Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Cell Biol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696838

RESUMO

Lipocalin-2 (LCN2), an effector molecule of the innate immune system that is small enough to be tagged as a reporter molecule, can be coupled with the ferric ion through a siderophore such as enterobactin (Ent). Mintbody (modification-specific intracellular antibody) can track a posttranslational protein modification in epigenetics. We constructed plasmids expressing the LCN2 hybrid of mintbody to examine the potential of LCN2 as a novel reporter for magnetic resonance imaging (MRI). Cells expressing the LCN2 hybrid of mintbody showed proper expression and localization of the hybrid and responded reasonably to Ent, suggesting their potential for in vivo study by MRI.

2.
Biotechnol Prog ; 36(3): e2954, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31850663

RESUMO

While reliable transfection methods are essential for Chinese hamster ovary (CHO) cell line engineering, reduced transfection efficiencies have been observed in several commercially prepared media. In this study, we aimed to assess common media additives that impede efficiency mediated by three chemical transfection agents: liposomal-based (Lipofectamine 2000), polymer-based (TransIT-X2), and lipopolyplex-based (TransIT-PRO). An in-house GFP-expressing vector and serum-free medium (BCR-F12: developed for the purposes of this study) were used to analyze transient transfection efficiencies of three CHO cell lines (CHO-K1, DG44, DP12). Compared to a selection of commercially available media, BCR-F12 displayed challenges associated with transfection in vendor-prepared formulations, with no detection when liposomal-based methods were used, reduced (<3%) efficiency observed when polymer-based methods were used and only limited efficiency (25%) with lipopolyplexes. Following a stepwise removal protocol, ferric ammonium citrate (FAC) was identified as the critical factor impeding transfection, with transfection enabled with the liposomal- and polymer-based methods and a 1.3- to 7-fold increased lipopolyplex efficiency observed in all cell lines in FAC-depleted media (-FAC), although lower viabilities were observed. Subsequent early addition of FAC (0.5-5 hr post-transfection) revealed 0.5 hr post-transfection as the optimal time to supplement in order to achieve transfection efficiencies similar to -FAC medium while retaining optimal cellular viabilities. In conclusion, FAC was observed to interfere with DNA transfection acting at early stages in all transfection agents and all cell lines studied, and a practical strategy to circumvent this problem is suggested.


Assuntos
Células CHO/efeitos dos fármacos , Meios de Cultura Livres de Soro/farmacologia , Compostos Férricos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Transfecção/métodos , Animais , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Meios de Cultura Livres de Soro/química , Compostos Férricos/química , Lipossomos/química , Lipossomos/farmacologia , Compostos de Amônio Quaternário/química
3.
Biol Trace Elem Res ; 193(1): 138-151, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30835084

RESUMO

Iron accumulation plays a major role in neuronal cell death which has severe effects on mental health like neurodegenerative disorders. The present work aims to explore the involvement of molecular pathways involved in iron-mediated neuronal cell death using Ferric Ammonium Citrate (FAC) as a source of iron to treat neuroblastoma SH-SY5Y cells. In this study, it was found that cytotoxicity induced by iron treatment is highly correlated with enhanced intracellular reactive oxygen species (ROS) generation and loss of mitochondrial integrity. Appearance of early and late apoptotic cells with altered nuclear morphology and increased expression of effector proteins, i.e., cleaved Caspase 3 and cleaved PARP (Poly-ADP-ribose Polymerase), clearly confirmed iron-induced apoptotic cell deaths. Furthermore, excess accumulation of acidic vesicles and microtubule-associated protein 1 light chain 3 (LC3) puncta and LC3II/I expressions were observed. Simultaneously, ultrastructural studies of SH-SY5Y cells demonstrated the accumulation of a large number of autophagosomes, autophagic vacuolization, and swollen mitochondria which further confirmed the induction of autophagy concomitant with mitochondrial damage. Furthermore, increased incorporation of lysosome-specific dye, LysoTracker Deep Red, and the red fluorescence retention of LC3-GFP-RFP constructs indicates the incomplete autophagy or autophagy dysfunction due to altered lysosomal activity. Hence, the present work unveiled the interruption in autophagy progression caused by the plausible suppression of lysosomal activity due to iron treatment resulting in autophagic cell death in SH-SY5Y cell lines. In general, both apoptotic and autophagic pathways were prominent and each of the pathways played their prospective roles, in iron-mediated neuronal cell death.


Assuntos
Apoptose/efeitos dos fármacos , Morte Celular Autofágica/efeitos dos fármacos , Ferro/farmacologia , Lisossomos/metabolismo , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , Linhagem Celular Tumoral , Humanos , Lisossomos/patologia , Neuroblastoma/patologia
4.
Pharmacol Rep ; 69(1): 1-5, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27755990

RESUMO

BACKGROUND: The antioxidant properties of alpha-lipoic acid (ALA) are associated with its ability to reduce iron in cells and tissues, which is partly due to its inhibiting effect on iron uptake from transferrin and its promoting effect on iron deposition into ferritin. However, the relevant mechanisms are unknown. METHODS: We therefore investigated the effects of ALA on the expression of transferrin receptor 1 (TfR1), divalent metal transporter 1 (DMT1), ferroportin 1 (Fpn1) and ferritin in BV-2 microglia cells. RESULTS: We demonstrated that ALA significantly inhibited DMT1 expression, lowered ferritin-light-chain (Ft-L) and ferritin-heavy-chain (Ft-H) content, and had no effect on TfR1 and Fpn1 in BV-2 microglia cells. This indicated that the inhibiting effect of ALA on DMT1 might be one of the causes of the ALA-induced reduction in cellular transferrin-bound-iron uptake. We also demonstrated that ALA enhanced DMT1 and TfR1 expression in ferric ammonium citrate (FAC)-treated cells. FAC treatment led to a significant increase in Ft-L, Ft-H and Fpn1, and pre-treatment with ALA resulted in a further increase in the contents of Ft-L and Ft-H but not Fpn1 in cells. CONCLUSIONS: ALA could up-regulate TfR1, DMT1 and ferritin expression when iron is increased outside of the cell, promoting iron deposition into ferritin by increasing cell iron uptake, and then reducing free iron both inside and outside of the cell.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Ferritinas/metabolismo , Ferro/metabolismo , Microglia/metabolismo , Receptores da Transferrina/metabolismo , Ácido Tióctico/farmacologia , Animais , Antioxidantes/farmacologia , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Linhagem Celular , Regulação da Expressão Gênica , Camundongos , Microglia/efeitos dos fármacos
5.
Autophagy ; 12(5): 850-63, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27002654

RESUMO

Autophagy is a cellular recycling pathway, which in many cases, protects host cells from infections by degrading pathogens. However, uropathogenic Escherichia coli (UPEC), the predominant cause of urinary tract infections (UTIs), persist within the urinary tract epithelium (urothelium) by forming reservoirs within autophagosomes. Iron is a critical nutrient for both host and pathogen, and regulation of iron availability is a key host defense against pathogens. Iron homeostasis depends on the shuttling of iron-bound ferritin to the lysosome for recycling, a process termed ferritinophagy (a form of selective autophagy). Here, we demonstrate for the first time that UPEC shuttles with ferritin-bound iron into the autophagosomal and lysosomal compartments within the urothelium. Iron overload in urothelial cells induces ferritinophagy in an NCOA4-dependent manner causing increased iron availability for UPEC, triggering bacterial overproliferation and host cell death. Addition of even moderate levels of iron is sufficient to increase and prolong bacterial burden. Furthermore, we show that lysosomal damage due to iron overload is the specific mechanism causing host cell death. Significantly, we demonstrate that host cell death and bacterial burden can be reversed by inhibition of autophagy or inhibition of iron-regulatory proteins, or chelation of iron. Together, our findings suggest that UPEC persist in host cells by taking advantage of ferritinophagy. Thus, modulation of iron levels in the bladder may provide a therapeutic avenue to controlling UPEC persistence, epithelial cell death, and recurrent UTIs.


Assuntos
Células Epiteliais/microbiologia , Bexiga Urinária/microbiologia , Escherichia coli Uropatogênica , Autofagia/genética , Células Epiteliais/metabolismo , Infecções por Escherichia coli/metabolismo , Humanos , Ferro/metabolismo , Ferro/farmacologia , Lisossomos/metabolismo , Infecções Urinárias/metabolismo , Infecções Urinárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA