Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mar Drugs ; 22(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393024

RESUMO

Based on the results of our own preliminary studies, the derivative of the marine alkaloid fascaplysin containing a phenyl substituent at C-9 was selected to evaluate the therapeutic potential in vivo and in vitro. It was shown that this compound has outstandingly high antimicrobial activity against Gram-positive bacteria, including antibiotic-resistant strains in vitro. The presence of a substituent at C-9 of the framework is of fundamental importance, since its replacement to neighboring positions leads to a sharp decrease in the selectivity of the antibacterial action, which indicates the presence of a specific therapeutic target in bacterial cells. On a model of the acute bacterial sepsis in mice, it was shown that the lead compound was more effective than the reference antibiotic vancomycin seven out of nine times. However, ED50 value for 9-phenylfascaplysin (7) was similar for the unsubstituted fascaplysin (1) in vivo, despite the former being significantly more active than the latter in vitro. Similarly, assessments of the anticancer activity of compound 7 against various variants of Ehrlich carcinoma in mice demonstrated its substantial efficacy. To conduct a structure-activity relationship (SAR) analysis and searches of new candidate compounds, we synthesized a series of analogs of 9-phenylfascaplysin with varying aryl substituents. However, these modifications led to the reduced aqueous solubility of fascaplysin derivatives or caused a loss of their antibacterial activity. As a result, further research is required to explore new avenues for enhancing its pharmacokinetic characteristics, the modification of the heterocyclic framework, and optimizing of treatment regimens to harness the remarkable antimicrobial potential of fascaplysin for practical usage.


Assuntos
Antibacterianos , Anti-Infecciosos , Carbolinas , Indolizinas , Compostos de Amônio Quaternário , Animais , Camundongos , Antibacterianos/farmacologia , Relação Estrutura-Atividade , Indóis , Testes de Sensibilidade Microbiana
2.
Mar Drugs ; 22(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38667760

RESUMO

The inadequate vascularization seen in fast-growing solid tumors gives rise to hypoxic areas, fostering specific changes in gene expression that bolster tumor cell survival and metastasis, ultimately leading to unfavorable clinical prognoses across different cancer types. Hypoxia-inducible factors (HIF-1 and HIF-2) emerge as druggable pivotal players orchestrating tumor metastasis and angiogenesis, thus positioning them as prime targets for cancer treatment. A range of HIF inhibitors, notably natural compounds originating from marine organisms, exhibit encouraging anticancer properties, underscoring their significance as promising therapeutic options. Bioprospection of the marine environment is now a well-settled approach to the discovery and development of anticancer agents that might have their medicinal chemistry developed into clinical candidates. However, despite the massive increase in the number of marine natural products classified as 'anticancer leads,' most of which correspond to general cytotoxic agents, and only a few have been characterized regarding their molecular targets and mechanisms of action. The current review presents a critical analysis of inhibitors of HIF-1 and HIF-2 and hypoxia-selective compounds that have been sourced from marine organisms and that might act as new chemotherapeutic candidates or serve as templates for the development of structurally similar derivatives with improved anticancer efficacy.


Assuntos
Antineoplásicos , Organismos Aquáticos , Produtos Biológicos , Fator 1 Induzível por Hipóxia , Neoplasias , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Organismos Aquáticos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos
3.
Molecules ; 29(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611869

RESUMO

The fascaplysin and homofascaplysin class of marine natural products has a characteristic 12H-pyrido[1,2-a:3,4-b']diindole pentacyclic structure. Fascaplysin was isolated in 1988 from the marine sponge Fascaplysinopsis bergquist sp. The analogs of fascaplysin, such as homofascaplysins A, B, and C, were discovered late in the Fijian sponge F. reticulate, and also have potent antimicrobial activity and strong cytotoxicity against L-1210 mouse leukemia. In this review, the total synthesis of fascaplysin and its analogs, such as homofascaplysins A, B, and C, will be reviewed, which will offer useful information for medicinal chemistry researchers who are interested in the exploration of marine alkaloids.


Assuntos
Alcaloides , Antineoplásicos , Produtos Biológicos , Carbolinas , Indóis , Indolizinas , Poríferos , Compostos de Amônio Quaternário , Animais , Camundongos , Alcaloides/farmacologia , Bandagens
4.
Mar Drugs ; 21(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37103365

RESUMO

Fascaplysin is a planar structure pentacyclic alkaloid isolated from sponges, which can effectively induce the apoptosis of cancer cells. In addition, fascaplysin has diverse biological activities, such as antibacterial, anti-tumor, anti-plasmodium, etc. Unfortunately, the planar structure of fascaplysin can be inserted into DNA and such interaction also limits the further application of fascaplysin, necessitating its structural modification. In this review, the biological activity, total synthesis and structural modification of fascaplysin will be summarized, which will provide useful information for pharmaceutical researchers interested in the exploration of marine alkaloids and for the betterment of fascaplysin in particular.


Assuntos
Antineoplásicos , Antineoplásicos/farmacologia , Indóis/farmacologia
5.
Mar Drugs ; 21(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37623705

RESUMO

Fascaplysin is a marine alkaloid which is considered to be a lead drug candidate due to its diverse and potent biological activity. As an anticancer agent, fascaplysin holds a great potential due to the multiple targets affected by this alkaloid in cancer cells, including inhibition of cyclin-dependent kinase 4 (CDK4) and induction of intrinsic apoptosis. At the same time, the studies on structural optimization are hampered by its rather high toxicity, mainly caused by DNA intercalation. In addition, the number of methods for the syntheses of its derivatives is limited. In the current study, we report a new two-step method of synthesis of fascaplysin derivatives based on low temperature UV quaternization for the synthesis of thermolabile 9-benzyloxyfascaplysin and 6-tert-butylfascaplysin. 9-Benzyloxyfascaplysin was used as the starting compound to obtain 9-hydroxyfascaplysin. However, the latter was found to be chemically highly unstable. 6-tert-Butylfascaplysin revealed a significant decrease in DNA intercalation when compared to fascaplysin, while cytotoxicity was only slightly reduced. Therefore, the impact of DNA intercalation for the cytotoxic effects of fascaplysin and its derivatives needs to be questioned.


Assuntos
Alcaloides , Antineoplásicos , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Carbolinas , DNA
6.
Invest New Drugs ; 40(2): 215-223, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34596822

RESUMO

In the absence of suitable molecular markers, non-small cell lung cancer (NSCLC) patients have to be treated with chemotherapy with poor results at advanced stages. Therefore, the activity of the anticancer marine drug fascaplysin was tested against primary NSCLC cell lines established from pleural effusions. Cytotoxicity of the drug or combinations were determined using MTT assays and changes in intracellular phosphorylation by Western blot arrays. Fascaplysin revealed high cytotoxicity against NSCLC cells and exhibit an activity pattern different of the standard drug cisplatin. Furthermore, fascaplysin synergizes with the EGFR tyrosine kinase inhibitor (TKI) afatinib to yield a twofold increased antitumor effect. Interaction with the Chk1/2 inhibitor AZD7762 confirm the differential effects of fascplysin and cisplatin. Protein phosphorylation assays showed hypophosphorylation of Akt1/2/3 and ERK1/2 as well as hyperphosphorylation of stress response mediators of H1299 NSCLC cells. In conclusion, fascaplysin shows high cytotoxicity against pleural primary NSCLC lines that could be further boosted when combined with the EGFR TKI afatinib.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Afatinib/farmacologia , Afatinib/uso terapêutico , Antineoplásicos/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/patologia , Cisplatino/uso terapêutico , Quinase 4 Dependente de Ciclina/uso terapêutico , Receptores ErbB , Humanos , Indóis , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
7.
Mar Drugs ; 20(3)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35323484

RESUMO

Marine alkaloid fascaplysin and its derivatives are known to exhibit promising anticancer properties in vitro and in vivo. However, toxicity of these molecules to non-cancer cells was identified as a main limitation for their clinical use. Here, for the very first time, we synthesized a library of fascaplysin derivatives covering all possible substituent introduction sites, i.e., cycles A, C and E of the 12H-pyrido[1-2-a:3,4-b']diindole system. Their selectivity towards human prostate cancer versus non-cancer cells, as well as the effects on cellular metabolism, membrane integrity, cell cycle progression, apoptosis induction and their ability to intercalate into DNA were investigated. A pronounced selectivity for cancer cells was observed for the family of di- and trisubstituted halogen derivatives (modification of cycles A and E), while a modification of cycle C resulted in a stronger activity in therapy-resistant PC-3 cells. Among others, 3,10-dibromofascaplysin exhibited the highest selectivity, presumably due to the cytostatic effects executed via the targeting of cellular metabolism. Moreover, an introduction of radical substituents at C-9, C-10 or C-10 plus C-3 resulted in a notable reduction in DNA intercalating activity and improved selectivity. Taken together, our research contributes to understanding the structure-activity relationships of fascaplysin alkaloids and defines further directions of the structural optimization.


Assuntos
Antineoplásicos , Indóis , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , DNA/metabolismo , Humanos , Indóis/química , Indóis/farmacologia , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Relação Estrutura-Atividade
8.
Mar Drugs ; 19(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34564151

RESUMO

Myeloid leukemia is a hematologic neoplasia characterized by a clonal proliferation of hematopoietic stem cell progenitors. Patient prognosis varies depending on the subtype of leukemia as well as eligibility for intensive treatment regimens and allogeneic stem cell transplantation. Although significant progress has been made in the therapy of patients including novel targeted treatment approaches, there is still an urgent need to optimize treatment outcome. The most common therapy is based on the use of chemotherapeutics cytarabine and anthrayclines. Here, we studied the effect of the recently synthesized marine alkaloid 3,10-dibromofascaplysin (DBF) in myeloid leukemia cells. Unsubstituted fascaplysin was early found to affect cell cycle via inhibiting CDK4/6, thus we compared the activity of DBF and other brominated derivatives with known CDK4/6 inhibitor palbociclib, which was earlier shown to be a promising candidate to treat leukemia. Unexpectedly, the effect DBF on cell cycle differs from palbociclib. In fact, DBF induced leukemic cells apoptosis and decreased the expression of genes responsible for cancer cell survival. Simultaneously, DBF was found to activate the E2F1 transcription factor. Using bioinformatical approaches we evaluated the possible molecular mechanisms, which may be associated with DBF-induced activation of E2F1. Finally, we found that DBF synergistically increase the cytotoxic effect of cytarabine in different myeloid leukemia cell lines. In conclusion, DBF is a promising drug candidate, which may be used in combinational therapeutics approaches to reduce leukemia cell growth.


Assuntos
Antineoplásicos/farmacologia , Citarabina/farmacologia , Leucemia Mieloide/tratamento farmacológico , Oxindóis/farmacologia , Linhagem Celular Tumoral , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Mieloide/genética
9.
Mar Drugs ; 18(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271756

RESUMO

Efficacy and mechanism of action of marine alkaloid 3,10-dibromofascaplysin (DBF) were investigated in human prostate cancer (PCa) cells harboring different levels of drug resistance. Anticancer activity was observed across all cell lines examined without signs of cross-resistance to androgen receptor targeting agents (ARTA) or taxane based chemotherapy. Kinome analysis followed by functional investigation identified JNK1/2 to be one of the molecular targets of DBF in 22Rv1 cells. In contrast, no activation of p38 and ERK1/2 MAPKs was observed. Inhibition of the drug-induced JNK1/2 activation or of the basal p38 activity resulted in increased cytotoxicity of DBF, whereas an active ERK1/2 was identified to be important for anticancer activity of the alkaloid. Synergistic effects of DBF were observed in combination with PARP-inhibitor olaparib most likely due to the induction of ROS production by the marine alkaloid. In addition, DBF intensified effects of platinum-based drugs cisplatin and carboplatin, and taxane derivatives docetaxel and cabazitaxel. Finally, DBF inhibited AR-signaling and resensitized AR-V7-positive 22Rv1 prostate cancer cells to enzalutamide, presumably due to AR-V7 down-regulation. These findings propose DBF to be a promising novel drug candidate for the treatment of human PCa regardless of resistance to standard therapy.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Oxindóis/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células PC-3 , Fosforilação , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais
10.
Mar Drugs ; 17(2)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30781608

RESUMO

ß-Amyloid (Aß) is regarded as an important pathogenic target for Alzheimer's disease (AD), the most prevalent neurodegenerative disease. Aß can assemble into oligomers and fibrils, and produce neurotoxicity. Therefore, Aß aggregation inhibitors may have anti-AD therapeutic efficacies. It was found, here, that the marine-derived alkaloid, fascaplysin, inhibits Aß fibrillization in vitro. Moreover, the new analogue, 9-methylfascaplysin, was designed and synthesized from 5-methyltryptamine. Interestingly, 9-methylfascaplysin is a more potent inhibitor of Aß fibril formation than fascaplysin. Incubation of 9-methylfascaplysin with Aß directly reduced Aß oligomer formation. Molecular dynamics simulations revealed that 9-methylfascaplysin might interact with negatively charged residues of Aß42 with polar binding energy. Hydrogen bonds and π⁻π interactions between the key amino acid residues of Aß42 and 9-methylfascaplysin were also suggested. Most importantly, compared with the typical Aß oligomer, Aß modified by nanomolar 9-methylfascaplysin produced less neuronal toxicity in SH-SY5Y cells. 9-Methylfascaplysin appears to be one of the most potent marine-derived compounds that produces anti-Aß neuroprotective effects. Given previous reports that fascaplysin inhibits acetylcholinesterase and induces P-glycoprotein, the current study results suggest that fascaplysin derivatives can be developed as novel anti-AD drugs that possibly act via inhibition of Aß aggregation along with other target mechanisms.


Assuntos
Peptídeos beta-Amiloides/química , Indóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/tratamento farmacológico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Neurônios/efeitos dos fármacos
11.
Mar Drugs ; 16(10)2018 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-30322180

RESUMO

Lung cancer is a leading cause of tumor-associated mortality. Fascaplysin, a bis-indole of a marine sponge, exhibit broad anticancer activity as specific CDK4 inhibitor among several other mechanisms, and is investigated as a drug to overcome chemoresistance after the failure of targeted agents or immunotherapy. The cytotoxic activity of fascaplysin was studied using lung cancer cell lines, primary Non-Small Cell Lung Cancer (NSCLC) and Small Cell Lung Cancer (SCLC) cells, as well as SCLC circulating tumor cell lines (CTCs). This compound exhibited high activity against SCLC cell lines (mean IC50 0.89 µM), as well as SCLC CTCs as single cells and in the form of tumorospheres (mean IC50 0.57 µM). NSCLC lines showed a mean IC50 of 1.15 µM for fascaplysin. Analysis of signal transduction mediators point to an ATM-triggered signaling cascade provoked by drug-induced DNA damage. Fascaplysin reveals at least an additive cytotoxic effect with cisplatin, which is the mainstay of lung cancer chemotherapy. In conclusion, fascaplysin shows high activity against lung cancer cell lines and spheroids of SCLC CTCs which are linked to the dismal prognosis of this tumor type. Derivatives of fascaplysin may constitute valuable new agents for the treatment of lung cancer.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Indóis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células Neoplásicas Circulantes/efeitos dos fármacos , Células A549 , Linhagem Celular Tumoral , Cisplatino/farmacologia , Humanos , Transdução de Sinais/efeitos dos fármacos
12.
Bull Exp Biol Med ; 164(5): 666-672, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29577186

RESUMO

Antitumor efficiency of fascaplysin synthetic derivatives (7-phenylfascaplysin, 3-chlorofascaplysin, 3-bromofascaplysin, and 10-bromofascaplysin) was compared out in vitro on C6 glioma cells. The cytotoxic efficiency of all tested compounds was higher than that of unsubstituted fascaplysin; 3-bromofascaplysin and 7-phenylfascaplysin exhibited the best capacity to kill glioma C6 cells. Apoptosis was the main mechanism of glioma cell death. The cytotoxic activity of these compounds increased with prolongation of exposure to the substance and increase of its concentration. Fascaplysin derivatives modified all phases of glioma cell vital cycle. The count of viable tumor cell in G0 phase remained minimum by the end of experiment under the effects of 3-bromofascaplysin and 7-phenylfascaplysin.


Assuntos
Glioblastoma/metabolismo , Indóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glioma/metabolismo
13.
Int J Mol Sci ; 18(10)2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28961193

RESUMO

Fascaplysin has been reported to exert anti-cancer effects by inhibiting cyclin-dependent kinase 4 (CDK4); however, the precise mode of action by which fascaplysin suppresses tumor growth is not clear. Here, we found that fascaplysin has stronger anti-cancer effects than other CDK4 inhibitors, including PD0332991 and LY2835219, on lung cancer cells that are wild-type or null for retinoblastoma (RB), indicating that unknown target molecules might be involved in the inhibition of tumor growth by fascaplysin. Fascaplysin treatment significantly decreased tumor angiogenesis and increased cleaved-caspase-3 in xenografted tumor tissues. In addition, survivin and HIF-1α were downregulated in vitro and in vivo by suppressing 4EBP1-p70S6K1 axis-mediated de novo protein synthesis. Kinase screening assays and drug-protein docking simulation studies demonstrated that fascaplysin strongly inhibited vascular endothelial growth factor receptor 2 (VEGFR2) and tropomyosin-related kinase A (TRKA) via DFG-out non-competitive inhibition. Overall, these results suggest that fascaplysin inhibits TRKA and VEGFR2 and downregulates survivin and HIF-1α, resulting in suppression of tumor growth. Fascaplysin, therefore, represents a potential therapeutic approach for the treatment of multiple types of solid cancer.


Assuntos
Antineoplásicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Indóis/farmacologia , Proteínas Inibidoras de Apoptose/genética , Neoplasias/tratamento farmacológico , Receptor trkA/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Indóis/uso terapêutico , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Receptor trkA/metabolismo , Survivina , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
14.
Molecules ; 23(1)2017 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-29295560

RESUMO

Fascaplysin, a natural product isolated from marine sponges, is a potential candidate for the development of anti-cancer drugs. However, the mechanism underlying its therapeutic effect of strengthening anti-cancer efficacy of other drugs is poorly understood. Here, we found that fascaplysin increases phosphorylation of protein kinase B (PKB), also known as AKT, and adenosine monophosphate-activated protein kinase (AMPK), which are considered therapeutic targets for cancer treatment due to their anti-apoptotic or pro-survival functions in cancer. A cell viability assay revealed that pharmacological suppression of AKT using LY294002 enhanced the anti-cancer effect of fascaplysin in various cancer cells. Similarly, fascaplysin was observed to have improved anti-cancer effects in combination with compound C, a selective AMPK inhibitor. Another challenge showed that fascaplysin increased the efficacy of methotrexate (MTX)-mediated cancer therapy by suppressing genes related to folate and purine metabolism. Overall, these results suggest that fascaplysin may be useful for improving the anti-cancer efficacy of targeted anti-cancer drugs, such as inhibitors of phosphoinositide 3-kinase AKT signaling, and chemotherapeutic agents, such as MTX.


Assuntos
Adenilato Quinase/antagonistas & inibidores , Antineoplásicos/farmacologia , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Adenilato Quinase/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Metotrexato/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
15.
J Cell Biochem ; 116(6): 985-97, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25561006

RESUMO

In this study, we for the first time explored the cellular and molecular mechanism of anticancer properties of fascaplysin, a marine sponge-derived alkaloid. Our study demonstrated that fascaplysin induced a cooperative interaction between apoptotic and autophagic pathways to induce cytotoxicity in HL-60 cells. Fascaplysin treatment not only activated pro-apoptotic events like PARP-1 cleavage and caspase activation but also triggered autophagy signaling as shown by the increased expression of LC3-II, ATG7and beclin. Interestingly, it was found that use of pan-caspase inhibitor completely reversed the fascaplysin mediated cell death as analyzed by MTT and cell cycle assays. It was observed that cell death as well as the expression of pro-death proteins was partially reversed, when key autophagy mediators ATG7 was silenced by siRNA in fascaplysin treated cells. Cooperative involvement of autophagy and apoptotic signaling in cytotoxicity was confirmed when combined silencing of pro-apototic (PARP-1) and autophagic (ATG-7) signaling by respective siRNA's lead to substantial rescue of cell death induced by fascaplysin. Although, apoptosis and autophagy are two independent cell death pathways, our findings provide detailed insight by which both the pathways acted cooperatively to elicit fascaplysin induced cell death in HL-60 cells. Our findings provide molecular insight into the anti-cancer potential of fascaplysin by showing that both autophagic and apoptotic signaling can work together in the induction of cell death.


Assuntos
Autofagia/efeitos dos fármacos , Indóis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Apoptose/efeitos dos fármacos , Células HL-60 , Células HeLa , Humanos
16.
Mar Drugs ; 13(11): 6774-91, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26569265

RESUMO

BACKGROUND: The marine-derived kinase inhibitor fascaplysin down-regulates the PI3K pathway in cancer cells. Since this pathway also plays an essential role in platelet signaling, we herein investigated the effect of fascaplysin on thrombosis. METHODS: Fascaplysin effects on platelet activation, platelet aggregation and platelet-leukocyte aggregates (PLA) formation were analyzed by flow cytometry. Mouse dorsal skinfold chambers were used to determine in vivo the effect of fascaplysin on photochemically induced thrombus formation and tail-vein bleeding time. RESULTS: Pre-treatment of platelets with fascaplysin reduced the activation of glycoprotein (GP)IIb/IIIa after protease-activated receptor-1-activating peptide (PAR-1-AP), adenosine diphosphate (ADP) and phorbol-12-myristate-13-acetate (PMA) stimulation, but did not markedly affect the expression of P-selectin. This was associated with a decreased platelet aggregation. Fascaplysin also decreased PLA formation after PMA but not PAR-1-AP and ADP stimulation. This may be explained by an increased expression of CD11b on leukocytes in PAR-1-AP- and ADP-treated whole blood. In the dorsal skinfold chamber model of photochemically induced thrombus formation, fascaplysin-treated mice revealed a significantly extended complete vessel occlusion time when compared to controls. Furthermore, fascaplysin increased the tail-vein bleeding time. CONCLUSION: Fascaplysin exerts anti-thrombotic activity, which represents a novel mode of action in the pleiotropic activity spectrum of this compound.


Assuntos
Indóis/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Trombose/tratamento farmacológico , Difosfato de Adenosina/administração & dosagem , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Leucócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Oligopeptídeos/administração & dosagem , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Acetato de Tetradecanoilforbol/administração & dosagem , Trombose/patologia
17.
Eur J Med Chem ; 270: 116347, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552428

RESUMO

The filamentous temperature-sensitive mutant Z protein (FtsZ), a key player in bacterial cell division machinery, emerges as an attractive target to tackle the plight posed by the ever growing antibiotic resistance over the world. Therefore in this regard, agents with scaffold diversities and broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens are highly needed. In this study, a new class of marine-derived fascaplysin derivatives has been designed and synthesized by Suzuki-Miyaura cross-coupling. Some compounds exhibited potent bactericidal activities against a panel of Gram-positive (MIC = 0.024-6.25 µg/mL) and Gram-negative (MIC = 1.56-12.5 µg/mL) bacteria including methicillin-resistant S. aureus (MRSA). They exerted their effects by dual action mechanism via disrupting the integrity of the bacterial cell membrane and targeting FtsZ protein. These compounds stimulated polymerization of FtsZ monomers and bundling of the polymers, and stabilized the resulting polymer network, thus leading to the dysfunction of FtsZ in cell division. In addition, these agents showed negligible hemolytic activity and low cytotoxicity to mammalian cells. The studies on docking and molecular dynamics simulations suggest that these inhibitors bind to the hydrophilic inter-domain cleft of FtsZ protein and the insights obtained in this study would facilitate the development of potential drugs with broad-spectrum bioactivities.


Assuntos
Carbolinas , Indóis , Indolizinas , Staphylococcus aureus Resistente à Meticilina , Compostos de Amônio Quaternário , Animais , Proteínas de Bactérias , Proteínas do Citoesqueleto , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Mamíferos/metabolismo
18.
Sci Rep ; 14(1): 11788, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783016

RESUMO

Fascaplysin is a red cytotoxic pigment with anticancer properties isolated from the marine sponge Fascaplysinopsis sp. Recently, structure-activity relationship analysis reported by our group suggested that selective cytotoxicity of fascaplysin derivatives towards tumor cells negatively correlates with their ability to intercalate into DNA. To validate this hypothesis, we synthesized 6- and 7-tert-butylfascaplysins which reveal mitigated DNA-intercalating properties. These derivatives were found to be strongly cytotoxic to drug-resistant human prostate cancer cells, albeit did not demonstrate improved selectivity towards cancer cells when compared to fascaplysin. At the same time, kinome analysis suggested an activation of CHK1/ATR axis in cancer cells shortly after the drug exposure. Further experiments revealed induction of replication stress that is eventually converted to the toxic DNA double-strand breaks, resulting in caspase-independent apoptosis-like cell death. Our observations highlight new DNA-targeting effect of some fascaplysin derivatives and indicate more complex structure-activity relationships within the fascaplysin family, suggesting that cytotoxicity and selectivity of these alkaloids are influenced by multiple factors. Furthermore, combination with clinically-approved inhibitors of ATR/CHK1 as well as testing in tumors particularly sensitive to the DNA damage should be considered in further studies.


Assuntos
Antineoplásicos , Quinase 1 do Ponto de Checagem , Humanos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Indóis/farmacologia , Indóis/química , Apoptose/efeitos dos fármacos , Relação Estrutura-Atividade , Masculino , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , DNA/metabolismo , Animais , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Compostos de Amônio Quaternário , Carbolinas , Indolizinas
19.
Eur J Med Chem ; 254: 115348, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37060755

RESUMO

The increase in antibiotic resistance has made it particularly urgent to develop new antibiotics with novel antibacterial mechanisms. Inhibition of bacterial cell division by disrupting filamentous temperature-sensitive mutant Z (FtsZ) function is an effective and promising approach. A series of novel fascaplysin derivatives with tunable hydrophobicity were designed and synthesized here. The in vitro bioactivity assessment revealed that these compounds could inhibit the tested Gram-positive bacteria including methicillin-resistant S. aureus (MRSA) (MIC = 0.049-25 µg/mL), B. subtilis (MIC = 0.024-12.5 µg/mL) and S. pneumoniae (MIC = 0.049-50 µg/mL). Among them, compounds B3 (MIC = 0.098 µg/mL), B6 (MIC = 0.098 µg/mL), B8 (MIC = 0.049 µg/mL) and B16 (MIC = 0.098 µg/mL) showed the best bactericidal activities against MRSA and no significant tendency to trigger bacterial resistance as well as rapid bactericidal properties. The cell surface integrity of bacteria was significantly disrupted by hydrophobic tails of fascaplysin derivatives. Further studies revealed that these highly active amphiphilic compounds showed low hemolytic activity and cytotoxicity to mammalian cells. Preliminary mechanistic exploration suggests that B3, B6, B8 and B16 are potent FtsZ inhibitors to promote FtsZ polymerization and inhibit GTPase activity of FtsZ, leading to the death of bacterial cells by inhibiting bacterial division. Molecular docking simulations and structure-activity relationship (SAR) study reveal that appropriate increase in the hydrophobicity of fascaplysin derivatives and the addition of additional hydrogen bonds facilitated their binding to FtsZ proteins. These amphiphilic fascaplysin derivatives could serve as a novel class of FtsZ inhibitors, which not only gives new prospects for the application of compounds containing this skeleton but also provides new ideas for the discovery of new antibiotics.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Animais , Estrutura Molecular , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Antibacterianos/química , Proteínas de Bactérias , Mamíferos
20.
Eur J Med Chem ; 230: 114099, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35007859

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is considered as one of the most dangerous clinical pathogens. Biofilms forming ability of MRSA is also a major cause of drug resistance. Hence, it is in urgent need to develop novel antibacterial/antibiofilm drugs. Fascaplysin with a unique cationic five-ring coplanar backbone is emerging as a potential antibacterial compound. In this study, aiming at developing novel and more effective agents, a series of fascaplysin derivatives and their corresponding ß-carboline precursors have been synthesized. Then their antibacterial/antibiofilm activity and mechanisms against MRSA were investigated for the first time. The results showed that most fascaplysins rather than ß-carboline precursors exhibit superior antimicrobial activity against MRSA ATCC43300, demonstrating the important role of cationic five-ring coplanar backbone playing in antibacterial activity. Among them, 14 and 18 are the most potent compounds with MIC value of 0.098 µg/ml (10-fold lower than vancomycin), and 18 featuring the lowest toxicity. Subsequent mechanisms exploration indicates that 18 has relatively stronger ability to destroy bacterial cell wall and membrane, higher binding affinity to bacterial genomic DNA. Molecular docking study revealed that besides the key role of cationic five-ring coplanar backbone, introduction of N-aryl amide at 9-position of fascaplysin promoted the combination of compound 18 and DNA via additional π-π stacking and hydrogen bonding of the naphthyl group. Moreover, fascaplysins could inhibit MRSA biofilm formation in vitro and bacterial infection in vivo. All these results illustrate that fascaplysin derivative 18 is a strong and safe multi-target antibacterial agent, which makes it an attractive candidate for the treatment of MRSA and its biofilm infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Biofilmes , DNA , Indóis , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA