Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535680

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) and its interaction with many metabolic pathways raises global public health concerns. This study aimed to determine the therapeutic effects of Pyrroloquinoline quinone (PQQ, provided by PQQ.Na2) on MAFLD in a chick model and primary chicken hepatocytes with a focus on lipid metabolism, anti-oxidative capacity, and mitochondrial biogenesis. The MAFLD chick model was established on laying hens by feeding them a high-energy low-protein (HELP) diet. Primary hepatocytes isolated from the liver of laying hens were induced for steatosis by free fatty acids (FFA) and for oxidative stress by hydrogen peroxide (H2O2). In the MAFLD chick model, the dietary supplementation of PQQ conspicuously ameliorated the negative effects of the HELP diet on liver biological functions, suppressed the progression of MAFLD mainly through enhanced lipid metabolism and protection of liver from oxidative injury. In the steatosis and oxidative stress cell models, PQQ functions in the improvement of the lipid metabolism and hepatocytes tolerance to fatty degradation and oxidative damage by enhancing mitochondrial biogenesis and then increasing the anti-oxidative activity and anti-apoptosis capacity. At both the cellular and individual levels, PQQ was demonstrated to exert protective effects of hepatocyte and liver from fat accumulation through the improvement of mitochondrial biogenesis and maintenance of redox homeostasis. The key findings of the present study provide an in-depth knowledge on the ameliorative effects of PQQ on the progression of fatty liver and its mechanism of action, thus providing a theoretical basis for the application of PQQ, as an effective nutrient, into the prevention of MAFLD.


Assuntos
Antioxidantes/química , Dieta Hiperlipídica , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos , Doenças Metabólicas/metabolismo , Cofator PQQ/química , Ração Animal , Animais , Apoptose , Sobrevivência Celular , Galinhas , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Peróxido de Hidrogênio/farmacologia , Fígado/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo
2.
Br J Nutr ; 116(1): 35-44, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27138530

RESUMO

High-producing dairy cows enter a period of negative energy balance during the first weeks of lactation. Energy intake is usually sufficient to cover the increase in energy requirements for fetal growth during the period before calving, but meeting the demand for energy is often difficult during the early stages of lactation. A catabolic state predominates during the transition period, leading to the mobilisation of energy reserves (NEFA and amino acids) that are utilised mainly by the liver and muscle. Increased uptake of mobilised NEFA by the liver, combined with the limited capacity of hepatocytes to either oxidise fatty acids for energy or to incorporate esterified fatty acids into VLDL results in fatty liver syndrome and ketosis. This metabolic disturbance can affect the general health, and it causes economic losses. Different nutritional strategies have been used to restrict negative effects associated with the energy challenge in transition cows. The provision of choline in the form of rumen-protected choline (RPC) can potentially improve liver function by increasing VLDL exportation from the liver. RPC increases gene expression of microsomal TAG transfer protein and APOB100 that are required for VLDL synthesis and secretion. Studies with RPC have looked at gene expression, metabolic hormones, metabolite profiles, milk production and postpartum reproduction. A reduction in liver fat and enhanced milk production has been observed with RPC supplementation. However, the effects of RPC on health and reproduction are equivocal, which could reflect the lack of sufficient dose-response studies.


Assuntos
Bovinos/fisiologia , Colina/farmacologia , Lactação/fisiologia , Fígado/efeitos dos fármacos , Rúmen/metabolismo , Animais , Colina/administração & dosagem , Feminino , Gravidez
3.
Poult Sci ; 103(9): 104015, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39003797

RESUMO

High-laying ducks are often fed high-energy, nutritious feeds to maintain high productivity, which predisposes them to lipid metabolism disorders and the development of fatty liver syndrome (FLS), which seriously affects production performance and has a substantial economic impact on the poultry industry. Therefore, it is necessary to elucidate the mechanisms underlying the development of fatty liver syndrome. In this study, seven Shan Partridge ducks, each with fatty liver syndrome and normal laying ducks, were selected, and Hematoxylin Eosin staining (HE staining), Masson staining, and transcriptome sequencing were performed on liver tissue. In addition to exploring key genes and pathways using conventional analysis methods, we constructed the first Kyoto Encyclopedia of Genes and Genomes (KEGG) database-based predefined gene set containing 12,764 pathways and 16,836 genes and further performed gene set enrichment analysis (GSEA) on the liver transcriptome data. Finally, key nodes and biological processes were identified via the protein-protein interaction (PPI) network. The results showed that the liver in the FL group exhibited steatosis and fibrosis, and a total of 3,663 genes with upregulated expression versus 2,296 downregulated genes were screened by conventional analysis. GSEA analysis and PPI network analysis revealed that the liver in the FL group exhibited disruption of the mitochondrial electron transport chain, leading to decreased oxidative phosphorylation and the secretion of excessive proinflammatory factors amid the continuous accumulation of lipids. Under continuous chronic inflammation, cell cycle arrest triggers apoptosis, while fibrosis becomes more severe, and procarcinogenic genes are activated, leading to the continuous development and deterioration of the liver. In conclusion, the predefined gene set constructed in this study can be used for GSEA, and the identified hub genes provide useful reference data and a solid foundation for the study of the genetic regulatory mechanism of fatty liver syndrome in ducks.


Assuntos
Patos , Fígado Gorduroso , Doenças das Aves Domésticas , Transcriptoma , Animais , Patos/genética , Doenças das Aves Domésticas/genética , Fígado Gorduroso/veterinária , Fígado Gorduroso/genética , Feminino , Mapas de Interação de Proteínas , Perfilação da Expressão Gênica/veterinária
4.
Animals (Basel) ; 13(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37570275

RESUMO

The purpose of this study was to explore the effects of MSM and Se-Y on FLS in laying hens during the late peak laying period and the underlying biological mechanisms. Therefore 240 55-week-old Jing-fen No. 6 laying hens were randomly divided into five groups, with eight replicates in each group and six laying hens in each replicate. The hens were fed a basal diet (Control) and diets supplemented with 350 and 700 mg/kg MSM and 25 and 50 mg/kg Se-Y, respectively, for four weeks. The results showed that MSM and Se-Y had no significant effects on the performance of laying hens. With the increasing dosage of MSM and Se-Y, the symptoms of liver steatosis in laying hens were reduced, and MSM and Se-Y could significantly reduce the content of malondialdehyde (MDA) in serum and liver (p < 0.05) and increase the contents of total superoxide dismutase (T-SOD) and glutathione peroxidase (GPX) in serum and liver (p < 0.05). The RNA-seq results showed that 700 mg/kg MSM significantly downregulated the expression levels of the ATP5I, ATP5G1, CYCS, and UQCRQ genes in the liver, and 50 mg/kg Se-Y significantly downregulated the expression levels of MAPK10, SRC, BMP2, and FGF9 genes in the liver. In conclusion, dietary supplementation with MSM and Se-Y can effectively reduce the FLS of laying hens in the late peak laying period and increase their antioxidant capacity. The underlying biological mechanism may be related to the downregulation of genes involved in liver oxidative phosphorylation and inflammation-related pathways.

5.
Asian-Australas J Anim Sci ; 25(8): 1145-52, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25049674

RESUMO

This experiment was conducted with male chicks to investigate the influence of hormones and nutrients on the development of fatty liver syndrome (FLS) as well as the effects of dietary lipotropic factors on hepatic fat accumulation and lipogenic enzyme gene expression. A total of two-hundred sixteen 4-wk-old Hy-Line male chicks were divided into six groups and fed an experimental diet (T1, low-energy diet with low levels of lipotropic factors; T2, high-energy diet with low levels of lipotropic factors; T3 and T5, low-energy diet with high levels of lipotropic factors; T4 and T6, high-energy diet with high levels of lipotropic factors) for six weeks. The chicks in T5 and T6 groups were treated with intramuscular injections of estradiol benzoate for three days prior to biopsy and clinical analysis of FLS. Chicks treated with estrogen had significantly greater liver weights than untreated chicks. The abdominal fat contents were increased in chicks consuming high-energy diets as compared to those consuming low-energy diets. Treatment with estrogen significantly increased the concentrations of serum cholesterol, triacylglycerol and phospholipid (p<0.05). The hepatic triacylglycerol levels were tenfold higher in the estrogen treated chicks than in the untreated chicks. There were no significant differences in malondialdehyde levels between the treatment groups. Estrogen treatment dramatically increased the levels of fatty acid synthetase, acetyl-CoA carboxylase and ApoB mRNA. The results indicated that treatment with exogenous estrogen in growing male chicks induced hepatic fat accumulation, which might be partially due to increased lipogenic enzyme gene expression.

6.
Front Vet Sci ; 9: 868602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433899

RESUMO

This study aimed to evaluate the effects of the spontaneous genetic mutation T329S in flavin-containing monooxygenase 3 (FMO3) on atherosclerosis (AS), fatty liver syndrome (FLS), and adiposity in 90-week-old layers. At 90 weeks of age, 27 FMO3 genotyped Rhode Island White chickens (consisting of nine AA hens, nine AT hens, and nine TT hens) with normal laying performance were selected. The AS lesions, incidence of FLS, fat deposition, metabolic characteristics, and production performance of these egg-layers with different FMO3 genotypes were assessed. The T329S mutation in TT hens reduced the AS lesions (P < 0.01) and altered the plasma metabolic indices more than it did in the AA and AT hens. Furthermore, it reduced the incidence of FLS, hepatic triglyceride deposition (P < 0.05), liver indices (P < 0.05), and fat deposition (P < 0.05) in the subcutis and abdomen of TT hens compared to those of AA and AT hens. Moreover, as an effect of T329S, TT hens laid a higher than average number of eggs and maintained a higher egg-laying rate from 68 to 90 weeks than AA and AT hens. Our study confirmed that the T329S mutation in FMO3 could reduce the development of AS lesions, the incidence of FLS, and fat deposition, which are associated with changes in plasma and hepatic metabolic indices and improvements in the laying performance of older layers. Our results may provide a new strategy for using the T329S mutation to improve the health status and production performance of layers during the late laying period.

7.
J Anim Sci Biotechnol ; 12(1): 117, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34872591

RESUMO

BACKGROUND: Glucocorticoid receptor (GR) mediated corticosterone-induced fatty liver syndrome (FLS) in the chicken by transactivation of Fat mass and obesity associated gene (FTO), leading to demethylation of N6-methyladenosine (m6A) and post-transcriptional activation of lipogenic genes. Nutrition is considered the main cause of FLS in the modern poultry industry. Therefore, this study was aimed to investigate whether GR and m6A modification are involved in high-energy and low protein (HELP) diet-induced FLS in laying hens, and if true, what specific m6A sites of lipogenic genes are modified and how GR mediates m6A-dependent lipogenic gene activation in HELP diet-induced FLS in the chicken. RESULTS: Laying hens fed HELP diet exhibit excess (P < 0.05) lipid accumulation and lipogenic genes activation in the liver, which is associated with significantly increased (P < 0.05) GR expression that coincided with global m6A demethylation. Concurrently, the m6A demethylase FTO is upregulated (P < 0.05), whereas the m6A reader YTHDF2 is downregulated (P < 0.05) in the liver of FLS chickens. Further analysis identifies site-specific demethylation (P < 0.05) of m6A in the mRNA of lipogenic genes, including FASN, SREBP1 and SCD. Moreover, GR binding to the promoter of FTO gene is highly enriched (P < 0.05), while GR binding to the promoter of YTHDF2 gene is diminished (P < 0.05). CONCLUSIONS: These results implicate a possible role of GR-mediated transcriptional regulation of m6A metabolic genes on m6A-depenent post-transcriptional activation of lipogenic genes and shed new light in the molecular mechanism of FLS etiology in the chicken.

8.
Nutrients ; 13(12)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34959992

RESUMO

In recent years, epidemiological studies have suggested that metabolic disorders are nutritionally dependent. A healthy diet that is rich in polyphenols may be beneficial in the treatment of metabolic diseases such as polycystic ovary syndrome, metabolic syndrome, non-alcoholic fatty liver disease, cardiovascular disease, and, in particular, atherosclerosis. Curcumin is a polyphenol found in turmeric and has been reported to have antioxidant, anti-inflammatory, hepatoprotective, anti-atherosclerotic, and antidiabetic properties, among others. This review summarizes the influence of supplementation with curcumin on metabolic parameters in selected metabolic disorders.


Assuntos
Curcumina/administração & dosagem , Curcumina/farmacologia , Suplementos Nutricionais , Doenças Metabólicas/tratamento farmacológico , Fitoterapia , Anti-Inflamatórios , Antioxidantes , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Curcuma/química , Curcumina/isolamento & purificação , Feminino , Humanos , Hipoglicemiantes , Masculino , Doenças Metabólicas/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Síndrome do Ovário Policístico/tratamento farmacológico
9.
Life (Basel) ; 10(9)2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933184

RESUMO

Fatty liver syndrome is an emerging health problem in the world, due to the high prevalence of obesity and alcohol use disorder. Given the nature of the disease's advancement to cirrhosis and liver-related complications, it is important to assess the severity of the disease, which is typically done via a liver biopsy. Due to the limitations and risks of liver biopsy, the role of noninvasive tests is essential and evolving to stratify the stage of the liver disease, predict the outcomes, and/or monitor the treatment response. This review is focused on noninvasive tests, including the use of serum-based biomarkers, ultrasound-based shear wave elastography, transient elastography, and magnetic resonance elastography in both clinical and research settings.

10.
Poult Sci ; 95(6): 1387-95, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27083546

RESUMO

The typical characteristic of fatty liver syndrome (FLS) is an increased hepatic triacylglycerol content, and a sudden decline in egg production often occurs. FLS may develop into fatty liver hemorrhagic syndrome (FLHS), characterized by sudden death from hepatic rupture and hemorrhage. DNA methylation is associated with transcriptional silencing, leading to the etiology and pathogenesis of some animal diseases. The roles of DNA methylation in the genesis of FLS, however, are largely unknown. The lipogenic methyl-deficient diet (MDD) caused FLS similar to human nonalcoholic steatohepatitis (NASH). After 16 Jingxing-Huang (JXH) hens were fed MDD for 10 wk, eight exhibited FLS (designated as FLS-susceptible birds); the remainder, without FLS, served as controls (NFLS). Physiological and biochemical variables, gene expression levels, and DNA methylation were determined in the liver. The development of FLS in JXH hens was accompanied by abnormal lipid accumulation. Relative expression of acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and microsomal triglyceride transfer protein (MTTP) were significantly up-regulated in the FLS group in comparison with the NFLS group. The transcript abundance of sterol regulatory element binding protein 1 (SREBP-1c), stearoyl-CoA desaturase (SCD), liver X receptor alpha (LXRα), peroxisome proliferator-activated receptor alpha (PPARα), and peroxisome proliferator-activated receptor gamma (PPARγ) did not differ between the two groups. Interestingly, MTTP and ACC mRNA abundance were negatively correlated with the level of promoter methylation. The extent of DNA methylation of the cytosine-guanine (CpG) sites in the SREBP-1c, FAS, PPARα, and LXRα promoter regions was also analyzed by direct sequencing but none differed between FLS and NFLS birds. Taken together, these results specify link DNA methylation to the pathogenesis of FLS in chickens.


Assuntos
Acetil-CoA Carboxilase/genética , Proteínas Aviárias/genética , Proteínas de Transporte/genética , Galinhas , Fígado Gorduroso/veterinária , Doenças das Aves Domésticas/genética , Acetil-CoA Carboxilase/metabolismo , Ração Animal/análise , Animais , Proteínas Aviárias/metabolismo , Proteínas de Transporte/metabolismo , Dieta/veterinária , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Feminino , Expressão Gênica , Metilação , Doenças das Aves Domésticas/etiologia , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA