Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Nano Lett ; 24(9): 2727-2734, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38395052

RESUMO

Noncolinear spin textures, including chiral stripes and skyrmions, have shown great potential in spintronics. Basic configurations of spin textures are either Bloch or Néel types, and the intermediate hybrid type has rarely been reported. A major challenge in identifying hybrid spin textures is to quantitatively determine the hybrid angle, especially in ferrimagnets with weak net magnetization. Here, we develop an approach to quantify magnetic parameters, including chirality, saturation magnetization, domain wall width, and hybrid angle with sub-5 nm spatial resolution, based on Lorentz four-dimensional scanning transmission electron microscopy (Lorentz 4D-STEM). We find strong nanometer-scale variations in the hybrid angle and domain wall width within structurally and chemically homogeneous FeGd ferrimagnetic films. These variations fluctuate during different magnetization circles, revealing intrinsic local magnetization inhomogeneities. Furthermore, hybrid skyrmions can also be nucleated in FeGd films. These analyses demonstrate that the Lorentz 4D-STEM is a quantitative tool for exploring complex spin textures.

2.
Nano Lett ; 24(9): 2894-2903, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407042

RESUMO

Harnessing the potential of tumor-associated macrophages (TAMs) to engulf tumor cells offers promising avenues for cancer therapy. Targeting phagocytosis checkpoints, particularly the CD47-signal regulatory protein α (SIRPα) axis, is crucial for modulating TAM activity. However, single checkpoint inhibition has shown a limited efficacy. In this study, we demonstrate that ferrimagnetic vortex-domain iron oxide (FVIO) nanoring-mediated magnetic hyperthermia effectively suppresses the expression of CD47 protein on Hepa1-6 tumor cells and SIRPα receptor on macrophages, which disrupts CD47-SIRPα interaction. FVIO-mediated magnetic hyperthermia also induces immunogenic cell death and polarizes TAMs toward M1 phenotype. These changes collectively bolster the phagocytic ability of macrophages to eliminate tumor cells. Furthermore, FVIO-mediated magnetic hyperthermia concurrently escalates cytotoxic T lymphocyte levels and diminishes regulatory T cell levels. Our findings reveal that magnetic hyperthermia offers a novel approach for dual down-regulation of CD47 and SIRPα, reshaping the tumor microenvironment to stimulate immune responses, culminating in significant antitumor activity.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Antígeno CD47 , Regulação para Baixo , Imunoterapia , Fagocitose , Fenômenos Magnéticos , Neoplasias/patologia , Microambiente Tumoral
3.
Small ; : e2402940, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004867

RESUMO

Iron oxide nanoparticles (IONPs) are widely used for biomedical applications due to their unique magnetic properties and biocompatibility. However, the controlled synthesis of IONPs with tunable particle sizes and crystallite/grain sizes to achieve desired magnetic functionalities across single-domain and multi-domain size ranges remains an important challenge. Here, a facile synthetic method is used to produce iron oxide nanospheres (IONSs) with controllable size and crystallinity for magnetic tunability. First, highly crystalline Fe3O4 IONSs (crystallite sizes above 24 nm) having an average diameter of 50 to 400 nm are synthesized with enhanced ferrimagnetic properties. The magnetic properties of these highly crystalline IONSs are comparable to those of their nanocube counterparts, which typically possess superior magnetic properties. Second, the crystallite size can be widely tuned from 37 to 10 nm while maintaining the overall particle diameter, thereby allowing precise manipulation from the ferrimagnetic to the superparamagnetic state. In addition, demonstrations of reaction scale-up and the proposed growth mechanism of the IONSs are presented. This study highlights the pivotal role of crystal size in controlling the magnetic properties of IONSs and offers a viable means to produce IONSs with magnetic properties desirable for wider applications in sensors, electronics, energy, environmental remediation, and biomedicine.

4.
Chemistry ; 30(34): e202400321, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38625710

RESUMO

Two novel isostructural cyanide-bridged hexadecanuclear complexes with the general formula {[Fe(CN)6]6[M{en(Bn)py}]10}2+ [M=Fe (12+), Ni (22+)] have been synthesized. The structural analyses disclose the presence of multivalent Fe centres with different spin states in complex 12+ whereas all the Fe centres share a conserved oxidation state in complex 22+. The DC magnetic study revealed antiferromagnetic interactions between the adjacent metal centres and ferrimagnetic behaviour in 12+. On the other hand, ferromagnetic interactions were observed in complex 22+ due to nearly orthogonal orientation of the interacting orbitals and poor spatial overlap as observed in BS-DFT calculations.

5.
Nano Lett ; 23(11): 4778-4784, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37252749

RESUMO

Ferrimagnets are considered an excellent spintronic material candidate which combines ultrafast magnetic dynamics and straightforward electrical detectability. However, efficient routes toward magneto-ionic control of ferrimagnetic order remain elusive. In this study, a solid-state oxygen gating device was designed to control the magnetic properties of the ferrimagnetic CoTb alloy. Experimental results show that applying a small voltage can irreversibly tune a Tb-dominant device to a stable Co-dominant state and decrease the magnetization compensation temperature by 130 K. In addition, a reversible voltage control of the magnetization axis between out-of-plane and in-plane states is observed, which indicates that the migrated oxygen ions can bond to both Tb and Co sublattices. First-principles calculations indicate that voltage can dynamically control the flow-in and flow-out of oxygen ions that bond to the Co sublattice. Our work provides an effective means to manipulate ferrimagnetic order and contributes to the development of ultra-low-power spintronic devices.

6.
Nano Lett ; 23(15): 7174-7179, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37466330

RESUMO

It has long been believed that the attachment of two heavy metals such as Ta and Pt with opposite spin Hall angles results in a weakened net torque generation efficiency in magnetization switching devices. Here, we report a giant orbital-to-spin conversion in Ta/Pt/Tm3Fe5O12 (TmIG) heterostructures. We show that the torque generation efficiency is enhanced by an order of magnitude in the Ta/Pt/TmIG trilayer compared to that in the Pt/TmIG bilayer. This enhancement is further evidenced by the fact that the critical current density for the magnetization switching of the Ta/Pt/TmIG is an order of magnitude smaller than that of the Pt/TmIG. It is found that the orbital current generated from Ta through the orbital Hall effect (OHE) is converted to the spin current in the interior of Pt. Our discovery offers an extraordinary approach to enhance the torque generation for magnetization switching of insulators and provides an important piece of information for orbitronics.

7.
Nano Lett ; 22(3): 1115-1121, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35099980

RESUMO

Engineering magnetic anisotropy in a ferro- or ferrimagnetic (FM) thin film is crucial in a spintronic device. One way to modify the magnetic anisotropy is through the surface of the FM thin film. Here, we report the emergence of a perpendicular magnetic anisotropy (PMA) induced by interfacial interactions in a heterostructure comprised of a garnet ferrimagnet, Y3Fe5O12 (YIG), and a low-symmetry, high spin-orbit coupling (SOC) transition metal dichalcogenide, WTe2. At the same time, we also observed an enhancement in Gilbert damping in the WTe2-covered YIG area. Both the magnitude of interface-induced PMA and the Gilbert damping enhancement have no observable WTe2 thickness dependence down to a single quadruple layer, indicating that the interfacial interaction plays a critical role. The ability of WTe2 to enhance the PMA in FM thin film, combined with its previously reported capability to generate out-of-plane damping like spin torque, makes it desirable for magnetic memory applications.

8.
Small ; 18(12): e2104509, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35098648

RESUMO

Spin selectivity physically depends on either magnetic materials with strong internal magnetic fields or symmetry-breaking materials with large spin-orbit coupling (SOC). However, the spin selectivity of symmetry-breaking magnetic materials is not understood. Herein, the spin selectivity of iron oxides with different magnetisms arising from varying spin alignment is investigated. Chiral mesostructured films of Fe3 O4 (CMFFs), γ-Fe2 O3 (CMγFs), and α-Fe2 O3 (CMαFs), which share the same mesostructure, are prepared by a controllable calcination process of chiral mesostructured FeOOH films (CMOFs) grown on the substrate via an amino acid-induced hydrothermal route. CMFFs and CMγFs with ferrimagnetism exhibit magnetic field-dependent and simultaneously chirality-independent magnetic circular dichroism (MCD) signals, while CMαFs with antiferromagnetism exhibit chirality-dependent, magnetic field-independent MCD signals. It is speculated that the competitive effect between the spin alignment-induced and chirality-induced effective magnetic fields determines the energy splitting of opposite spins in the materials with different magnetisms.

9.
Bioelectromagnetics ; 43(2): 119-143, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35077582

RESUMO

In this paper, slices of organs from various organisms (animals, plants, fungi) were investigated by using atomic force microscopy and magnetic force microscopy to identify common features of localization of both biogenic and nonbiogenic magnetic nanoparticles. It was revealed that both biogenic and nonbiogenic magnetic nanoparticles are localized in the form of chains of separate nanoparticles or chains of conglomerates of nanoparticles in the walls of the capillaries of animals and the walls of the conducting tissue of plants and fungi. Both biogenic and nonbiogenic magnetic nanoparticles are embedded as a part of the transport system in multicellular organisms. In connection with this, a new idea of the function of biogenic magnetic nanoparticles is discussed, that the chains of biogenic magnetic nanoparticles and chains of conglomerates of biogenic magnetic nanoparticles represent ferrimagnetic organelles of a specific purpose. Besides, magnetic dipole-dipole interaction of biogenic magnetic nanoparticles with magnetically labeled drugs or contrast agents for magnetic resonance imaging should be considered when designing the drug delivery and other medical systems because biogenic magnetic nanoparticles in capillary walls will serve as the trapping centers for the artificial magnetic nanoparticles. The aggregates of both artificial and biogenic magnetic nanoparticles can be formed, contributing to the risk of vascular occlusion. Bioelectromagnetics. 43:119-143, 2022. © 2021 Bioelectromagnetics Society.


Assuntos
Nanopartículas de Magnetita , Animais
10.
Nano Lett ; 21(6): 2580-2587, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33705154

RESUMO

Spin-transfer torque (STT) and spin-orbit torque (SOT) are spintronic phenomena allowing magnetization manipulation using electrical currents. Beyond their fundamental interest, they allow developing new classes of magnetic memories and logic devices, in particular based on domain wall (DW) motion. In this work, we report the study of STT-driven DW motion in ferrimagnetic manganese nickel nitride (Mn4-xNixN) films, in which magnetization and angular momentum compensation can be obtained by the fine adjustment of the Ni content. Large domain wall velocities, approaching 3000 m/s, are measured for Ni compositions close to the angular momentum compensation point. The reversal of the DW motion direction, observed when the compensation composition is crossed, is related to the change of direction of the angular momentum with respect to that of the spin polarization. This is confirmed by the results of ab initio band structure calculations.

11.
Nano Lett ; 20(1): 59-65, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31809059

RESUMO

Recently, magnetic antiskyrmions were discovered in Mn1.4Pt0.9Pd0.1Sn, an inverse tetragonal Heusler compound that is nominally a ferrimagnet, but which can only be formed with substantial Mn vacancies. The vacancies reduce considerably the compensation of the moments between the two expected antiferromagnetically coupled Mn sub-lattices so that the overall magnetization is very high and the compound is almost a "ferromagnet". Here, we report the observation of antiskyrmions in a second inverse tetragonal Heusler compound, Mn2Rh0.95Ir0.05Sn, which can be formed stoichiometrically without any Mn vacancies and which thus exhibits a much smaller magnetization. Individual and lattices of antiskyrmions can be stabilized over a wide range of temperature from near room temperature to 100 K, the base temperature of the Lorentz transmission electron microscope used to image them. In low magnetic fields helical spin textures are found which evolve into antiskyrmion structures in the presence of small magnetic fields. A weaker Dzyaloshinskii-Moriya interaction (DMI), that stabilizes the antiskyrmions, is expected for the 4d element Rh as compared to the 5d element Pt, so that the observation of antiskyrmions in Mn2Rh0.95Ir0.05Sn establishes the intrinsic stability of antiskyrmions in these Heusler compounds. Moreover, the finding of antiskyrmions with substantially lower magnetization promises, via chemical tuning, even zero moment antiskyrmions with important technological import.

12.
Nano Lett ; 20(10): 7257-7262, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32955896

RESUMO

Nonlocal spin transport using lateral structures is attractive for spintronic devices. Typically, a spin current is generated by a ferromagnetic (FM) or a heavy metal (HM) electrode in a nonlocal structure, which can be detected by another FM or HM electrode. Here, we report a new nonlocal spin injection scheme using uniform-mode ferromagnetic resonance (FMR) spin pumping in Pt/Y3Fe5O12 (YIG) lateral structures. This scheme is enabled by well-separated resonant fields of Pt/YIG and bare YIG due to substantial change of anisotropy in YIG films induced by a Pt overlayer, allowing for clearly distinguishable local and nonlocal spin pumping. Our results show that the spin decay length of nonlocal uniform-mode spin pumping in 20 nm YIG films is 2.1 µm at room temperature.

13.
Nano Lett ; 20(6): 4667-4672, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32459494

RESUMO

Topological magnetic textures such as skyrmions are being extensively studied for their potential application in spintronic devices. Recently, low-damping ferrimagnetic insulators (FMI) such as Tm3Fe5O12 have attracted significant interest as potential candidates for hosting skyrmions. Here, we report the detection of the spin-Hall topological Hall effect (SH-THE) in Pt/Tm3Fe5O12 and Pt/Y3Fe5O12 bilayers grown on various orientations of Gd3Ga5O12 substrates as well as on epitaxial buffer layers of Y3Sc2Al3O12, which separates the FMI from the substrate without sacrificing the crystal quality. The presence of SH-THE in all of the bilayers and trilayers provides evidence that rare-earth ions in either the FMI or substrate may not be critical for inducing an interfacial Dzyaloshinskii-Moriya interaction that is necessary to stabilize magnetic textures. Additionally, the use of substrates with various crystal orientations alters the magnetic anisotropy, which shifts the temperatures and strength of the SH-THE.

14.
Nano Lett ; 19(3): 2154-2161, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30789739

RESUMO

Two-dimensional (2D) magnetic materials provide an ideal platform for the application in spintronic devices due to their unique spin states in nanometer scale. However, recent research on the exfoliated monolayer magnetic materials suffers from the instability in ambient atmosphere, which needs extraordinary protection. Hence the controllable synthesis of 2D magnetic materials with good quality and stability should be addressed. Here we report for the first time the van der Waals (vdW) epitaxial growth of one-unit-cell-thick air-stable ferrimagnet Cr2S3 semiconductor via a facile chemical vapor deposition method. Single crystal Cr2S3 with the domain size reaching to 200 µm is achieved. Most importantly, we observe the as grown Cr2S3 with a Néel temperature ( TN) of up to 120 K and a maximum saturation magnetic momentum of up to 65 µemu. As the temperature decreases, the samples show a transition from soft magnet to hard magnet with the highest coercivity of 1000 Oe. The one-unit-cell-thick Cr2S3 devices show a p-type transfer behavior with an on/off ratio over 103. Our work highlights Cr2S3 monolayer as an ideal magnetic semiconductor for 2D spintronic devices. The vdW epitaxy of nonlayered magnets introduces a new route for realizing magnetism in 2D limit and provides more application potential in the 2D spintronics.

15.
Molecules ; 25(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316700

RESUMO

Modification of the size and phase composition of magnetic oxide nanomaterials dispersed in liquids by laser synthesis and processing of colloids has high implications for applications in biomedicine, catalysis and for nanoparticle-polymer composites. Controlling these properties for ternary oxides, however, is challenging with typical additives like salts and ligands and can lead to unwanted byproducts and various phases. In our study, we demonstrate how additive-free pulsed laser post-processing (LPP) of colloidal yttrium iron oxide nanoparticles using high repetition rates and power at 355 nm laser wavelength can be used for phase transformation and phase purification of the garnet structure by variation of the laser fluence as well as the applied energy dose. Furthermore, LPP allows particle size modification between 5 nm (ps laser) and 20 nm (ns laser) and significant increase of the monodispersity. Resulting colloidal nanoparticles are investigated regarding their size, structure and temperature-dependent magnetic properties.


Assuntos
Ferro/química , Lasers , Nanopartículas/química , Transição de Fase , Ítrio/química , Compostos Férricos/química , Nanopartículas Magnéticas de Óxido de Ferro/química
16.
J Nanosci Nanotechnol ; 17(2): 878-83, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29668222

RESUMO

This paper outlines the preparation of gadolinium doped nickel ferrite nanoparticles as potential magnetic carriers and longitudinal magnetic resonance imaging contrast agents using hydrothermal method with gadolinium concentration varying from 10% to 40%. A concise effect on the crystal structure was observed at 10% and 20% gadolinium doping, while gadolinium oxide was observed to leach at concentrations exceeding 20%. Further, gadolinium doped nickel ferrites were analyzed for their morphological, magnetic, proton relaxation and magnetic hyperthermia heating properties to understand their potential role as magnetic carrier agents. Low temperature and room temperature magnetic studies conducted on the samples showed comparatively high magnetic saturation with low remanent magnetization. Further, relaxometry studies revealed a high relaxation rate of 6.63 s−1 at a concentration of 0.1 mg/mL. Magnetic hyperthermia studies of the samples at a concentration of 1 mg/mL, assessed that the samples attained a temperature of 68 °C in 240 seconds.

17.
Nano Lett ; 15(1): 764-9, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25533900

RESUMO

We report a study of enhancing the magnetic ordering in a model magnetically doped topological insulator (TI), Bi(2-x)Cr(x)Se(3), via the proximity effect using a high-TC ferrimagnetic insulator Y(3)Fe(5)O(12). The FMI provides the TI with a source of exchange interaction yet without removing the nontrivial surface state. By performing the elemental specific X-ray magnetic circular dichroism (XMCD) measurements, we have unequivocally observed an enhanced TC of 50 K in this magnetically doped TI/FMI heterostructure. We have also found a larger (6.6 nm at 30 K) but faster decreasing (by 80% from 30 to 50 K) penetration depth compared to that of diluted ferromagnetic semiconductors (DMSs), which could indicate a novel mechanism for the interaction between FMIs and the nontrivial TIs surface.


Assuntos
Bismuto , Cromo , Imãs , Selênio , Semicondutores
18.
Angew Chem Int Ed Engl ; 55(34): 9862-7, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27203790

RESUMO

Cationic rearrangement is a compelling strategy for producing desirable physical properties by atomic-scale manipulation. However, activating ionic diffusion typically requires high temperature, and in some cases also high pressure in bulk oxide materials. Herein, we present the cationic rearrangement in bulk Mn2 FeMoO6 at unparalleled low temperatures of 150-300 (o) C. The irreversible ionic motion at ambient pressure, as evidenced by real-time powder synchrotron X-ray and neutron diffraction, and second harmonic generation, leads to a transition from a Ni3 TeO6 -type to an ordered-ilmenite structure, and dramatic changes of the electrical and magnetic properties. This work demonstrates a remarkable cationic rearrangement, with corresponding large changes in the physical properties in a bulk oxide at unprecedented low temperatures.

19.
Angew Chem Int Ed Engl ; 54(41): 12074-7, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26307014

RESUMO

Ferrimagnetic A2 BB'O6 double perovskites, such as Sr2 FeMoO6 , are important spin-polarized conductors. Introducing transition metals at the A-sites offers new possibilities to increase magnetization and tune magnetoresistance. Herein we report a ferrimagnetic double perovskite, Mn2 FeReO6 , synthesized at high pressure which has a high Curie temperature of 520 K and magnetizations of up to 5.0 µB which greatly exceed those for other double perovskite ferrimagnets. A novel switching transition is discovered at 75 K where magnetoresistance changes from conventional negative tunneling behavior to large positive values, up to 265 % at 7 T and 20 K. Neutron diffraction shows that the switch is driven by magnetic frustration from antiferromagnetic Mn(2+) spin ordering which cants Fe(3+) and Re(5+) spins and reduces spin-polarization. Ferrimagnetic double perovskites based on A-site Mn(2+) thus offer new opportunities to enhance magnetization and control magnetoresistance in spintronic materials.

20.
Adv Mater ; 36(25): e2401338, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38506613

RESUMO

The discovery of intrinsic 2D magnetic materials has opened up new opportunities for exploring magnetic properties at atomic layer thicknesses, presenting potential applications in spintronic devices. Here a new 2D ferrimagnetic crystal of nonlayered FeCr2S4 is synthesized with high phase purity using chemical vapor deposition. The obtained 2D FeCr2S4 exhibits perpendicular magnetic anisotropy, as evidenced by the out-of-plane/in-plane Hall effect and anisotropic magnetoresistance. Theoretical calculations further elucidate that the observed magnetic anisotropy can be attributed to its surface termination structure. By combining temperature-dependent magneto-transport and polarized Raman spectroscopy characterizations, it is discovered that both the measured Curie temperature and the critical temperature at which a low energy magnon peak disappeared remains constant, regardless of its thickness. Magnetic force microscopy measurements show the flipping process of magnetic domains. The exceptional air-stability of the 2D FeCr2S4 is also confirmed via Raman spectroscopy and Hall hysteresis loops. The robust anisotropic ferrimagnetism, the thickness-independent of Curie temperature, coupled with excellent air-stability, make 2D FeCr2S4 crystals highly attractive for future spintronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA