Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Proteome Res ; 22(7): 2293-2306, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37329324

RESUMO

As a vision-threatening complication of diabetes mellitus (DM), proliferative diabetic retinopathy (PDR) is associated with sustained metabolic disorders. Herein, we collected the vitreous cavity fluid of 49 patients with PDR and 23 control subjects without DM for metabolomics and lipidomics analyses. Multivariate statistical methods were performed to explore relationships between samples. For each group of metabolites, gene set variation analysis scores were generated, and we constructed a lipid network by using weighted gene co-expression network analysis. The association between lipid co-expression modules and metabolite set scores was investigated using the two-way orthogonal partial least squares (O2PLS) model. A total of 390 lipids and 314 metabolites were identified. Multivariate statistical analysis revealed significant vitreous metabolic and lipid differences between PDR and controls. Pathway analysis showed that 8 metabolic processes might be associated with the development of PDR, and 14 lipid species were found to be altered in PDR patients. Combining metabolomics and lipidomics, we identified fatty acid desaturase 2 (FADS2) as an important potential contributor to the pathogenesis of PDR. Collectively, this study integrates vitreous metabolomics and lipidomics to comprehensively unravel metabolic dysregulation and identifies genetic variants associated with altered lipid species in the mechanistic pathways for PDR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Lipidômica , Corpo Vítreo/metabolismo , Metabolômica , Lipídeos
2.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445816

RESUMO

Highly unsaturated fatty acids (HUFAs) are essential for mammalian health, development and growth. However, most mammals, including humans, are incapable of synthesizing n-6 and n-3 HUFAs. Fish can convert C18 unsaturated fatty acids into n-6 and n-3 HUFAs via fatty acid desaturase (Fads), in which Fads2 is a key enzyme in HUFA biosynthesis. The allo-tetraploid common carp theoretically encode two duplicated fads2 genes. The expression patterns and desaturase functions of these two homologous genes are still unknown. In this study, the full length of the fads2a and fads2b were identified in common carp (Cyprinus carpio). Expression analyses indicate that both genes were mainly expressed in the liver and the expression of fads2b is higher than fads2a at different developmental stages in carp embryos. Heterogenous expression and 3D docking analyses suggested that Fads2b demonstrated stronger ∆6 and ∆5 desaturase activities than Fads2a. The core promotor regions of fads2a and fads2b were characterized and found to have different potential transcriptional binding sites. These results revealed the same desaturase functions, but different activities of two homologues of fasd2 genes in common carp. The data showed that fads2b played a more important role in HUFA synthesis through both expression and functional analyses.


Assuntos
Carpas , Ácidos Graxos Ômega-3 , Animais , Humanos , Carpas/genética , Carpas/metabolismo , Linoleoil-CoA Desaturase , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Mamíferos/metabolismo
3.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(1): 158-163, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35300779

RESUMO

The fatty acid desaturase 2 (FADS2) gene encodes delta-6 desaturase (D6D) and is a member of the fatty acid desaturase gene family.D6D is the key enzyme catalyzing the transformation of linoleic acid and α-linolenic acid to long-chain polyunsaturated fatty acid (LC-PUFA).LC-PUFA play a crucial role in regulating the glycolipid metabolism of living organisms.In recent years,the activity of D6D and the single nucleotide polymorphism (SNP) of FADS2 gene have become a hot topic in the research on glycolipid metabolism.This article reviews the role of FADS2 gene in glycolipid metabolism.


Assuntos
Ácidos Graxos Dessaturases , Glicolipídeos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Glicolipídeos/metabolismo , Humanos , Polimorfismo de Nucleotídeo Único
4.
J Lipid Res ; 60(8): 1396-1409, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31167809

RESUMO

Mammalian ω3- and ω6-PUFAs are synthesized from essential fatty acids (EFAs) or supplied by the diet. PUFAs are constitutive elements of membrane architecture and precursors of lipid signaling molecules. EFAs and long-chain (LC)-PUFAs are precursors in the synthesis of endocannabinoid ligands of Gi/o protein-coupled cannabinoid receptor (CB)1 and CB2 in the endocannabinoid system, which critically regulate energy homeostasis as the metabolic signaling system in hypothalamic neuronal circuits and behavioral parameters. We utilized the auxotrophic fatty acid desaturase 2-deficient (fads2-/-) mouse, deficient in LC-PUFA synthesis, to follow the age-dependent dynamics of the PUFA pattern in the CNS-phospholipidome in unbiased dietary studies of three cohorts on sustained LC-PUFA-free ω6-arachidonic acid- and DHA-supplemented diets and their impact on the precursor pool of CB1 ligands. We discovered the transformation of eicosa-all cis-5,11,14-trienoic acid, uncommon in mammalian lipidomes, into two novel endocannabinoids, 20:35,11,14-ethanolamide and 2-20:35,11,14-glycerol. Their function as ligands of CB1 has been characterized in HEK293 cells. Labeling experiments excluded Δ8-desaturase activity and proved the position specificity of FADS2. The fads2-/- mutant might serve as an unbiased model in vivo in the development of novel CB1 agonists and antagonists.


Assuntos
Endocanabinoides/metabolismo , Ácidos Graxos Ômega-3/deficiência , Ácidos Graxos Ômega-6/deficiência , Receptor CB1 de Canabinoide/agonistas , Animais , Endocanabinoides/genética , Ácidos Graxos Dessaturases/deficiência , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo
5.
Br J Nutr ; 121(11): 1223-1234, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30854986

RESUMO

Studies have shown that the reduction in serum TAG concentrations with long-chain n-3 fatty acid supplementation is highly variable among individuals. The objectives of the present study were to compare the proportions of individuals whose TAG concentrations lowered after high-dose DHA and EPA, and to identify the predictors of response to both modalities. In a double-blind, controlled, crossover study, 154 men and women were randomised to three supplemented phases of 10 weeks each: (1) 2·7 g/d of DHA, (2) 2·7 g/d of EPA and (3) 3 g/d of maize oil, separated by 9-week washouts. As secondary analyses, the mean intra-individual variation in TAG was calculated using the standard deviation from the mean of four off-treatment samples. The response remained within the intra-individual variation (±0·25 mmol/l) in 47 and 57 % of participants after DHA and EPA, respectively. Although there was a greater proportion of participants with a reduction >0·25 mmol/l after DHA than after EPA (45 υ. 32 %; P 0·25 mmol/l after both DHA and EPA had higher non-HDL-cholesterol, TAG and insulin concentrations compared with other responders at baseline (all P < 0·05). In conclusion, supplementation with 2·7 g/d DHA or EPA had no meaningful effect on TAG concentrations in a large proportion of individuals with normal mean TAG concentrations at baseline. Although DHA lowered TAG in a greater proportion of individuals compared with EPA, the magnitude of TAG lowering among them was similar.


Assuntos
Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Hipolipemiantes/administração & dosagem , Triglicerídeos/sangue , Idoso , Doenças Cardiovasculares/etiologia , Colesterol/sangue , Óleo de Milho , Estudos Cross-Over , Dessaturase de Ácido Graxo Delta-5 , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
6.
Br J Nutr ; 118(12): 1010-1022, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29151385

RESUMO

The replacement of fish oil (FO) with vegetable oil (VO) in feed formulations reduces the availability of n-3 long-chain PUFA (LC-PUFA) to marine fish such as gilthead seabream. The aim of this study was to examine compositional and physiological responses to a dietary gradient of n-3 LC-PUFA. Six iso-energetic and iso-nitrogenous diets (D1-D6) were fed to seabream, with the added oil being a blend of FO and VO to achieve a dietary gradient of n-3 LC-PUFA. Fish were sampled after 4 months feeding, to determine biochemical composition, tissue fatty acid concentrations and lipid metabolic gene expression. The results indicated a disturbance to lipid metabolism, with fat in the liver increased and fat deposits in the viscera reduced. Tissue fatty acid profiles were altered towards the fatty acid compositions of the diets. There was evidence of endogenous modification of dietary PUFA in the liver which correlated with the expression of fatty acid desaturase 2 (fads2). Expression of sterol regulatory element binding protein 1 (srebp1), fads2 and fatty acid synthase increased in the liver, whereas PPARα1 pathways appeared to be supressed by dietary VO in a concentration-dependent manner. The effects in lipogenic genes appear to become measurable in D1-D3, which agrees with the weight gain data suggesting that disturbances to energy metabolism and lipogenesis may be related to performance differences. These findings suggested that suppression of ß-oxidation and stimulation of srebp1-mediated lipogenesis may play a role in contributing toward steatosis in fish fed n-3 LC-PUFA deficient diets.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Óleos de Peixe/administração & dosagem , Óleo de Brassica napus/administração & dosagem , Dourada/metabolismo , Óleo de Soja/administração & dosagem , Ração Animal/análise , Animais , Dieta/veterinária , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
7.
Br J Nutr ; 118(7): 500-512, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28965514

RESUMO

Nutrition during periconception and early development can modulate metabolic routes to prepare the offspring for adverse conditions through a process known as nutritional programming. In gilthead sea bream, replacement of fish oil (FO) with linseed oil (LO) in broodstock diets improves growth in the 4-month-old offspring challenged with low-FO and low-fishmeal (FM) diets for 1 month. The present study further investigated the effects of broodstock feeding on the same offspring when they were 16 months old and were challenged for a second time with the low-FM and low-FO diet for 2 months. The results showed that replacement of parental moderate-FO feeding with LO, combined with juvenile feeding at 4 months old with low-FM and low-FO diets, significantly (P<0·05) improved offspring growth and feed utilisation of low-FM/FO diets even when they were 16 months old: that is, when they were on the verge of their first reproductive season. Liver fatty acid composition was significantly affected by broodstock or reminder diets as well as by their interaction. Moreover, the reduction of long-chain PUFA and increase in α-linolenic acid and linoleic acid in broodstock diets lead to a significant down-regulation of hepatic lipoprotein lipase (P<0·001) and elongation of very long-chain fatty acids protein 6 (P<0·01). Besides, fatty acid desaturase 2 values were positively correlated to hepatic levels of 18 : 4n-3, 18 : 3n-6, 20 : 5n-3, 22 : 6n-3 and 22 : 5n-6. Thus, this study demonstrated the long-term nutritional programming of gilthead sea bream through broodstock feeding, the effect of feeding a 'reminder' diet during juvenile stages to improve utilisation of low-FM/FO diets and fish growth as well as the regulation of gene expression along the fish's life-cycle.


Assuntos
Ração Animal/análise , Dieta/veterinária , Metabolismo dos Lipídeos , Dourada/crescimento & desenvolvimento , Animais , Regulação para Baixo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/administração & dosagem , Ácidos Graxos Insaturados/administração & dosagem , Óleos de Peixe/administração & dosagem , Ácido Linoleico/administração & dosagem , Óleo de Semente do Linho/administração & dosagem , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Fígado/metabolismo , Ácido alfa-Linolênico/administração & dosagem
8.
J Lipid Res ; 57(11): 1995-2004, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27613800

RESUMO

In mammals, because they share a single synthetic pathway, n-6/n-3 ratios of dietary PUFAs impact tissue arachidonic acid (ARA) and DHA content. Likewise, SNPs in the human fatty acid desaturase (FADS) gene cluster impact tissue ARA and DHA. Here we tested the feasibility of using heterozygous Fads2-null-mice (HET) as an animal model of human FADS polymorphisms. WT and HET mice were fed diets with linoleate/α-linolenate ratios of 1:1, 7:1, and 44:1 at 7% of diet. In WT liver, ARA and DHA in phospholipids varied >2× among dietary groups, reflecting precursor ratios. Unexpectedly, ARA content was only <10% lower in HET than in WT livers, when fed the 44:1 diet, likely due to increased Fads1 mRNA in response to reduced Fads2 mRNA in HET. Consistent with the RNA data, C20:3n-6, which is elevated in minor FADS haplotypes in humans, was lower in HET than WT. Diet and genotype had little effect on brain PUFAs even though brain Fads2 mRNA was low in HET. No differences in cytokine mRNA were found among groups under unstimulated conditions. In conclusion, differential PUFA profiles between HET mice and human FADS SNPs suggest low expression of both FADS1 and 2 genes in human minor haplotypes.


Assuntos
Ácidos Graxos Dessaturases/genética , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Insaturados/administração & dosagem , Animais , Ácido Araquidônico , Dessaturase de Ácido Graxo Delta-5 , Dieta , Ácidos Docosa-Hexaenoicos , Ácidos Graxos Dessaturases/biossíntese , Ácidos Graxos Ômega-3/metabolismo , Genótipo , Heterozigoto , Humanos , Camundongos , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/biossíntese
9.
Br J Nutr ; 116(1): 7-18, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27181335

RESUMO

The regulation of lipogenesis mechanisms related to consumption of n-3 PUFA is poorly understood. The aim of the present study was to find out whether α-linolenic acid (ALA) or DHA uptake can have an effect on activities and gene expressions of enzymes involved in lipid metabolism in the liver, subcutaneous adipose tissue and longissimus dorsi (LD) muscle of growing-finishing pigs. Six groups of ten pigs received one of six experimental diets supplemented with rapeseed oil in the control diet, extruded linseed, microalgae or a mixture of both to implement different levels of ALA and DHA with the same content in total n-3. Results were analysed for linear and quadratic effects of DHA intake. The results showed that activities of malic enzyme (ME) and fatty acid synthase (FAS) decreased linearly in the liver with dietary DHA. Although the expression of the genes of these enzymes and their activities were poorly correlated, ME and FAS expressions also decreased linearly with DHA intake. The intake of DHA down-regulates the expressions of other genes involved in fatty acid (FA) metabolism in some tissues of pigs, such as fatty acid desaturase 2 and sterol-regulatory element binding transcription factor 1 in the liver and 2,4-dienoyl CoA reductase 2 in the LD muscle. FA oxidation in the LD muscle and FA synthesis decreased in the liver with increasing amount of dietary DHA, whereas a retroconversion of DHA into EPA seems to be set up in this last tissue.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Regulação da Expressão Gênica/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Suínos/fisiologia , Ácido alfa-Linolênico/farmacologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Graxo Sintases/metabolismo , Feminino , Masculino , Ácido alfa-Linolênico/administração & dosagem
10.
J Lipid Res ; 56(6): 1191-205, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25921305

RESUMO

Echium oil (EO), which is enriched in 18:4 n-3, the immediate product of fatty acid desaturase 2 (FADS2) desaturation of 18:3 n-3, is as atheroprotective as fish oil (FO). The objective of this study was to determine whether botanical oils enriched in the FADS2 products 18:3 n-6 versus 18:4 n-3 are equally atheroprotective. LDL receptor KO mice were fed one of four atherogenic diets containing 0.2% cholesterol and 10% calories as palm oil (PO) plus 10% calories as: 1) PO; 2) borage oil (BO; 18:3 n-6 enriched); 3) EO (18:4 n-3 enriched); or 4) FO for 16 weeks. Mice fed BO, EO, and FO versus PO had significantly lower plasma total and VLDL cholesterol concentrations; hepatic neutral lipid content and inflammation, aortic CE content, aortic root intimal area and macrophage content; and peritoneal macrophage inflammation, CE content, and ex vivo chemotaxis. Atheromas lacked oxidized CEs despite abundant generation of macrophage 12/15 lipooxygenase-derived metabolites. We conclude that botanical oils enriched in 18:3 n-6 and 18:4 n-3 PUFAs beyond the rate-limiting FADS2 enzyme are equally effective in preventing atherosclerosis and hepatosteatosis compared with saturated/monounsaturated fat due to cellular enrichment of ≥20 PUFAs, reduced plasma VLDL, and attenuated macrophage inflammation.


Assuntos
Aterosclerose/dietoterapia , Ácidos Graxos Dessaturases/metabolismo , Fígado/metabolismo , Óleos de Plantas/administração & dosagem , Receptores de LDL/genética , Animais , Aterosclerose/metabolismo , VLDL-Colesterol/sangue , Dieta Aterogênica , Echium/química , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-6/administração & dosagem , Ácidos Graxos Ômega-6/química , Fígado Gorduroso/dietoterapia , Óleos de Peixe/administração & dosagem , Óleos de Peixe/química , Humanos , Fígado/efeitos dos fármacos , Camundongos , Camundongos Knockout , Óleo de Palmeira , Óleos de Plantas/química , Receptores de LDL/metabolismo , Ácido gama-Linolênico/administração & dosagem , Ácido gama-Linolênico/química
11.
Sci Rep ; 14(1): 13116, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849435

RESUMO

Stearoyl-CoA desaturase 1 (SCD1) is an attractive target for cancer therapy. However, the clinical efficacy of SCD1 inhibitor monotherapy is limited. There is thus a need to elucidate the mechanisms of resistance to SCD1 inhibition and develop new therapeutic strategies for combination therapy. In this study, we investigated the molecular mechanisms by which cancer cells acquire resistance to endoplasmic reticulum (ER) stress-dependent cancer cell death induced by SCD1 inhibition. SCD1 inhibitor-sensitive and -resistant cancer cells were treated with SCD1 inhibitors in vitro, and SCD1 inhibitor-sensitive cancer cells accumulated palmitic acid and underwent ER stress response-induced cell death. Conversely, SCD1-resistant cancer cells did not undergo ER stress response-induced cell death because fatty acid desaturase 2 (FADS2) eliminated the accumulation of palmitic acid. Furthermore, genetic depletion using siRNA showed that FADS2 is a key determinant of sensitivity/resistance of cancer cells to SCD1 inhibitor. A549 cells, an SCD1 inhibitor-resistant cancer cell line, underwent ER stress-dependent cancer cell death upon dual inhibition of SCD1 and FADS2. Thus, combination therapy with SCD1 inhibition and FADS2 inhibition is potentially a new cancer therapeutic strategy targeting fatty acid metabolism.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Estresse do Retículo Endoplasmático , Ácidos Graxos Dessaturases , Estearoil-CoA Dessaturase , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/antagonistas & inibidores , Humanos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Linhagem Celular Tumoral , Células A549 , Ácido Palmítico/farmacologia , Morte Celular/efeitos dos fármacos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Neoplasias/tratamento farmacológico
12.
BMC Nutr ; 8(1): 114, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253802

RESUMO

BACKGROUND: The dietary glycemic index (GI) has been introduced as a novel index to elucidate the potential of foods to increase postprandial glucose. According to the limited available data about the association of GI with cardio-metabolic risk factors such as lipid profile, blood glucose markers, and blood pressure in developing countries, the current study was conducted to investigate this association in apparently obese individuals. METHOD AND MATERIAL: Three hundred forty-seven obese adults were recruited in the present cross-sectional study. A validated 147-food item semi-quantitative food frequency questionnaire (FFQ) was used to evaluate the usual dietary intake of study participants. Dietary GI was calculated using the international GI database. Fatty acid desaturase (FADs)2 gene variants were determined according to polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). ANOVA was used to compare study variables across different tertile of GI. RESULTS: We found significant differences in terms of anthropometric parameters [weight (P = 0.038), waist circumference (WC) (P = 0.023), weight to hip ratio (WHR) (P = 0.007), and fat-free mass (FFM) (P < 0.001)] between different tertiles of GI. Similarly, energy and macronutrient intakes had a significant difference across dietary GI, and subjects with a higher dietary intake of energy and macronutrients (carbohydrate, protein, and total fat) were assigned to the third tertile of dietary GI (P < 0.001). While there was no significant difference in terms of cardio-metabolic risk factors in different dietary GI tertiles. Moreover, the total GI score was non-significantly higher in the TT genotype of FADS2 gene polymorphism compared with other genotypes. While no significant difference was observed between FADS2 genotype frequencies in different GI tertiles. CONCLUSION: Calculated dietary GI was associated with several cardio-metabolic risk factors in obese individuals. However, further prospective studies and clinical trials are needed to confirm our findings.

13.
JHEP Rep ; 4(6): 100479, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35469167

RESUMO

Lipids are a complex and diverse group of molecules with crucial roles in many physiological processes, as well as in the onset, progression, and maintenance of cancers. Fatty acids and cholesterol are the building blocks of lipids, orchestrating these crucial metabolic processes. In the liver, lipid alterations are prevalent as a cause and consequence of chronic hepatitis B and C virus infections, alcoholic hepatitis, and non-alcoholic fatty liver disease and steatohepatitis. Recent developments in lipidomics have also revealed that dynamic changes in triacylglycerols, phospholipids, sphingolipids, ceramides, fatty acids, and cholesterol are involved in the development and progression of primary liver cancer. Accordingly, the transcriptional landscape of lipid metabolism suggests a carcinogenic role of increasing fatty acids and sterol synthesis. However, limited mechanistic insights into the complex nature of the hepatic lipidome have so far hindered the development of effective therapies.

14.
J Agric Food Chem ; 69(19): 5452-5462, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33969684

RESUMO

Fatty acid desaturase-2 (FAD2) is a key enzyme in the production of polyunsaturated fatty acids in plants. RNAi technology can reduce the expression of FAD2 genes in Brassica napus seeds and acquire transgenic B. napus plants with a high oleic acid content, but the effect of seed-specific inhibition of FAD2 expression on B. napus seed metabolites is not clear. Here we use widely targeted metabolomics to investigate the metabolites of normal-oleic-acid rapeseed (OA) and high-oleic-acid rapeseed (HOA) seeds, resulting in a total of 726 metabolites being detected. Among them, 24 differential metabolites were significantly downregulated and 88 differential metabolites were significantly upregulated in HOA rapeseed. In further lipid profile experiments, more lipids in B. napus seeds were accurately quantified. The contents of glycolipids and phospholipids that contain C18:1 increased significantly and C18:2 decreased because FAD2 expression was inhibited. The changes in the expression of key genes in related pathways were also consistent with the changes in metabolites. The insertion site of the ihpRNA plant expression vector was reconfirmed through genomewide resequencing, and the transgenic event did not change the sequence of FAD2 genes. There was no significant difference in the germination rate and germination potential between OA and HOA rapeseed seeds because the seed-specific ihpRNA plant expression vector did not affect other stages of plant growth. This work provides a theoretical and practical guidance for subsequent molecular breeding of high OA B. napus.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica rapa/genética , Ácidos Graxos Dessaturases/genética , Plantas Geneticamente Modificadas/genética , Sementes/genética
15.
Mar Biotechnol (NY) ; 23(3): 472-481, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34176006

RESUMO

Long-chain (≥ C20) polyunsaturated fatty acids (LC-PUFA), such as eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), are necessary for human health and are obtained from marine fish-derived oils. Marine fish are LC-PUFA-rich animals; however, many of them require LC-PUFA for growth. Therefore, it is suggested that they do not have sufficient ability to biosynthesize LC-PUFA. To evaluate in vivo LC-PUFA synthetic activity in fish cells, fish-derived cell lines from red sea bream (Pagrus major, PMS and PMF), Japanese flounder (Paralichthys olivaceus, HINAE), and zebrafish (Danio rerio, BRF41) were incubated with n-3 fatty acids labeled by radioisotopes or stable isotopes, and then, n-3 PUFA were analyzed by thin-layer chromatography or liquid chromatography-mass spectrometry. Labeled EPA and DHA were biosynthesized from labeled α-linolenic acid (18:3n-3) in BRF41, whereas they were not detected in PMS, PMF, or HINAE cells. We next cloned the fatty acid desaturase 2 (Fads2) cDNAs from PMF cells and zebrafish, expressed in budding yeasts, and then analyzed the substrate specificities of enzymes. As a result, we found that Fads2 from PMF cells was a ∆6/∆8 desaturase. Collectively, our study indicates that cell lines from red sea bream and Japanese flounder were not able to synthesize EPA or DHA by themselves, possibly due to the lack of ∆5 desaturase activity. Furthermore, this study provides a sensitive and reproducible non-radioactive method for evaluating LC-PUFA synthesis in fish cells using a stable isotope and liquid chromatography-mass spectrometry.


Assuntos
Ácidos Graxos Dessaturases/deficiência , Ácidos Graxos Insaturados/biossíntese , Linguado/metabolismo , Dourada/metabolismo , Peixe-Zebra/metabolismo , Animais , Linhagem Celular , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Ômega-3/metabolismo
16.
Adv Nutr ; 12(3): 980-994, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186986

RESUMO

Deficiencies in the n-3 (ω-3) long-chain PUFAs (LC-PUFAs) EPA and DHA are associated with increased risk for the development of numerous diseases. Although n-3 LC-PUFAs can be obtained by consuming marine products, they are also synthesized endogenously through a biochemical pathway regulated by the Δ-5/Δ-6 desaturase and elongase 2/5 enzymes. This narrative review collates evidence from the past 40 y demonstrating that mRNA expression and activity of desaturase and elongase enzymes are influenced by numerous dietary components, including macronutrients, micronutrients, and polyphenols. Specifically, we highlight that both the quantity and the composition of dietary fats, carbohydrates, and proteins can differentially regulate desaturase pathway activity. Furthermore, desaturase and elongase mRNA levels and enzyme activities are also influenced by micronutrients (folate, vitamin B-12, vitamin A), trace minerals (iron, zinc), and polyphenols (resveratrol, isoflavones). Understanding how these various dietary components influence LC-PUFA synthesis will help further advance our understanding of how dietary patterns, ranging from caloric excesses to micronutrient deficiencies, influence disease risks.


Assuntos
Micronutrientes , Polifenóis , Dieta , Ácidos Graxos Dessaturases/genética , Humanos , Nutrientes
17.
Anim Biosci ; 34(4): 662-669, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32810939

RESUMO

OBJECTIVE: Effects of linseed oil (LO) supplementation on the fat content and fatty acid profile of breast meat, and the expression of three genes in the liver, breast muscle and fat tissues of commercial 154-day-old hybrid male turkeys were investigated. METHODS: The animals in the control group were fed a commercially available feed and received no LO supplementation (n = 70), whereas animals in the LO group (n = 70) were fed the same basic diet supplemented with LO (day 15 to 21, 0.5%; day 22 to 112, 1%). The effect of dietary LO supplementation on fatty acid composition of breast muscle was examined by gas chromatography, and the expression of fatty acid desaturase 2 (FADS2), peroxisome proliferator activated receptor gamma (PPARγ), and insulin-like growth factor 1 (IGF1) genes was analysed by means of quantitative reverse transcription polymerase chain reaction. RESULTS: The LO supplementation affected the fatty acid composition of breast muscle. Hepatic FADS2 levels were considerably lower (p<0.001), while adipose tissue expression was higher (p<0.05) in the control compared to the LO group. The PPARγ expression was lower (p<0.05), whereas IGF1 was higher (p<0.05) in the fat of control animals. There were no significant (p>0.05) differences in FADS2, PPARγ, and IGF1 gene expressions of breast muscle; however, omega-6/omega-3 ratio of breast muscle substantially decreased (p<0.001) in the LO group compared to control. CONCLUSION: Fatty acid composition of breast meat was positively influenced by LO supplementation without deterioration of fattening parameters. Remarkably, increased FADS2 expression in the liver of LO supplemented animals was associated with a significantly decreased omega-6/omega-3 ratio, providing a potentially healthier meat product for human consumption. Increased PPARγ expression in fat tissue of the LO group was not associated with fat content of muscle, whereas a decreased IGF1 expression in fat tissue was associated with a trend of decreasing fat content in muscle of the experimental LO group.

18.
Am J Cancer Res ; 10(12): 4098-4111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33414988

RESUMO

As an important hallmark of metabolic reprogramming in cancer, a disruption in fatty acid metabolism contributes to tumor proliferation, cell migration and invasion, and other tumor cell behaviors. In recent years, more and more studies have been conducted on fatty acid desaturase 2 (FADS2), the first rate-limiting enzyme for the biosynthesis of polyunsaturated fatty acids. These studies have found that FADS2 is abnormally expressed in cancers of the breast, lung, liver, and esophagus; melanoma; leukemia; and other malignant tumors. Furthermore, its expression is significantly correlated with tumor proliferation, cell migration and invasion, clonal formation, angiogenesis, ferroptosis, resistance to radiotherapy, histological grade, metastasis to lymph nodes, clinical stage, and prognosis. The abnormal expression of FADS2 results in an imbalance of cell membrane phospholipids, which disrupts the fluidity of the membrane structure and the transmission of signals and promotes the production of proinflammatory factors and arachidonic acid (AA) metabolites, ultimately harming human health. This article aims to systematically review the structural characteristics of FADS2; its function, expression, and mechanism of action; and the factors affecting its activity. This review also provides new ideas and strategies for the development of treatments aimed at the metabolic reprogramming of tumors.

19.
Animals (Basel) ; 10(4)2020 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-32290630

RESUMO

This study investigated the single nucleotide polymorphisms (SNPs) of Fatty acid desaturase 2 (FADS2) gene and further explored their genetic effects on conventionally collected milk production traits in Chinese Holstein cows using 18,264 test-day records of 841 cows. One missense mutation c. 908 C > T (SNP site in the complementary DNA sequence), which caused an amino acid change from alanine to valine (294Ala > Val), and two 3' untranslated region (UTR) SNPs, c.1571 G > A and c.2776 A > G were finally identified. The SNP c.908 C > T was significantly associated with test-day milk yield, fat percentage and 305-day milk, fat and protein yield. In particular, the T allele of the SNP c.908 C > T showed a significant association with decreased somatic cell score (SCS) in the investigated population. Significant relationship between the SNP c.1571 G > A and 305-day milk yield showed that genotype GG was linked to the highest milk yield. Substituting the allele G for A at the c.2776 A > G locus resulted in a decrease of protein percentage. Our results demonstrated that FADS2 was an interesting candidate for selection to increase milk production and improve resistance against mastitis.

20.
J Crohns Colitis ; 14(11): 1581-1599, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-32365195

RESUMO

BACKGROUND AND AIMS: The aim of this study was to investigate the metabolic profile of mesenteric adipocytes and the correlations between key metabolic changes and local inflammation in the context of Crohn's disease [CD]. METHODS: Metabolic dysfunction was shown to be regulated by fatty acid desaturase-2 [FADS2], through metabolomics and functional analyses of mesenteric adipose tissue biopsies and primary mesenteric adipocytes isolated from surgical specimens collected from CD patients and control subjects. FADS2 was overexpressed in vitro and in vivo using a lentiviral vector and an adeno-associated virus [AAV], respectively. The interaction between mesenteric adipocytes and inflammation responses was evaluated by establishing a cell coculture system and a FADS2-AAV treated animal model; 3T3-L1 cells were used to elucidate the mechanism underlying FADS2 deregulation. RESULTS: We observed significant changes in the levels of metabolites involved in the multi-step synthesis of long-chain polyunsaturated fatty acids [PUFAs]. Gas chromatography analysis revealed impaired desaturation fluxes towards the n-6 and n-3 pathways, which are associated with reduced FADS2 activity in human mesentery tissue. Decreased FADS2 expression at both mRNA and protein levels was confirmed in surgical specimens. The restoration of FADS2 expression, which allows for the endogenous conversion of n-3 fatty acids into proresolving lipid mediators, resulted in a significant reduction in pro-inflammatory macrophage infiltration and attenuated expression of inflammatory cytokines or adipokines. CONCLUSIONS: These findings indicate that impaired fatty acid desaturation and lipid mediator imbalance within mesenteric adipose tissue contributes to chronic inflammation in CD. The therapeutic role of FADS2 may lead to improved CD treatment.


Assuntos
Adipócitos/metabolismo , Doença de Crohn/metabolismo , Ácidos Graxos Dessaturases/análise , Ácidos Graxos Insaturados/biossíntese , Mesentério/patologia , Células 3T3-L1 , Tecido Adiposo/patologia , Animais , Doença de Crohn/patologia , Doença de Crohn/cirurgia , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Inflamação/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA