiD, and ubiD2 mainly participated in amino metabolism, increasing matters to neutralize excess acid. These, together with the folE and hexB genes, which are involved in mismatch repair, form a network of E. faecalis genes necessary for its survival under acid conditions.


IMPORTANCE: As a serious nosocomial pathogen, Enterococcus faecalis was considered responsible for large numbers of infections. Its ability to survive under stress conditions, such as acid condition and nutrient deficiency was indispensable for its growth and infection. Therefore, understanding how E. faecalis survives acid stress is necessary for the prevention and treatment of related diseases. RNA-seq and TIS provide us a way to analyze the changes in gene expression under such conditions.


Assuntos
Enterococcus faecalis , Perfilação da Expressão Gênica , RNA-Seq , Enterococcus faecalis/genética , Genoma
11.
Mol Microbiol ; 119(1): 1-18, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36420961

RESUMO

Enterococcus faecalis virulence requires cell wall-associated proteins, including the sortase-assembled endocarditis and biofilm associated pilus (Ebp), important for biofilm formation in vitro and in vivo. The current paradigm for sortase-assembled pilus biogenesis in Gram-positive bacteria is that sortases attach substrates to lipid II peptidoglycan (PG) precursors, prior to their incorporation into the growing cell wall. Contrary to prevailing dogma, by following the distribution of Ebp and PG throughout the E. faecalis cell cycle, we found that cell surface Ebp do not co-localize with newly synthesized PG. Instead, surface-exposed Ebp are localized to the older cell hemisphere and excluded from sites of new PG synthesis at the septum. Moreover, Ebp deposition on the younger hemisphere of the E. faecalis diplococcus appear as foci adjacent to the nascent septum. We propose a new model whereby sortase substrate deposition can occur on older PG rather than at sites of new cell wall synthesis. Consistent with this model, we demonstrate that sequestering lipid II to block PG synthesis via ramoplanin, does not impact new Ebp deposition at the cell surface. These data support an alternative paradigm for sortase substrate deposition in E. faecalis, in which Ebp are anchored directly onto uncrosslinked cell wall, independent of new PG synthesis.


Assuntos
Aminoaciltransferases , Proteínas de Fímbrias , Proteínas de Fímbrias/metabolismo , Enterococcus faecalis/metabolismo , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/metabolismo , Parede Celular/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo
12.
Mol Microbiol ; 120(3): 408-424, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37475106

RESUMO

Antimicrobial tolerance is the ability of a microbial population to survive, but not proliferate, during antimicrobial exposure. Significantly, it has been shown to precede the development of bona fide antimicrobial resistance. We have previously identified the two-component system CroRS as a critical regulator of tolerance to antimicrobials like teixobactin in the bacterial pathogen Enterococcus faecalis. To understand the molecular mechanism of this tolerance, we have carried out RNA-seq analyses in the E. faecalis wild-type and isogenic ∆ croRS mutant to determine the teixobactin-induced CroRS regulon. We identified a 132 gene CroRS regulon and demonstrate that CroRS upregulates biosynthesis of all major components of the enterococcal cell envelope in response to teixobactin. This suggests a coordinating role of this regulatory system in maintaining integrity of the multiple layers of the enterococcal envelope during antimicrobial stress, likely contributing to bacterial survival. Using experimental evolution, we observed that truncation of HppS, a key enzyme in the synthesis of the quinone electron carrier demethylmenaquinone, was sufficient to rescue tolerance in the croRS deletion strain. This highlights a key role for isoprenoid biosynthesis in antimicrobial tolerance in E. faecalis. Here, we propose a model of CroRS acting as a master regulator of cell envelope biogenesis and a gate-keeper between isoprenoid biosynthesis and respiration to ensure tolerance against antimicrobial challenge.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Enterococcus faecalis/genética , Proteínas de Bactérias/genética , Homeostase , Terpenos , Testes de Sensibilidade Microbiana
13.
Antimicrob Agents Chemother ; 68(11): e0059124, 2024 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-39404260

RESUMO

Enterococcus faecalis and Enterococcus faecium are frequent causes of healthcare-associated infections. Antimicrobial-resistant enterococci pose a serious public health threat, particularly vancomycin-resistant enterococci (VRE), for which treatment options are limited. The Centers for Disease Control and Prevention's Division of Healthcare Quality Promotion Sentinel Surveillance system conducted surveillance from 2018 to 2019 to evaluate antimicrobial susceptibility profiles and molecular epidemiology of 205 E. faecalis and 180 E. faecium clinical isolates collected from nine geographically diverse sites in the United States. Whole genome sequencing revealed diverse genetic lineages, with no single sequence type accounting for more than 15% of E. faecalis or E. faecium. Phylogenetic analysis distinguished E. faecium from 19 E. lactis (previously known as E. faecium clade B). Resistance to vancomycin was 78.3% among E. faecium, 7.8% among E. faecalis, and did not occur among E. lactis isolates. Resistance to daptomycin and linezolid was rare: E. faecium (5.6%, 0.6%, respectively), E. faecalis (2%, 2%), and E. lactis (5.3%, 0%). All VRE harbored the vanA gene. Three of the seven isolates that were not susceptible to linezolid harbored optrA, one chromosomally located and two on linear plasmids that shared a conserved backbone with other multidrug-resistant conjugative linear plasmids. One of these isolates contained optrA and vanA co-localized on the linear plasmid. By screening all enterococci, 20% of E. faecium were predicted to harbor linear plasmids, whereas none were predicted among E. faecalis or E. lactis. Continued surveillance is needed to assess the future emergence and spread of antimicrobial resistance by linear plasmids and other mechanisms.IMPORTANCEThis work confirms prior reports of E. faecium showing higher levels of resistance to more antibiotics than E. faecalis and identifies that diverse sequence types are contributing to enterococcal infections in the United States. All VRE harbored the vanA gene. We present the first report of the linezolid resistance gene optrA on linear plasmids in the United States, one of which co-carried a vanA cassette. Additional studies integrating epidemiological, antimicrobial susceptibility, and genomic methods to characterize mechanisms of resistance, including the role of linear plasmids, will be critical to understanding the changing landscape of enterococci in the United States.


Assuntos
Antibacterianos , Proteínas de Bactérias , Enterococcus faecalis , Enterococcus faecium , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos , Vigilância de Evento Sentinela , Plasmídeos/genética , Estados Unidos/epidemiologia , Enterococcus faecium/genética , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/isolamento & purificação , Enterococcus faecalis/genética , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/isolamento & purificação , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Humanos , Sequenciamento Completo do Genoma , Linezolida/farmacologia , Carbono-Oxigênio Ligases/genética , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/epidemiologia , Enterococos Resistentes à Vancomicina/genética , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/isolamento & purificação , Vancomicina/farmacologia , Daptomicina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética
14.
Chembiochem ; : e202400554, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370400

RESUMO

Enterococcus faecalis (E. faecalis) is commonly occurring pathogen                                                          associated with nosocomial infections. Infections are difficult to treat because of their multidrug-resistant (MDR) nature and their tendency to form biofilms. Therefore, it is essential to find alternative medicinal approaches of treatment. In this regard, targeting an important  protein for drug development can be an alternative approach. Sortase A (SrtA) is an important enzyme involved in anchoring cell surface-exposed proteins to the cell envelope. SrtA is present in Gram-positive bacteria which catalyses the attachment of several virulence factors and other proteins to the cell membrane. It is involved in bacterial pathogenesis, therefore, it's a promising drug target for the development of anti-microbial drugs targeting cell adhesion, evasion, and biofilm development. To identify SrtA potential inhibitors, we have purified E. faecalis Sortase A (EfSrtAΔN59).  Structural studies along with molecular docking of protein with selected ligand molecules were done and confirmed by MD simulation experiments. We have also performed functional validation of these compounds on bacterial growth, anti-biofilm assays and inhibition assay of selected ligands were also done against E. faecalis individually and in synergistic combinations.  Results indicated that both Eugenol and Ferulic acid bind to EfSrtAΔN59 with significant interactions and show promising results.

15.
BMC Microbiol ; 24(1): 411, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39415105

RESUMO

BACKGROUND: The wide spread of antimicrobial resistance in Enterococcus faecalis is a critical global concern, leading to increasingly limited treatment options. The fsr quorum sensing (QS) plays a critical role in the pathogenicity of E. faecalis, allowing bacteria to coordinate gene expression and regulate many virulence factors. Therefore, fsr QS of E. faecalis represents a potential therapeutic target that provides an effective strategy to treat antibiotic-resistant infections induced by E. faecalis. METHODS: In this study, distribution of different virulence factors including, gelatinase, protease, cell surface hydrophobicity and biofilm formation in sixty clinical isolates of Enterococcus faecalis was investigated. Sixty-six compounds were tested for their activity against fsr QS. The minimal inhibitory concentration of the tested compounds was evaluated using the microbroth dilution method. The effect of sub-inhibitory concentrations of the tested compounds on fsr QS was investigated using the gelatinase assay method. Additionally, the effect of potential QS inhibitor on the virulence factors was estimated. Quantitative real-time PCR was used to investigate the effect of the potential inhibitor on fsr QS related genes (fsrB-fsrC) and (gelE-sprE) and virulence associated genes including, asa1 and epbA. RESULTS: The assessment of polidocanol activity against the fsr QS system was demonstrated by studying its effect on gelatinase production in E. faecalis clinical isolates. Sub-lethal concentrations of polidocanol showed a significant reduction in gelatinase and protease production by 54% to 70% and 64% to 85%, respectively. Additionally, it significantly reduced biofilm formation (P < 0.01) and interrupted mature biofilm at concentrations of ½, 1 × and 2 × MIC. Furthermore, polidocanol significantly decreased cell surface hydrophobicity (P < 0.01). Polidocanol at ½ MIC showed a significant reduction in the expression of QS genes including fsrB, fsrC, gelE and sprE by 57% to 97% without affecting bacterial viability. Moreover, it reduced the expression of virulence associated genes (asa1 and epbA) (P < 0.01). CONCLUSION: Polidocanol appears to be a promising option for treating of E. faecalis infections by targeting the fsr QS system and exhibiting anti-biofilm activity.


Assuntos
Antibacterianos , Proteínas de Bactérias , Biofilmes , Enterococcus faecalis , Regulação Bacteriana da Expressão Gênica , Testes de Sensibilidade Microbiana , Percepção de Quorum , Fatores de Virulência , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Enterococcus faecalis/patogenicidade , Enterococcus faecalis/fisiologia , Percepção de Quorum/efeitos dos fármacos , Fatores de Virulência/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Gelatinases/metabolismo
16.
BMC Microbiol ; 24(1): 110, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570789

RESUMO

BACKGROUND: All gastrointestinal pathogens, including Enterococcus faecalis and Enterococcus faecium, undergo adaptation processes during colonization and infection. In this study, we investigated by data-independent acquisition mass spectrometry (DIA-MS) two crucial adaptations of these two Enterococcus species at the proteome level. Firstly, we examined the adjustments to cope with bile acid concentrations at 0.05% that the pathogens encounter during a potential gallbladder infection. Therefore, we chose the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) as well as the secondary bile acid deoxycholic acid (DCA), as these are the most prominent bile acids. Secondly, we investigated the adaptations from an aerobic to a microaerophilic environment, as encountered after oral-fecal infection, in the absence and presence of deoxycholic acid (DCA). RESULTS: Our findings showed similarities, but also species-specific variations in the response to the different bile acids. Both Enterococcus species showed an IC50 in the range of 0.01- 0.023% for DCA and CDCA in growth experiments and both species were resistant towards 0.05% CA. DCA and CDCA had a strong effect on down-expression of proteins involved in translation, transcription and replication in E. faecalis (424 down-expressed proteins with DCA, 376 down-expressed proteins with CDCA) and in E. faecium (362 down-expressed proteins with DCA, 391 down-expressed proteins with CDCA). Proteins commonly significantly altered in their expression in all bile acid treated samples were identified for both species and represent a "general bile acid response". Among these, various subunits of a V-type ATPase, different ABC-transporters, multi-drug transporters and proteins related to cell wall biogenesis were up-expressed in both species and thus seem to play an essential role in bile acid resistance. Most of the differentially expressed proteins were also identified when E. faecalis was incubated with low levels of DCA at microaerophilic conditions instead of aerobic conditions, indicating that adaptations to bile acids and to a microaerophilic atmosphere can occur simultaneously. CONCLUSIONS: Overall, these findings provide a detailed insight into the proteomic stress response of two Enterococcus species and help to understand the resistance potential and the stress-coping mechanisms of these important gastrointestinal bacteria.


Assuntos
Ácidos e Sais Biliares , Enterococcus faecium , Ácidos e Sais Biliares/farmacologia , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Ácido Desoxicólico/farmacologia , Proteômica , Ácido Cólico , Ácido Quenodesoxicólico/metabolismo , Enterococcus
17.
Microb Pathog ; 186: 106471, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048838

RESUMO

Enterococcus faecalis, a conditional pathogenic bacterium, is prevalent in the intestinal, oral, and reproductive tracts of humans and animals, causing a variety of infectious diseases. E. faecalis is the main species detected in secondary persistent infection from root canal therapy failure. Due to the abuse of antibacterial agents, E. faecalis has evolved its resistant ability. Therefore, it is difficult to treat clinical diseases infected by E. faecalis. Exploring new alternative drugs for treating E. faecalis infection is urgent. We cloned and expressed the gene of phage holin, purified the recombinant protein, and analyzed the antibacterial activity, lysis profile, and ability to remove bacterial biofilm. It showed that the crude enzyme of phage holin pEF191 exhibited superior bacterial inhibiting activity and a broader lysis host range compared to the parent phage PEf771. In addition, pEF191 demonstrated high efficacy in eliminating E. faecalis biofilm. The therapeutic results of the Sprague-Dawley (SD) rats model infected showed that pEf191 did not affect SD rats, indicating that pEF191 provided greater protection against E. faecalis infection in SD rats. Based on the 16 S rDNA data of SD rats intestinal microorganism population, holin pEF191 exhibited no impact on the diversity of intestinal microorganisms at the phylum and genus levels and improved the relative abundance of favorable bacteria. Thus, pEF191 may serve as a promising alternative to antibiotics in the management of E. faecalis infection.


Assuntos
Bacteriófagos , Ratos , Animais , Humanos , Bacteriófagos/genética , Enterococcus faecalis/genética , Ratos Sprague-Dawley , Antibacterianos/farmacologia , Biofilmes
18.
Microb Pathog ; 197: 107081, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39447665

RESUMO

As one of the global concerns, antimicrobial resistance crisis increases the clinical importance of Enterococcus species. Enterococcus faecalis (E. faecalis) specifically penetrates the dentinal tubules and remains prevalent even after endodontic treatment. It has also biofilm forming character as well as the development of resistance to antibiotics. Sodium hypochlorite (NaOCl) is considered the gold standard among antibacterial washing solutions. However, due to its toxic effects, its usage limitations have led to the search for natural, non-toxic alternatives. Phages can be considered an important alternative because of their effects on specific bacteria. The objective of this study was to compare the effect of isolated active vB_Ef1 phage on the removal of E. faecalis biofilm in dentin, together and separately with the chemical irrigation solution NaOCl. As a result of study, the optimal NaOCl solution concentration to be applied with vB_Ef1 phage is 0.5 %, and the use of solution at this value reduces the biofilm mass by 84 %, reaching the highest biofilm mass reduction value. It was found that the combination of phage and NaOCl at appropriate concentrations had the strongest biofilm disruption effect.

19.
Microb Pathog ; 192: 106689, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750777

RESUMO

Enterococcus faecalis is the primary species detected in cases of secondary persistent infection resulting from root canal therapy failure. Due to the overuse of antibacterial agents, E. faecalis has developed resistance to these drugs, making it challenging to treat clinical diseases caused by E. faecalis infection. Therefore, there is an urgent need to explore new alternative drugs for treating E. faecalis infections. We aimed to clone and express the genes of phage endolysins, purify the recombinant proteins, and analyze their antibacterial activity, lysis profile, and ability to remove biofilm. The crude enzyme of phage endolysin pEF51 (0.715 mg/mL), derived from phage PEf771 infecting E. faecalis, exhibited superior bacterial inhibitory activity and a broader bactericidal spectrum than its parental phage PEf771. Furthermore, pEF51 demonstrated high efficacy in eliminating E. faecalis biofilm. Therapeutic results of the infected Sprague-Dawley (SD) rat model indicated that among 10 SD rats, only one developed a thoracic peritoneal abscess and splenic peritoneal abscess after 72 h of treatment with pEF51. This suggests that pEF51 could provide protection against E. faecalis infection in SD rats. Based on the 16S rDNA metagenomic data of the intestinal microbial community of SD rats, endolysin pEF51 exerted a certain influence on the diversity of intestinal microorganisms at the genus level. Thus, pEF51 may serve as a promising alternative to antibiotics in the management of E. faecalis infection.


Assuntos
Antibacterianos , Bacteriófagos , Biofilmes , Modelos Animais de Doenças , Endopeptidases , Enterococcus faecalis , Infecções por Bactérias Gram-Positivas , Ratos Sprague-Dawley , Enterococcus faecalis/efeitos dos fármacos , Endopeptidases/farmacologia , Endopeptidases/genética , Endopeptidases/metabolismo , Animais , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Bacteriófagos/genética , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Antibacterianos/farmacologia , Ratos , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Masculino
20.
Microb Pathog ; 189: 106574, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354990

RESUMO

Antibiotics play an important role in the treatment of infectious diseases. Long-term overuse or misuse of antibiotics, however, has triggered the global crisis of antibiotic resistance, bringing challenges to treating clinical infection. Bacteriophages (phages) are the viruses infecting bacterial cells. Due to high host specificity, high bactericidal activity, and good biosafety, phages have been used as natural alternative antibacterial agents to fight against multiple drug-resistant bacteria. Enterococcus faecalis is the main species detected in secondary persistent infection caused by failure of root canal therapy. Due to strong tolerance and the formation of biofilm, E. faecalis can survive the changes in pH, temperature, and osmotic pressure in the mouth and thus is one of the main causes of periapical lesions. This paper summarizes the advantages of phage therapy, its applications in treating oral diseases caused by E. faecalis infections, and the challenges it faces. It offers a new perspective on phage therapy in oral diseases.


Assuntos
Infecções Bacterianas , Bacteriófagos , Doenças da Boca , Terapia por Fagos , Humanos , Enterococcus faecalis , Antibacterianos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA