Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.658
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(3): e2313387121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190529

RESUMO

The studies on the origin of versatile oxidation pathways toward targeted pollutants in the single-atom catalysts (SACs)/peroxymonosulfate (PMS) systems were always associated with the coordination structures rather than the perspective of pollutant characteristics, and the analysis of mechanism commonality is lacking. In this work, a variety of single-atom catalysts (M-SACs, M: Fe, Co, and Cu) were fabricated via a pyrolysis process using lignin as the complexation agent and substrate precursor. Sixteen kinds of commonly detected pollutants in various references were selected, and their lnkobs values in M-SACs/PMS systems correlated well (R2 = 0.832 to 0.883) with their electrophilic indexes (reflecting the electron accepting/donating ability of the pollutants) as well as the energy gap (R2 = 0.801 to 0.840) between the pollutants and M-SACs/PMS complexes. Both the electron transfer process (ETP) and radical pathways can be significantly enhanced in the M-SACs/PMS systems, while radical oxidation was overwhelmed by the ETP oxidation toward the pollutants with lower electrophilic indexes. In contrast, pollutants with higher electrophilic indexes represented the weaker electron-donating capacity to the M-SACs/PMS complexes, which resulted in the weaker ETP oxidation accompanied with noticeable radical oxidation. In addition, the ETP oxidation in different M-SACs/PMS systems can be regulated via the energy gaps between the M-SACs/PMS complexes and pollutants. As a result, the Fenton-like activities in the M-SACs/PMS systems could be well modulated by the reaction pathways, which were determined by both electrophilic indexes of pollutants and single-atom sites. This work provided a strategy to establish PMS-based AOP systems with tunable oxidation capacities and pathways for high-efficiency organic decontamination.

2.
Proc Natl Acad Sci U S A ; 121(46): e2317857121, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39495928

RESUMO

There has been recent interest in trying to understand the connection between transfer RNA (tRNA) posttranscriptional modifications and changes in-cellular environmental conditions. Here, we report on the identification of the modified nucleoside 5-methylcytidine (m5C) in Escherichia coli tRNAs. This modification was determined to be present at position 49 of tRNA Tyr-QUA-II. Moreover, m5C levels in this tRNA are significantly elevated under high reactive oxygen specieis (ROS) conditions in E. coli cells. We identified the known ribosomal RNA methyltransferase rsmF as the enzyme responsible for m5C synthesis in tRNA and enzyme transcript levels are responsive to elevated levels of ROS in the cell. We further find that changes in m5C levels in this tRNA are not specific to Fenton-like reaction conditions elevating ROS, but heat shock can also induce increased modification of tRNA Tyr-QUA-II. Altogether, this work illustrates how cells adapt to changing environmental conditions through variations in tRNA modification profiles.


Assuntos
Citidina , Escherichia coli , RNA de Transferência , Citidina/metabolismo , Citidina/análogos & derivados , Escherichia coli/metabolismo , Escherichia coli/genética , RNA de Transferência/metabolismo , RNA de Transferência/genética , Espécies Reativas de Oxigênio/metabolismo , RNA Bacteriano/metabolismo , RNA Bacteriano/genética , Processamento Pós-Transcricional do RNA , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Conformação de Ácido Nucleico , Estresse Fisiológico
3.
Proc Natl Acad Sci U S A ; 121(11): e2317702121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38446850

RESUMO

The electro-Fenton process is a state-of-the-art water treatment technology used to remove organic contaminants. However, the low O2 utilization efficiency (OUE, <1%) and high energy consumption remain the biggest obstacles to practical application. Here, we propose a local O2 concentrating (LOC) approach to increase the OUE by over 11-fold compared to the conventional simple O2 diffusion route. Due to the well-designed molecular structure, the LOC approach enables direct extraction of O2 from the bulk solution to the reaction interface; this eliminates the need to pump O2/air to overcome the sluggish O2 mass transfer and results in high Faradaic efficiencies (~50%) even under natural air diffusion conditions. Long-term operation of a flow-through pilot device indicated that the LOC approach saved more than 65% of the electric energy normally consumed in treating actual industrial wastewater, demonstrating the great potential of this system-level design to boost the electro-Fenton process for energy-efficient water remediation.

4.
Proc Natl Acad Sci U S A ; 121(9): e2317394121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377212

RESUMO

Effectively managing sewage sludge from Fenton reactions in an eco-friendly way is vital for Fenton technology's viability in pollution treatment. This study focuses on sewage sludge across various treatment stages, including generation, concentration, dehydration, and landfill, and employs chemical composite MoS2 to facilitate green resource utilization of all types of sludge. MoS2, with exposed Mo4+ and low-coordination sulfur, enhances iron cycling and creates an acidic microenvironment on the sludge surface. The MoS2-modified iron sludge exhibits outstanding (>95%) phenol and pollutant degradation in hydrogen peroxide and peroxymonosulfate-based Fenton systems, unlike unmodified sludge. This modified sludge maintains excellent Fenton activity in various water conditions and with multiple anions, allowing extended phenol degradation for over 14 d. Notably, the generated chemical oxygen demand (COD) in sludge modification process can be efficiently eliminated through the Fenton reaction, ensuring effluent COD compliance and enabling eco-friendly sewage sludge resource utilization.

5.
Proc Natl Acad Sci U S A ; 121(4): e2314396121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38236736

RESUMO

In our quest to leverage the capabilities of the emerging single-atom catalysts (SACs) for wastewater purification, we confronted fundamental challenges related to electron scarcity and instability. Through meticulous theoretical calculations, we identified optimal placements for nitrogen vacancies (Nv) and iron (Fe) single-atom sites, uncovering a dual-site approach that significantly amplified visible-light absorption and charge transfer dynamics. Informed by these computational insights, we cleverly integrated Nv into the catalyst design to boost electron density around iron atoms, yielding a potent and flexible photoactivator for benign peracetic acid. This exceptional catalyst exhibited remarkable stability and effectively degraded various organic contaminants over 20 cycles with self-cleaning properties. Specifically, the Nv sites captured electrons, enabling their swift transfer to adjacent Fe sites under visible light irradiation. This mechanism accelerated the reduction of the formed "peracetic acid-catalyst" intermediate. Theoretical calculations were used to elucidate the synergistic interplay of dual mechanisms, illuminating increased adsorption and activation of reactive molecules. Furthermore, electron reduction pathways on the conduction band were elaborately explored, unveiling the production of reactive species that enhanced photocatalytic processes. A six-flux model and associated parameters were also applied to precisely optimize the photocatalytic process, providing invaluable insights for future photocatalyst design. Overall, this study offers a molecule-level insight into the rational design of robust SACs in a photo-Fenton-like system, with promising implications for wastewater treatment and other high-value applications.

6.
Proc Natl Acad Sci U S A ; 121(33): e2407012121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39102537

RESUMO

Water resources are indispensable basic resources and important environmental carriers; the presence of organic contaminants in wastewater poses considerable risks to the health of both humans and ecosystems. Although the Fenton-like reactions using H2O2 as the oxidant to destroy organic pollutants are attractive, there are still challenges in improving reaction activity under neutral or even alkaline conditions. Herein, we designed a H2O2 activation pathway with O2•- as the main active species and elucidated that the spin interaction between Fe sites and coordinated O atoms effectively promotes the generation of the key intermediate Fe-*OOH. Furthermore, we successfully captured and analyzed the Fe-*OOH intermediate by in situ Raman spectroscopy. When applying FBOB to a continuous-flow reactor, CIP removal efficiency remained at around 90% within 600 min of continuous operation, achieving excellent efficiency, stability, and pH tolerance in removing pollutants.

7.
Proc Natl Acad Sci U S A ; 120(13): e2213480120, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36952380

RESUMO

Peroxidase-like catalysts are safe and low-cost candidates to tackle the dilemma in constructing sustainable cathodic heterogeneous electro-Fenton (CHEF) catalysts for water purification, but the elusive structure-property relationship of enzyme-like catalysts constitutes a pressing challenge for the advancement of CHEF processes in practically relevant water and wastewater treatment. Herein, we probe the origins of catalytic efficiency in the CHEF process by artificially tailoring the peroxidase-like activity of Fe3O4 through a series of acetylated chitosan-based hydrogels, which serve as ecofriendly alternatives to traditional carbon shells. The optimized acetylated chitosan wrapping Fe3O4 hydrogel on the cathode shows an impressive activity and stability in CHEF process, overcoming the complicated and environmentally unfavored procedures in the electro-Fenton-related processes. Structural characterizations and theoretical calculations reveal that the amide group in chitosan can modulate the intrinsic redox capacity of surficial Fe sites on Fe3O4 toward CHEF catalysis via the neutral hydrogen bond. This work provides a sustainable path and molecule-level insight for the rational design of high-efficiency CHEF catalysts and beyond.

8.
Proc Natl Acad Sci U S A ; 120(34): e2221228120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590415

RESUMO

Developing green heterogeneous catalysts with excellent Fenton-like activity is critical for water remediation technologies. However, current catalysts often rely on toxic transitional metals, and their catalytic performance is far from satisfactory as alternatives of homogeneous Fenton-like catalysts. In this study, a green catalyst based on Zn single-atom was prepared in an ammonium atmosphere using ZIF-8 as a precursor. Multiple characterization analyses provided evidence that abundant intrinsic defects due to the edge sites were created, leading to the formation of a thermally stable edge-hosted Zn-N4 single-atom catalyst (ZnN4-Edge). Density functional theory calculations revealed that the edge sites equipped the single-atom Zn with a super catalytic performance, which not only promoted decomposition of peroxide molecule (HSO5-) but also greatly lowered the activation barrier for •OH generation. Consequently, the as-prepared ZnN4-Edge exhibited extremely high Fenton-like performance in oxidation and mineralization of phenol as a representative organic contaminant in a wide range of pH, realizing its quick detoxification. The atom-utilization efficiency of the ZnN4-Edge was ~104 higher than an equivalent amount of the control sample without edge sites (ZnN4), and the turnover frequency was ~103 times of the typical benchmark of homogeneous catalyst (Co2+). This study opens up a revolutionary way to rationally design and optimize heterogeneous catalysts to homogeneous catalytic performance for Fenton-like application.

9.
Proc Natl Acad Sci U S A ; 120(39): e2305883120, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37725637

RESUMO

Inspired by the development of single-atom catalysts (SACs), the fabrication of multimetallic SACs can be a promising technical approach for the in situ electro-Fenton (EF) process. Herein, dual-functional atomically dispersed Mo-Fe sites embedded in carbon nitride (C3N5) (i.e., MoFe/C3N5) were synthesized via a facile SiO2 template method. The atomically isolated bimetallic configuration in MoFe/C3N5 was identified by combining the microscopic and spectroscopic techniques. The MoFe/C3N5 catalyst on the cathode exhibited a remarkable catalytic activity toward the three electron-dominated oxygen reduction reaction in sodium sulfate, leading to a highly effective EF reaction with a low overpotential for the removal of organic contaminants from wastewater. The new catalyst showed a superior performance over its conventional counterparts, owing to the dual functions of the dual-metal active sites. Density functional theory (DFT) analysis revealed that the dual-functional 50-MoFe/C3N5 catalyst enabled a synergistic action of the Mo-Fe dual single atomic centers, which can alter the adsorption/dissociation behavior and decrease the overall reaction barriers for effective organic oxidation during the EF process. This study not only sheds light on the controlled synthesis of atomically isolated catalyst materials but also provides deeper understanding of the structure-performance relationship of the nanocatalysts with dual active sites for the catalytic EF process. Additionally, the findings will promote the advanced catalysis for the treatment of emerging organic contaminants in water and wastewater.

10.
Proc Natl Acad Sci U S A ; 120(20): e2302407120, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155859

RESUMO

Clarifying the reaction pathways at the solid-water interface and in bulk water solution is of great significance for the design of heterogeneous catalysts for selective oxidation of organic pollutants. However, achieving this goal is daunting because of the intricate interfacial reactions at the catalyst surface. Herein, we unravel the origin of the organic oxidation reactions with metal oxide catalysts, revealing that the radical-based advanced oxidation processes (AOPs) prevail in bulk water but not on the solid catalyst surfaces. We show that such differing reaction pathways widely exist in various chemical oxidation (e.g., high-valent Mn3+ and MnOX) and Fenton and Fenton-like catalytic oxidation (e.g., Fe2+ and FeOCl catalyzing H2O2, Co2+ and Co3O4 catalyzing persulfate) systems. Compared with the radical-based degradation and polymerization pathways of one-electron indirect AOP in homogeneous reactions, the heterogeneous catalysts provide unique surface properties to trigger surface-dependent coupling and polymerization pathways of a two-electron direct oxidative transfer process. These findings provide a fundamental understanding of catalytic organic oxidation processes at the solid-water interface, which could guide the design of heterogeneous nanocatalysts.

11.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35017300

RESUMO

The Fenton-like process catalyzed by metal-free materials presents one of the most promising strategies to deal with the ever-growing environmental pollution. However, to develop improved catalysts with adequate activity, complicated preparation/modification processes and harsh conditions are always needed. Herein, we proposed an ultrafast and facile strategy to convert various inefficient commercial nanocarbons into highly active catalysts by noncovalent functionalization with polyethylenimine (PEI). The modified catalysts could be in situ fabricated by direct addition of PEI aqueous solution into the nanocarbon suspensions within 30 s and without any tedious treatment. The unexpectedly high catalytic activity is even superior to that of the single-atom catalyst and could reach as high as 400 times higher than the pristine carbon material. Theoretical and experimental results reveal that PEI creates net negative charge via intermolecular charge transfer, rendering the catalyst higher persulfate activation efficiency.

12.
Proc Natl Acad Sci U S A ; 119(36): e2205562119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037332

RESUMO

Hydrogen peroxide (H2O2) molecules play important roles in many green chemical reactions. However, the high activation energy limits their application efficiency, and there is still huge controversy about the activation path of H2O2 molecules over the presence of *OOH intermediates. Here, we confirmed the formation of the key species *OOH in the heterogeneous system, via in situ shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), isotope labeling, and theoretical calculation. In addition, we found that compared with *H2O2, *OOH was more conducive to the charge transfer behavior with the catalyst and the activation of an O-O bond. Furthermore, we proposed to improve the local coordination structure and electronic density of the YFeO3 catalyst by regulating the surface relaxation with Ti modification so as to reduce the activation barrier of H2O2 and to improve the production efficiency of •OH. As a result, the kinetics rates of the Fenton-like (photo-Fenton) reaction had been significantly increased several times. The •OH free radical activity mechanism and molecular transformation pathways of 4-chloro phenol (4-CP) were also revealed. This may provide a clearer vision for the further study of H2O2 activation and suggest a means of designing catalysts for efficient H2O2 activation.


Assuntos
Peróxido de Hidrogênio , Processos Fotoquímicos , Catálise , Peróxido de Hidrogênio/química , Ferro/química , Luz , Fenol
13.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165185

RESUMO

Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great challenge. Herein, we report a systematic investigation into heteroatom-doped engineering for tuning the electronic structure of Cu-N4 sites by integrating electron-deficient boron (B) or electron-rich phosphorus (P) heteroatoms into carbon substrate for PMS activation. The electron-depleted Cu-N4/C-B is found to exhibit the most active oxidation capacity among the prepared Cu-N4 single-atom catalysts, which is at the top rankings of the Cu-based catalysts and is superior to most of the state-of-the-art heterogeneous Fenton-like catalysts. Conversely, the electron-enriched Cu-N4/C-P induces a decrease in PMS activation. Both experimental results and theoretical simulations unravel that the long-range interaction with B atoms decreases the electronic density of Cu active sites and down-shifts the d-band center, and thereby optimizes the adsorption energy for PMS activation. This study provides an approach to finely control the electronic structure of Cu-N4 sites at the atomic level and is expected to guide the design of smart Fenton-like catalysts.

14.
Nano Lett ; 24(43): 13825-13833, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39392201

RESUMO

Chemodynamic therapy (CDT) is an innovative and burgeoning strategy that utilizes Fenton-Fenton-like chemistry and specific microenvironments to produce highly toxic hydroxyl radicals (•OH), with numerous methods emerging to refine this approach. Herein, we report a coordination compound, Fe-norepinephrine nanoparticles (Fe-NE NPs), via a one-pot synthesis. The Fe-NE NPs are based on ferrous ions (Fe2+) and norepinephrine, which are capable of efficient Fe2+/Fe3+ delivery. Once internalized by tumor cells, the released Fe2+/Fe3+ exerts the Fenton reaction to specifically produce toxic •OH. Moreover, the internal photothermal conversion ability of Fe-NE NPs allows us to simultaneously introduce light to trigger local heat generation and then largely improve the Fenton reaction efficiency, which enables a synergetic photothermal and chemodynamic therapy to realize satisfactory in vivo antitumor efficiency. This proof-of-concept work offers a promising approach to developing nanomaterials and refining strategies for enhanced CDT against tumors.


Assuntos
Norepinefrina , Humanos , Animais , Norepinefrina/química , Norepinefrina/farmacologia , Camundongos , Linhagem Celular Tumoral , Ferro/química , Nanopartículas/química , Terapia Fototérmica , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Radical Hidroxila/química , Hipertermia Induzida/métodos
15.
Small ; 20(38): e2402525, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38801302

RESUMO

Persistent organic pollutants (POPs), including xenoestrogens and polyfluoroalkyl substances (PFAS), demand urgent global intervention. Fenton oxidation, catalyzed by iron ions, offers a cost-effective means to degrade POPs. However, numerous challenges like acid dependency, catalyst loss, and toxic waste generation hinder practical application. Efforts to create long-lasting heterogeneous Fenton catalysts, capable of simultaneously eliminating acid requirements, sustaining rapid kinetics, and retaining iron efficiently, have been unsuccessful. This study introduces an innovative heterogeneous zwitterionic hydrogel-based Fenton catalyst, surmounting these challenges in a cost-effective and scalable manner. The hydrogel, hosting individually complexed iron ions in a porous scaffold, exhibits substantial effective surface area and kinetics akin to homogeneous Fenton reactions. Complexed ions within the hydrogel can initiate Fenton degradation at neutral pH, eliminating acid additions. Simultaneously, the zwitterionic hydrogel scaffold, chosen for its resistance to Fenton oxidation, forms strong bonds with iron ions, enabling prolonged reuse. Diverging from existing designs, the catalyst proves compatible with UV-Fenton processes and achieves rapid self-regeneration during operation, offering a promising solution for the efficient and scalable degradation of POPs. The study underscores the efficacy of the approach by demonstrating the swift degradation of three significant contaminants-xenoestrogens, pesticides, and PFAS-across multiple cycles at trace concentrations.

16.
Small ; 20(6): e2305974, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37771197

RESUMO

Iron oxide nanoparticles (IONPs) have garnered significant attention as a promising platform for reactive oxygen species (ROS)-dependent disease treatment, owing to their remarkable biocompatibility and Fenton catalytic activity. However, the low catalytic activity of IONPs is a major hurdle in their clinical translation. To overcome this challenge, IONPs of different compositions are examined for their Fenton reaction under pharmacologically relevant conditions. The results show that wüstite (FeO) nanoparticles exhibit higher catalytic activity than magnetite (Fe3 O4 ) or maghemite (γ-Fe2 O3 ) of matched size and coating, despite having a similar surface oxidation state. Further analyses suggest that the high catalytic activity of wüstite nanoparticles can be attributed to the presence of internal low-valence iron (Fe0 and Fe2+ ), which accelerates the recycling of surface Fe3+ to Fe2+ through intraparticle electron transport. Additionally, ultrasmall wüstite nanoparticles are generated by tuning the thermodecomposition-based nanocrystal synthesis, resulting in a Fenton reaction rate 5.3 times higher than that of ferumoxytol, an FDA-approved IONP. Compared with ferumoxytol, wüstite nanoparticles substantially increase the level of intracellular ROS in mouse mammary carcinoma cells. This study presents a novel mechanism and pivotal improvement for the development of highly efficient ROS-inducing nanozymes, thereby expanding the horizons for their therapeutic applications.


Assuntos
Óxido Ferroso-Férrico , Nanopartículas , Camundongos , Animais , Transporte de Elétrons , Espécies Reativas de Oxigênio , Compostos Férricos/química , Compostos Ferrosos
17.
Small ; 20(4): e2307029, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712137

RESUMO

Chemodynamic therapy (CDT) is a highly targeted approach to treat cancer since it converts hydrogen peroxide into harmful hydroxyl radicals (OH·) through Fenton or Fenton-like reactions. However, the systemic toxicity of metal-based CDT agents has limited their clinical applications. Herein, a metal-free CDT agent: 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT)/ [closo-B12 H12 ]2- (TPT@ B12 H12 ) is reported. Compared to the traditional metal-based CDT agents, TPT@B12 H12 is free of metal avoiding cumulative toxicity during long-term therapy. Density functional theory (DFT) calculation revealed that TPT@B12 H12 decreased the activation barrier more than 3.5 times being a more effective catalyst than the Fe2+ ion (the Fenton reaction), which decreases the barrier about twice. Mechanismly, the theory calculation indicated that both [B12 H12 ]-· and [TPT-H]2+ have the capacity to decompose hydrogen into 1 O2 , OH·, and O2 -· . With electron paramagnetic resonance and fluorescent probes, it is confirmed that TPT@B12 H12 increases the levels of 1 O2 , OH·, and O2 -· . More importantly, TPT@B12 H12 effectively suppress the melanoma growth both in vitro and in vivo through 1 O2 , OH·, and O2 -· generation. This study specifically highlights the great clinical translational potential of TPT@B12 H12 as a CDT reagent.


Assuntos
Melanoma , Neoplasias , Humanos , Melanoma/tratamento farmacológico , Boro , Corantes Fluorescentes , Hidrogênio , Peróxido de Hidrogênio , Metais , Linhagem Celular Tumoral
18.
Small ; 20(16): e2309637, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38010990

RESUMO

Copper-nitrogen-doped carbon-based nanocatalysts (Cu-NCs), containing atomically dispersed Cu-NxC4- x sites, are efficient in boosting the Fenton-like reaction. However, the mechanisms of the Fenton-like reaction, including the pH effect on the products and the effect of the coordination environment on catalytic activity, remain controversial, restricting the development of Cu-NCs. Cu-NCs are experimentally synthesized with Cu-N4 sites and prove that the Fenton-like reaction generates mainly hydroxyl radicals (·OH) in the acidic but ·OH and superoxide radicals (·O2 -) in the neutral. The density functional theory (DFT) calculations reveal that the catalytic activity of Cu-NCs in the Fenton-like reaction is associated with the adsorption strength of ·OH at the Cu site. Further investigation of the effect of the coordination environment of Cu-NCs indicates that the Cu-N2C2 site, which can enhance the ·OH adsorption strength, is an ideal catalyst site for the Fenton-like reaction. These results open the way to facilitating the catalytic activity of Cu-NCs in the Fenton-like reaction.

19.
Small ; 20(43): e2311244, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38898764

RESUMO

Radiofrequency ablation (RFA) is one of the most common minimally invasive techniques for the treatment of solid tumors, but residual malignant tissues or small satellite lesions after insufficient RFA (iRFA) are difficult to remove, often leading to metastasis and recurrence. Here, Fe-TPZ nanoparticles are designed by metal ion and (TPZ) ligand complexation for synergistic enhancement of RFA residual tumor therapy. Fe-TPZ nanoparticles are cleaved in the acidic microenvironment of the tumor to generate Fe2+ and TPZ. TPZ, an anoxia-dependent drug, is activated in residual tumors and generates free radicals to cause tumor cell death. Elevated Fe2+ undergoes a redox reaction with glutathione (GSH), inducing a strong Fenton effect and promoting the production of the highly toxic hydroxyl radical (•OH). In addition, the ROS/GSH imbalance induced by this treatment promotes immunogenic cell death (ICD), which triggers the release of damage-associated molecular patterns, macrophage polarization, and lymphocyte infiltration, thus triggering a systemic antitumor immune response and noteworthy prevention of tumor metastasis. Overall, this integrated treatment program driven by multiple microenvironment-dependent pathways overcomes the limitations of the RFA monotherapy approach and thus improves tumor prognosis. Furthermore, these findings aim to provide new research ideas for regulating the tumor immune microenvironment.


Assuntos
Ablação por Radiofrequência , Animais , Ablação por Radiofrequência/métodos , Camundongos , Neoplasias/terapia , Neoplasias/patologia , Linhagem Celular Tumoral , Microambiente Tumoral , Humanos , Glutationa/metabolismo , Imunidade
20.
Small ; 20(23): e2309206, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38149505

RESUMO

Ferroptosis is an emerging non-apoptotic death process, mainly involving lipid peroxidation (LPO) caused by iron accumulation, which is potentially lethal to the intrinsically apoptotic-resistant malignant tumor. However, it is still restricted by the inherent antioxidant systems of tumor cells and the poor efficacy of traditional iron-based ferroptosis initiators. Herein, the study develops a novel ferroptosis-inducing agent based on PEGylated Cu+/Cu2+-doped black phosphorus@polypyrrole heterojunction (BP@CPP), which is constructed by utilizing the phosphate on the surface of BP to chelate Cu ions and initiating subsequent in situ polymerization of pyrrole. As a novel Z-scheme heterojunction, BP@CPP possesses an excellent photocatalytic activity in which the separated electron-hole pairs under laser irradiation endow it with powerful oxidizing and reducing capacities, which synergy with Cu+/Cu2+ self-cycling catalyzing Fenton-like reaction to further strengthen reactive oxygen species (ROS) accumulation, glutathione (GSH) depletion, and glutathione peroxidase 4 (GPX4) inactivation, ultimately leading to efficient ferroptosis. Systematic in vitro and in vivo evaluations demonstrate that BP@CPP effectively inhibit tumor growth by inducing desired ferroptosis while maintaining a favorable biosafety in the body. Therefore, the developed BP@CPP-based ferroptosis initiator provides a promising strategy for ferroptosis-like cancer therapy.


Assuntos
Cobre , Ferroptose , Oxirredução , Espécies Reativas de Oxigênio , Ferroptose/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Cobre/química , Cobre/farmacologia , Animais , Linhagem Celular Tumoral , Polímeros/química , Polímeros/farmacologia , Pirróis/química , Pirróis/farmacologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Camundongos , Glutationa/metabolismo , Fósforo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA