Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Mass Spectrom Rev ; 43(2): 369-408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36727592

RESUMO

Biomass-derived degraded lignin and cellulose serve as possible alternatives to fossil fuels for energy and chemical resources. Fast pyrolysis of lignocellulosic biomass generates bio-oil that needs further refinement. However, as pyrolysis causes massive degradation to lignin and cellulose, this process produces very complex mixtures. The same applies to degradation methods other than fast pyrolysis. The ability to identify the degradation products of lignocellulosic biomass is of great importance to be able to optimize methodologies for the conversion of these mixtures to transportation fuels and valuable chemicals. Studies utilizing tandem mass spectrometry have provided invaluable, molecular-level information regarding the identities of compounds in degraded biomass. This review focuses on the molecular-level characterization of fast pyrolysis and other degradation products of lignin and cellulose via tandem mass spectrometry based on collision-activated dissociation (CAD). Many studies discussed here used model compounds to better understand both the ionization chemistry of the degradation products of lignin and cellulose and their ions' CAD reactions in mass spectrometers to develop methods for the structural characterization of the degradation products of lignocellulosic biomass. Further, model compound studies were also carried out to delineate the mechanisms of the fast pyrolysis reactions of lignocellulosic biomass. The above knowledge was used to assign likely structures to many degradation products of lignocellulosic biomass.


Assuntos
Lignina , Espectrometria de Massas em Tandem , Lignina/química , Espectrometria de Massas em Tandem/métodos , Biomassa , Celulose
2.
Environ Sci Technol ; 57(16): 6485-6493, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37043626

RESUMO

Biomass pyrolysis within the alkaline molten salt is attractive due to its ability to achieve high hydrogen yield under relatively mild conditions. However, poor contact between biomass, especially the biomass pellet, and hydroxide during the slow heating process, as well as low reaction temperatures, become key factors limiting the hydrogen production. To address these challenges, fast pyrolysis of the algae pellet in molten NaOH-Na2CO3 was conducted at 550, 650, and 750 °C. Algae were chosen as feedstock for their high photosynthetic efficiency and growth rate, and the concept of coupling molten salt with concentrated solar energy was proposed to address the issue of high energy consumption at high temperatures. At 750 °C, the pollutant gases containing Cl and S were completely removed, and the HCN removal rate reached 44.92%. During the continuous pyrolysis process, after a slight increase, the hydrogen yield remained stable at 71.48 mmol/g-algae and constituted 86.10% of the gas products, and a minimum theoretical hydrogen production efficiency of algae can reach 84.86%. Most importantly, the evolution of physicochemical properties of molten NaOH-Na2CO3 was revealed for the first time. Combined with the conversion characteristics of feedstock and gas products, this study provides practical guidance for large-scale application of molten salt including feedstock, operation parameters, and post-treatment process.


Assuntos
Gases , Pirólise , Hidróxido de Sódio , Temperatura Alta , Cloreto de Sódio , Hidrogênio , Biomassa
3.
Environ Sci Technol ; 57(34): 12701-12712, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37590157

RESUMO

Recent restrictions on marine fuel sulfur content and a heightened regulatory focus on maritime decarbonization are driving the deployment of low-carbon and low-sulfur alternative fuels for maritime transport. In this study, we quantified the life-cycle greenhouse gas and sulfur oxide emissions of several novel marine biofuel candidates and benchmarked the results against the emissions reduction targets set by the International Maritime Organization. A total of 11 biofuel pathways via four conversion processes are considered, including (1) biocrudes derived from hydrothermal liquefaction of wastewater sludge and manure, (2) bio-oils from catalytic fast pyrolysis of woody biomass, (3) diesel via Fischer-Tropsch synthesis of landfill gas, and (4) lignin ethanol oil from reductive catalytic fractionation of poplar. Our analysis reveals that marine biofuels' life-cycle greenhouse gas emissions range from -60 to 56 gCO2e MJ-1, representing a 41-163% reduction compared with conventional low-sulfur fuel oil, thus demonstrating a considerable potential for decarbonizing the maritime sector. Due to the net-negative carbon emissions from their life cycles, all waste-based pathways showed over 100% greenhouse gas reduction potential with respect to low-sulfur fuel oil. However, while most biofuel feedstocks have a naturally occurring low-sulfur content, the waste feedstocks considered here have higher sulfur content, requiring hydrotreating prior to use as a marine fuel. Combining the break-even price estimates from a published techno-economic analysis, which was performed concurrently with this study, the marginal greenhouse gas abatement cost was estimated to range from -$120 to $370 tCO2e-1 across the pathways considered. Lower marginal greenhouse gas abatement costs were associated with waste-based pathways, while higher marginal greenhouse gas abatement costs were associated with the other biomass-based pathways. Except for lignin ethanol oil, all candidates show the potential to be competitive with a carbon credit of $200 tCO2e-1 in 2016 dollars, which is within the range of prices recently received in connection with California's low-carbon fuel standard.


Assuntos
Óleos Combustíveis , Gases de Efeito Estufa , Animais , Biocombustíveis , Lignina , Pirólise , Madeira , Enxofre , Carbono , Etanol , Estágios do Ciclo de Vida
4.
J Anal Appl Pyrolysis ; 170: 105870, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36686287

RESUMO

During the COVID-19 pandemic, the world saw an exponential surge in the production of Personal Protective Equipment (PPE) kits, which eventually got discarded in the biomedical waste stream. In this study, thirteen different polymer samples from the PPE kit were collected and characterized using Fourier transform infrared spectrometer, thermogravimetric analysis, and analytical pyrolysis-gas chromatograph/mass spectrometry. The characterization data showed that about 94 % by mass of components were made of only three polymers, viz. polypropylene (PP, 75.6 wt %), polyethylene terephthalate (PET, 12.5 wt %), and polycarbonate (PC, 6 wt %). The analytical pyrolysis of the PPE coverall suit (PP) yielded mainly alkenes containing 2,4-dimethyl-1-heptene as the major compound with 17 wt % yield at 600 °C. The pyrolysates from face shield (PET) were rich in benzoic acid (5.8 wt %) and acetophenone (4.8 wt %), while those from safety goggles (PC) were rich in phenol (17.6 wt %) and p-cresol (12.4 wt %) at 600 °C. HZSM-5 and HY zeolites were used for the catalytic upgradation of pyrolysates especially from PP, PET and PC. The temperature and feed-to-catalyst ratio were optimized by performing catalytic fast pyrolysis experiments at 500 °C, 600 °C and 700 °C with different feed-to-catalyst ratios 1:2, 1:4, and 1:6 (w/w). The yield of aromatic hydrocarbons, viz., BTEX (benzene, toluene, ethylbenzene, xylenes) and naphthalene, was maximum (∼25.7 wt %) from PP coverall when HY catalyst was used at 600 °C and 1:6 (w/w) loading. In the case of PET face shield, the total yield of BTEX, naphthalene and biphenyl was maximum (27.9 wt %) at 600 °C and 1:4 (w/w) of HZSM-5, while in the case of PC goggles, it was maximum (18.6 wt %) at 700 °C and 1:4 (w/w) of HY. This study shows that the entire PPE kit can be valorized via catalytic fast pyrolysis to generate petrochemical products and platform molecules like monoaromatic hydrocarbons at high selectivities.

5.
Molecules ; 28(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37836652

RESUMO

Co-pyrolysis is one possible method to handle different biomass leftovers. The success of the implementation depends on several factors, of which the quality of the produced bio-oil is of the highest importance, together with the throughput and constraints of the feedstock. In this study, the fast co-pyrolysis of palm kernel shell (PKS) and woody biomass was conducted in a micro-pyrolyser connected to a Gas Chromatograph-Mass Spectrometer/Flame Ionisation Detector (GC-MS/FID) at 600 °C and 5 s. Different blend ratios were studied to reveal interactions on the primary products formed from the co-pyrolysis, specifically PKS and two woody biomasses. A comparison of the experimental and predicted yields showed that the co-pyrolysis of the binary blends in equal proportions, PKS with mahogany (MAH) or iroko (IRO) sawdust, resulted in a decrease in the relative yield of the phenols by 19%, while HAA was promoted by 43% for the PKS:IRO-1:1 pyrolysis blend, and the saccharides were strongly inhibited for the PKS:MAH-1:1 pyrolysis blend. However, no difference was observed in the yields for the different groups of compounds when the two woody biomasses (MAH:IRO-1:1) were co-pyrolysed. In contrast to the binary blend, the pyrolysis of the ternary blends showed that the yield of the saccharides was promoted to a large extent, while the acids were inhibited for the PKS:MAH:IRO-1:1:1 pyrolysis blend. However, the relative yield of the saccharides was inhibited to a large extent for the PKS:MAH:IRO-1:2:2 pyrolysis blend, while no major difference was observed in the yields across the different groups of compounds when PKS and the woody biomass were blended in equal amounts and pyrolysed (PKS:MAH:IRO-2:1:1). This study showed evidence of a synergistic interaction when co-pyrolysing different biomasses. It also shows that it is possible to enhance the production of a valuable group of compounds with the right biomass composition and blend ratio.

6.
Molecules ; 28(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37241985

RESUMO

A niobium-doped HZSM-5 (H[Nb]ZSM-5) was prepared by a hydrothermal synthesis method. The morphology, phase structure, composition, pore structure, and acid content of the catalyst were characterized using a series of analysis techniques such as scanning electron microscope (SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption, and temperature programmed desorption measurements (NH3-TPD). The H[Nb]ZSM-5 catalyst fully remained within the crystal framework and pore structure of HZSM-5. Meanwhile, introduction of niobium (V) endowed the catalyst with both Lewis acid and Bronsted acid sites. Catalytic fast pyrolysis (CFP) of alkali lignin was carried out through a pyrolysis and gas chromatography-mass spectrometry (Py-GC/MS) at 650 °C and atmospheric pressure. The results indicated that H[Nb]ZSM-5 can efficiently and selectively convert lignin into monoaromatic hydrocarbons (MAHs), compared to the control HZSM-5. Catalyzed by H[Nb]ZSM-5, the content of MAHs and aliphatic hydrocarbons reached 43.4% and 20.8%, respectively; while under the catalysis of HZSM-5, these values were 35.5% and 3.2%, respectively. H[Nb]ZSM-5 remarkably lowered the phenol content to approximately 2.8%, which is far lower than the content (24.9%) obtained under HZSM-5 catalysis.

7.
Waste Manag Res ; 40(6): 654-664, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34579599

RESUMO

This study aimed to evaluate the environmental impact of 1000 kg h-1 wheat straw to produce biofuel via fast pyrolysis with three different hydrogen production processes by the life cycle assessment (LCA) based on Chinese Life Cycle Database (CLCD). The primary energy depletion (PED), global warming potential (GWP), abiotic depletion potential (ADP) and respiratory inorganics (RI) impact categories of 1 MJ biofuel produced were employed for comparison. In case 1, the hydrogen was derived from natural gas steam reforming, and all the bio-oil was hydrotreated to produce the biofuel. In case 2, a part of the aqueous phase was reformed to produce hydrogen, whereas the remaining bio-oil was hydrotreated to produce biofuel. In case 3, all the aqueous phase of bio-oil was reformed to produce hydrogen, a part of hydrogen generated by reforming was used to oil phase hydrotreated and the excess hydrogen was considered as a co-product. Our results show that the PED, GWP, ADP and RI of case 3 are 0.1355 MJ, -17.96 g CO2eq., 0.0338 g antimonyeq and 0.0461 g PM2.5eq.. Compared with conventional diesel, the PED, GWP, ADP and RI of case 3 were reduced by 89.81, 117.44, 1.74 and 85.03%, respectively. The results of sub-process contribution analysis and sensitivity analysis suggested that the electricity consumption for the bio-oil production has the maximal effect on the total PED, GWP and RI of case 3, whereas the amount of fertilizers in the biomass production sub-process has the maximal effect on the total ADP.


Assuntos
Biocombustíveis , Pirólise , Animais , Biomassa , Meio Ambiente , Hidrogênio , Estágios do Ciclo de Vida , Triticum , Água
8.
Metab Eng ; 68: 14-25, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34438073

RESUMO

While biomass-derived carbohydrates have been predominant substrates for biological production of renewable fuels, chemicals, and materials, organic waste streams are growing in prominence as potential alternative feedstocks to improve the sustainability of manufacturing processes. Catalytic fast pyrolysis (CFP) is a promising approach to generate biofuels from lignocellulosic biomass, but it generates a complex, carbon-rich, and toxic wastewater stream that is challenging to process catalytically but could be biologically upgraded to valuable co-products. In this work, we implemented modular, heterologous catabolic pathways in the Pseudomonas putida KT2440-derived EM42 strain along with the overexpression of native toxicity tolerance machinery to enable utilization of 89% (w/w) of carbon in CFP wastewater. The dmp monooxygenase and meta-cleavage pathway from Pseudomonas putida CF600 were constitutively expressed to enable utilization of phenol, cresols, 2- and 3-ethyl phenol, and methyl catechols, and the native chaperones clpB, groES, and groEL were overexpressed to improve toxicity tolerance to diverse aromatic substrates. Next, heterologous furfural and acetone utilization pathways were incorporated, and a native alcohol dehydrogenase was overexpressed to improve methanol utilization, generating reducing equivalents. All pathways (encoded by genes totaling ~30 kilobases of DNA) were combined into a single strain that can catabolize a mock CFP wastewater stream as a sole carbon source. Further engineering enabled conversion of all aromatic compounds in the mock wastewater stream to (methyl)muconates with a ~90% (mol/mol) yield. Biological upgrading of CFP wastewater as outlined in this work provides a roadmap for future applications in valorizing other heterogeneous waste streams.


Assuntos
Pseudomonas putida , Acetona , Furaldeído , Pseudomonas putida/genética , Pirólise , Ácido Sórbico/análogos & derivados , Águas Residuárias
9.
J Environ Manage ; 298: 113436, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358935

RESUMO

This study investigated effects of different thermal processes on characteristics of activated carbon to produce efficient biosorbents or supercapacitors using biomass resources. Pyrolysis char and hydrochar obtained from woody biomass were used as precursors for activated carbon under different atmospheric conditions (N2 and air). In order to provide functional groups on the carbon surface, activated carbon under N2 condition was subsequently acidified by HNO3 and the other was simultaneously acidified under air condition. Additionally, potential for application as Pb2+ adsorbent and supercapacitor was evaluated. Thermochemical behaviors such as bonding cleavage and dehydration during activation processes were observed by TG and Py-GCMS analysis. Elemental analysis, FT-IR, Raman spectroscopy, and XPS analysis were carried out to confirm changes in structures of each carbon products. New plausible reaction mechanism for this observation was suggested with respect to the formation of a key intermediate in the presence of excess air. As for performance in applications, air activated carbon using hydrochar exhibited high versatility to function as both Pb2+ adsorbent (~41.1 mg/g) and energy storage material (~185.9 F/g) with high specific surface area, mesopore ratio, surface functional groups.


Assuntos
Carvão Vegetal , Pirólise , Biomassa , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
10.
Molecules ; 26(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073001

RESUMO

The effects of two types of biochar on corn production in the Mediterranean climate during the growing season were analyzed. The two types of biochar were obtained from pyrolysis of Pinus pinaster. B1 was fully pyrolyzed with 55.90% organic carbon, and B2 was medium pyrolyzed with 23.50% organic carbon. B1 and B2 were supplemented in the soil of 20 plots (1 m2) at a dose of 4 kg/m2. C1 and C2 (10 plots each) served as control plots. The plots were automatically irrigated and fertilizer was not applied. The B1-supplemented plots exhibited a significant 84.58% increase in dry corn production per square meter and a 93.16% increase in corn wet weight (p << 0.001). Corn production was no different between B2-supplemented, C1, and C2 plots (p > 0.01). The weight of cobs from B1-supplemented plots was 62.3%, which was significantly higher than that of cobs from C1 and C2 plots (p < 0.01). The grain weight increased significantly by 23% in B1-supplemented plots (p < 0.01) and there were no differences between B2-supplemented, C1, and C2 plots. At the end of the treatment, the soil of the B1-supplemented plots exhibited increased levels of sulfate, nitrate, magnesium, conductivity, and saturation percentage. Based on these results, the economic sustainability of this application in agriculture was studied at a standard price of €190 per ton of biochar. Amortization of this investment can be achieved in 5.52 years according to this cost. Considering the fertilizer cost savings of 50% and the water cost savings of 25%, the amortization can be achieved in 4.15 years. If the price of biochar could be reduced through the CO2 emission market at €30 per ton of non-emitted CO2, the amortization can be achieved in 2.80 years. Biochar markedly improves corn production in the Mediterranean climate. However, the amortization time must be further reduced, and enhanced production must be guaranteed over the years with long term field trials so that the product is marketable or other high value-added crops must be identified.


Assuntos
Agricultura/métodos , Carvão Vegetal/farmacologia , Zea mays/crescimento & desenvolvimento , Dióxido de Carbono/análise , Carvão Vegetal/metabolismo , Clima , Produtos Agrícolas/efeitos dos fármacos , Grão Comestível/química , Fertilizantes , Região do Mediterrâneo , Óxido Nitroso/análise , Solo , Zea mays/química
11.
J Sci Food Agric ; 101(7): 2650-2658, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33006385

RESUMO

BACKGROUND: The valorization of organic wastes through fast pyrolysis appears to be a highly promising option for decreasing pollutants and reducing consumption of natural resources. For this purpose, three different olive pomace samples were studied to determine how olive crop location and the extraction process could influence bio-oil product distribution. Olive pomace was selected as the feedstock due to the importance of the olive oil industry in Spain. RESULTS: In this study, the conditions of fast pyrolysis were optimized using lignin as a reference, with the optimum conditions being 500 °C, 20 °C ms-1 as the heating rate and 15 s as the vapour residence time. The olive pomace results determined that not only their chemical composition, but also their fat content had a remarkable effect on product distribution obtained after fast pyrolysis. However, whereas high lignin content enhanced phenol production, cellulose decomposed to carboxylic acids. In addition, due to current global warming, the carbon dioxide (CO2 ) burden of the three samples was calculated using mass spectroscopy. The OPGC sample gave off the lowest amount of greenhouse gases, followed by OPMNE and OPMN. CONCLUSIONS: The higher fat content in the sample enhanced carboxylic acid production. The difference in phenol production between OPMN and OPMNE could be attributed to the presence of potassium. From an environmental point of view, the use of olive pomace wastes could reduce CO2 emissions with further research and by developing experimental processes. © 2020 Society of Chemical Industry.


Assuntos
Olea/química , Extratos Vegetais/química , Resíduos/análise , Manipulação de Alimentos/instrumentação , Frutas/química , Lignina/química , Lignina/isolamento & purificação , Fenóis/química , Fenóis/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Pirólise , Espanha , Volatilização
12.
Waste Manag Res ; 39(2): 270-278, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32672106

RESUMO

Hydrothermal treatment (HTT) experiments were conducted at 210○C and 230○C with 30, 60 and 90 min residence times. Fourier transform infrared spectroscopy (FT-IR) and 13C solid-state nuclear magnetic resonance (NMR) were employed to elucidate the effect of HTT on the chemical structure of municipal solid waste. FT-IR results clearly demonstrate that decarboxylation and aromatization reactions occurred during HTT. Fewer types of carbon skeleton structures were observed in the 13C solid-state NMR of hydrochars. The aliphaticity yield increased from 74.84% to 91.57% with increasing experiment parameters. In addition, the aromatization reaction was more dramatic in the early stage time, while carbonyl compounds decomposed during the HTT process. Pyrolysis gas chromatography mass spectrometry analysis showed that HTT had positive effects on the simplification of the pyrolytic gas component. In addition, all hydrochars were significantly inhibited to the formation of aromatic compounds with a minor relative peak area of 19.89%. Moreover, hydrochars obtained at a relatively low temperature could achieve a higher yield of hydrocarbons, and hydrocarbons could be partly purified after the HTT process. Overall, the available values of fast pyrolysis products were upgraded by the HTT process.


Assuntos
Pirólise , Resíduos Sólidos , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
13.
Biotechnol Bioeng ; 117(5): 1381-1393, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32022244

RESUMO

Lignin is an abundant and heterogeneous waste byproduct of the cellulosic industry, which has the potential of being transformed into valuable biochemicals via microbial fermentation. In this study, we applied a fast-pyrolysis process using softwood lignin resulting in a two-phase bio-oil containing monomeric and oligomeric aromatics without syringol. We demonstrated that an additional hydrodeoxygenation step within the process leads to an enhanced thermochemical conversion of guaiacol into catechol and phenol. After steam bath distillation, Pseudomonas putida KT2440-BN6 achieved a percent yield of cis, cis-muconic acid of up to 95 mol% from catechol derived from the aqueous phase. We next established a downstream process for purifying cis, cis-muconic acid (39.9 g/L) produced in a 42.5 L fermenter using glucose and benzoate as carbon substrates. On the basis of the obtained values for each unit operation of the empirical processes, we next performed a limited life cycle and cost analysis of an integrated biotechnological and chemical process for producing adipic acid and then compared it with the conventional petrochemical route. The simulated scenarios estimate that by attaining a mixture of catechol, phenol, cresol, and guaiacol (1:0.34:0.18:0, mol ratio), a titer of 62.5 (g/L) cis, cis-muconic acid in the bioreactor, and a controlled cooling of pyrolysis gases to concentrate monomeric aromatics in the aqueous phase, the bio-based route results in a reduction of CO2 -eq emission by 58% and energy demand by 23% with a contribution margin for the aqueous phase of up to 88.05 euro/ton. We conclude that the bio-based production of adipic acid from softwood lignins brings environmental benefits over the petrochemical procedure and is cost-effective at an industrial scale. Further research is essential to achieve the proposed cis, cis-muconic acid yield from true lignin-derived aromatics using whole-cell biocatalysts.


Assuntos
Adipatos/metabolismo , Reatores Biológicos , Lignina/metabolismo , Reatores Biológicos/economia , Reatores Biológicos/microbiologia , Fermentação , Fenóis/metabolismo , Pseudomonas putida/metabolismo , Pirólise , Ácido Sórbico/análogos & derivados , Ácido Sórbico/metabolismo
14.
Environ Res ; 187: 109632, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32454307

RESUMO

In this study, the kinetic analysis on the pyrolysis of a spent medicinal herb, namely spent Achyranthes root, is performed using a thermogravimetric analyzer and a model-free kinetic analysis method, allowing the calculation of activation energy values without the assumption of kinetic model. Owing to the structural change of lignin and elimination of hemicellulose during the decoction of raw Achyranthes root, the thermogravimetric analysis results show a large difference between the derivative thermogravimetry curves of spent and raw Achyranthes roots. The average apparent activation energy value of spent Achyranthes root, obtained from the non-isothermal thermogravimetric analysis, are found to be lower than those of raw Achyranthes root. This comes as a result of the much lower content of hemicellulose in spent Achyranthes root caused by the hemicellulose elimination from raw Achyranthes root during the decoction process. The catalytic fast pyrolysis of spent Achyranthes root over HZSM5-30 (HZSM-5 with SiO2/Al2O3 = 30) and HY30 (HY with SiO2/Al2O3 = 30) was performed using a two-stage fixed-bed reactor system. The catalytic fast pyrolysis of spent Achyranthes root over both HY30 and HZSM5-30 produced the much larger amount of aromatic hydrocarbons, compared to the non-catalytic fast pyrolysis, with a parallel decrease of oxygen-containing pyrolyzates. Owing to its robust pore structure and high acidity, it was the HZSM5-30 that produced the highest quality oil during the catalytic fast pyrolysis of spent Achyranthes root, having higher selectivity of mono-aromatic hydrocarbons compared to HY30.


Assuntos
Plantas Medicinais , Pirólise , Biomassa , Catálise , Temperatura Alta , Cinética , Dióxido de Silício
15.
J Environ Manage ; 234: 138-144, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30616185

RESUMO

To circumvent the adverse impacts arising from an excessive use of fossil fuels, bioenergy and chemical production from a carbon neutral resource (biomass) has drawn considerable attention over the last two decades. Among various technical candidates, fast pyrolysis of biomass has been considered as one of the viable technical routes for converting a carbonaceous material (biomass) into biocrude (bio-oil). In these respects, three biomass samples (i.e., sawdust, empty fruit bunch, and giant Miscanthus) were chosen as a carbon substrate for the pyrolysis process in this study. A pilot-scale circulating fluidized bed reactor was employed for the pyrolysis work, and biocrude from the fast pyrolysis process at 500 °C were characterized because the maximum yield of biocrude (60 wt% of the original sample mass) was achieved at 500 °C. The physico-chemical properties of biocrude were measured by the international standard/protocol (ASTM D7544 and/or EN 16900 test method) to harness biocrude as bioenergy and an initial feedstock for diverse chemicals. All measurements in this study demonstrated that the heating value, moisture content, and ash contents in biocrude were highly contingent on the type of biomass. Moreover, characterization of biocrude in this study significantly suggested that additional unit operations for char and metal removal must be conducted to meet the fuel standard in terms of biocrude as bioenergy.


Assuntos
Biocombustíveis , Pirólise , Biomassa , Temperatura Alta , Óleos de Plantas , Polifenóis
16.
J Environ Manage ; 247: 38-45, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31229784

RESUMO

Fast pyrolysis is a potential technology for converting lignocellulosic biomass into bio-oil. Nevertheless, the high amounts of acid, oxygenated compounds, and water content diminish the energy density of the bio-oil and cause it to be unsuitable for direct usage. Catalytic fast pyrolysis (CFP) is able to improve bio-oil properties so that downstream upgrading processes can be economically feasible. Here, calcium oxide (CaO), magnesium oxide (MgO), and zinc oxide (ZnO) were employed due to their potential in enhancing bio-oil properties. The results showed that overall, all three catalysts positively impacted the empty fruit bunch fibre-derived bio-oil properties. Among the catalysts, CaO showed the most favorable effects in terms of reducing the acidity of the bio-oil and anhydrosugar. Thermal stability of bio-oils produced in the presence of CaO was studied as well.


Assuntos
Frutas , Pirólise , Biocombustíveis , Biomassa , Catálise , Óxidos , Óleos de Plantas , Polifenóis
17.
Waste Manag Res ; 37(2): 157-167, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30249165

RESUMO

The objective of this study was to examine the potential of poultry wastes to be used as feedstock in non-catalytic and catalytic fast pyrolysis processes, which is a continuation of our previous research on their conversion into biofuel via slow pyrolysis and hydrothermal conversion. Both poultry meal and poultry litter were examined, initially in a fixed bed bench-scale reactor using ZSM-5 and MgO as catalysts. Pyrolysis of poultry meal yielded high amounts of bio-oil, while pyrolysis of poultry litter yielded high amounts of solid residue owing to its high ash content. MgO was found to be more effective for the deoxygenation of bio-oil and reduction of undesirable compounds, by converting mainly the acids in the pyrolysis vapours of poultry meal into aliphatic hydrocarbons. ZSM-5 favoured the formation of both aromatic compounds and undesirable nitrogenous compounds. Overall, all bio-oil samples from the pyrolysis of poultry wastes contained relatively high amounts of nitrogen compared with bio-oils from lignocellulosic biomass, ca. 9 wt.% in the case of poultry meal and ca. 5-8 wt.% in the case of poultry litter. This was attributed to the high nitrogen content of the poultry wastes, unlike that of lignocellulosic biomass. Poultry meal yielded the highest amount of bio-oil and was selected as optimum feedstock to be scaled-up in a semi-pilot scale fluidised bed biomass pyrolysis unit with the ZSM-5 catalyst. Pyrolysis in the fluidised bed reactor was more efficient for deoxygenation of the bio-oil vapours, as evidenced from the lower oxygen content of the bio-oil.


Assuntos
Biocombustíveis , Resíduos Industriais , Animais , Biomassa , Catálise , Aves Domésticas , Pirólise
18.
Bull Environ Contam Toxicol ; 100(2): 298-302, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29188326

RESUMO

This study investigated the effect of two willow (Salix spp.) biochars, produced using either fast- or slow-pyrolysis, on the bioavailability of metsulfuron and sulfentrazone herbicides in soil. Five rates (0%, 1%, 2%, 3%, and 4%; w/w) of each biochar were used, along with varying rates of metsulfuron (0-3.2 µg ai kg-1) and sulfentrazone (0-200 µg ai kg-1), followed by a sugar beet bioassay. The fast-pyrolysis biochar had minimal effect, while the slow-pyrolysis biochar decreased the bioavailability of both herbicides. Despite using the same feedstock, the two biochars had different physical and chemical properties, of which specific surface area was most contrasting (3.0 and 175 m2 g-1 for fast- and slow-pyrolysis biochar, respectively). Increased anionic herbicide adsorption associated with greater surface area of the slow-pyrolysis biochar is considered to be the primary mechanism responsible for reducing herbicide bioavailability with this biochar.


Assuntos
Carvão Vegetal/química , Herbicidas/análise , Poluentes do Solo/análise , Sulfonamidas/análise , Triazóis/análise , Adsorção , Disponibilidade Biológica , Herbicidas/química , Salix/química , Solo/química , Poluentes do Solo/química
19.
Appl Microbiol Biotechnol ; 100(9): 4241-51, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26995605

RESUMO

Acetic acid derived from fast pyrolysis of lignocellulosic biomass is a promising substrate for microalgae fermentation for producing lipid-rich biomass. However, crude pyrolytic acetic acid solution contains various toxic compounds inhibiting algal growth. It was hypothesized that such an inhibition was mainly due to the cell membrane damage. In this work, the cell membrane property of algal cells was evaluated at various conditions to elucidate the mechanisms of inhibition caused by the pyrolytic substrate solution. It was found that acetic acid itself served a carbon source for boosting algal cell growth but also caused cell membrane leakage. The acetic acid concentration for highest cell density was 4 g/L. Over-liming treatment of crude pyrolytic acetic acid increased the algal growth with a concurrent reduction of cell membrane leakage. Directed evolution of algal strain enhanced cell membrane integrity and thus increased its tolerance to the toxicity of the crude substrate. Statistical analysis shows that there was a significant correlation between the cell growth performance and the cell membrane integrity (leakage) but not membrane fluidity. The addition of cyto-protectants such as Pluronic F68 and Pluronic F127 enhanced the cell membrane integrity and thus, resulted in enhanced cell growth. The transmission electron microscopy (TEM) of algal cells visually confirmed the cell membrane damage as the mechanism of the pyrolytic substrate inhibition. Collectively, this work indicates that the cell membrane is one major reason for the toxicity of pyrolytic acetic acid when being used for algal culture. To better use this pyrolytic substrate, cell membrane of the microorganism needs to be strengthened through either strain improvement or addition of membrane protectant reagents.


Assuntos
Ácido Acético/metabolismo , Ácido Acético/toxicidade , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/metabolismo , Membrana Celular/ultraestrutura , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/ultraestrutura , Citoproteção , Microscopia Eletrônica de Transmissão , Poloxâmero , Tensoativos/metabolismo
20.
J Sci Food Agric ; 96(15): 4840-4849, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27116042

RESUMO

In recent years biochar has been demonstrated to be a useful amendment to sequester carbon and reduce greenhouse gas emission from the soil to the atmosphere. Hence it can help to mitigate global environment change. Some studies have shown that biochar addition to agricultural soils increases crop production. The mechanisms involved are: increased soil aeration and water-holding capacity, enhanced microbial activity and plant nutrient status in soil, and alteration of some important soil chemical properties. This review provides an in-depth consideration of the production, characterization and agricultural use of different biochars. Biochar is a complex organic material and its characteristics vary with production conditions and the feedstock used. The agronomic benefits of biochar solely depend upon the use of particular types of biochar with proper field application rate under appropriate soil types and conditions. © 2016 Society of Chemical Industry.


Assuntos
Agricultura/métodos , Carvão Vegetal , Produtos Agrícolas/crescimento & desenvolvimento , Solo/química , Carbono/química , Carvão Vegetal/química , Mudança Climática , Conservação dos Recursos Naturais/métodos , Poluição Ambiental/prevenção & controle , Fertilizantes , Efeito Estufa/prevenção & controle , Microbiologia do Solo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA