Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
CA Cancer J Clin ; 70(5): 404-423, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32767764

RESUMO

Bladder cancer accounts for nearly 170,000 deaths worldwide annually. For over 4 decades, the systemic management of muscle-invasive and advanced bladder cancer has primarily consisted of platinum-based chemotherapy. Over the past 10 years, innovations in sequencing technologies have led to rapid genomic characterization of bladder cancer, deepening our understanding of bladder cancer pathogenesis and exposing potential therapeutic vulnerabilities. On the basis of its high mutational burden, immune checkpoint inhibitors were investigated in advanced bladder cancer, revealing durable responses in a subset of patients. These agents are now approved for several indications and highlight the changing treatment landscape of advanced bladder cancer. In addition, commonly expressed molecular targets were leveraged to develop targeted therapies, such as fibroblast growth factor receptor inhibitors and antibody-drug conjugates. The molecular characterization of bladder cancer and the development of novel therapies also have stimulated investigations into optimizing treatment approaches for muscle-invasive bladder cancer. Herein, the authors review the history of muscle-invasive and advanced bladder cancer management, highlight the important molecular characteristics of bladder cancer, describe the major advances in treatment, and offer future directions for therapeutic development.


Assuntos
Invasividade Neoplásica , Neoplasias da Bexiga Urinária/terapia , Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Biomarcadores/análise , Ensaios Clínicos como Assunto , Terapia Combinada , Cistectomia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Músculo Liso/patologia , Tratamentos com Preservação do Órgão , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/patologia
2.
Mol Biol Rep ; 49(9): 8641-8649, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35731366

RESUMO

BACKGROUND: AS an allosteric inhibitor of fibroblast growth factor receptors (FGFRs), SSR128129E (SSR) extensively inhibits the fibroblast growth factor (FGF) signaling. Given the metabolic importance of FGFs and the global epidemic of obesity, we explored the effect of SSR on fat metabolism. METHODS AND RESULTS: Three-week-old male mice were administered intragastrically with SSR (30 mg/kg/day) or PBS for 5 weeks. The effects of SSR on white and brown fat metabolism were investigated by respiratory metabolic monitoring, histological assessment and molecular analysis. Results indicated that SSR administration significantly reduced the body weight gain and the fat content of mice. SSR did not increase, but decreased the thermogenic capability of both brown and white fat. However, SSR markedly suppressed adipogenesis of adipose tissues. Further study demonstrated the involvement of ERK signaling in the action of SSR. CONCLUSIONS: SSR may be a promising drug candidate for the prevention of obesity via suppressing adipogenesis. However, the influence of SSR on thermogenesis in humans should be further investigated before its clinical application.


Assuntos
Adipogenia , Receptores de Fatores de Crescimento de Fibroblastos , Tecido Adiposo Marrom , Animais , Dieta Hiperlipídica , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Indolizinas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Termogênese , ortoaminobenzoatos
3.
J Biol Chem ; 295(10): 3115-3133, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32005658

RESUMO

The fortuitously discovered antiaging membrane protein αKlotho (Klotho) is highly expressed in the kidney, and deletion of the Klotho gene in mice causes a phenotype strikingly similar to that of chronic kidney disease (CKD). Klotho functions as a co-receptor for fibroblast growth factor 23 (FGF23) signaling, whereas its shed extracellular domain, soluble Klotho (sKlotho), carrying glycosidase activity, is a humoral factor that regulates renal health. Low sKlotho in CKD is associated with disease progression, and sKlotho supplementation has emerged as a potential therapeutic strategy for managing CKD. Here, we explored the structure-function relationship and post-translational modifications of sKlotho variants to guide the future design of sKlotho-based therapeutics. Chinese hamster ovary (CHO)- and human embryonic kidney (HEK)-derived WT sKlotho proteins had varied activities in FGF23 co-receptor and ß-glucuronidase assays in vitro and distinct properties in vivo Sialidase treatment of heavily sialylated CHO-sKlotho increased its co-receptor activity 3-fold, yet it remained less active than hyposialylated HEK-sKlotho. MS and glycopeptide-mapping analyses revealed that HEK-sKlotho is uniquely modified with an unusual N-glycan structure consisting of N,N'-di-N-acetyllactose diamine at multiple N-linked sites, one of which at Asn-126 was adjacent to a putative GalNAc transfer motif. Site-directed mutagenesis and structural modeling analyses directly implicated N-glycans in Klotho's protein folding and function. Moreover, the introduction of two catalytic glutamate residues conserved across glycosidases into sKlotho enhanced its glucuronidase activity but decreased its FGF23 co-receptor activity, suggesting that these two functions might be structurally divergent. These findings open up opportunities for rational engineering of pharmacologically enhanced sKlotho therapeutics for managing kidney disease.


Assuntos
Glucuronidase/metabolismo , Insuficiência Renal Crônica/patologia , Animais , Células CHO , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Cricetinae , Cricetulus , Fator de Crescimento de Fibroblastos 23 , Taxa de Filtração Glomerular/efeitos dos fármacos , Glucuronidase/química , Glucuronidase/genética , Glicopeptídeos/análise , Células HEK293 , Meia-Vida , Humanos , Proteínas Klotho , Espectrometria de Massas , Mutagênese Sítio-Dirigida , Processamento de Proteína Pós-Traducional , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Insuficiência Renal Crônica/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/veterinária , Relação Estrutura-Atividade
4.
J Biol Chem ; 295(29): 9917-9933, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32467228

RESUMO

Receptor tyrosine kinases (RTKs) are single-pass membrane proteins that control vital cell processes such as cell growth, survival, and differentiation. There is a growing body of evidence that RTKs from different subfamilies can interact and that these diverse interactions can have important biological consequences. However, these heterointeractions are often ignored, and their strengths are unknown. In this work, we studied the heterointeractions of nine RTK pairs, epidermal growth factor receptor (EGFR)-EPH receptor A2 (EPHA2), EGFR-vascular endothelial growth factor receptor 2 (VEGFR2), EPHA2-VEGFR2, EPHA2-fibroblast growth factor receptor 1 (FGFR1), EPHA2-FGFR2, EPHA2-FGFR3, VEGFR2-FGFR1, VEGFR2-FGFR2, and VEGFR2-FGFR3, using a FRET-based method. Surprisingly, we found that RTK heterodimerization and homodimerization strengths can be similar, underscoring the significance of RTK heterointeractions in signaling. We discuss how these heterointeractions can contribute to the complexity of RTK signal transduction, and we highlight the utility of quantitative FRET for probing multiple interactions in the plasma membrane.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Células HEK293 , Humanos , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/classificação
5.
Cell Commun Signal ; 19(1): 6, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436016

RESUMO

Interleukin-17 receptor D (IL17RD or IL-17RD) also known as Sef (similar expression to fibroblast growth factor), is a single pass transmembrane protein that is reported to regulate several signaling pathways . IL17RD was initially described as a feedback inhibitor of fibroblast growth factor (FGF) signaling during zebrafish and frog development. It was subsequently determined to regulate other receptor tyrosine kinase signaling cascades as well as several proinflammatory signaling pathways including Interleukin-17A (IL17A), Toll-like receptors (TLR) and Interleukin-1α (IL1α) in several vertebrate species including humans. This review will provide an overview of IL17RD regulation of signaling pathways and functions with emphasis on regulation of development and pathobiological conditions. We will also discuss gaps in our knowledge about IL17RD function to provide insight into opportunities for future investigation. Video Abstract.


Assuntos
Receptores de Interleucina-17/imunologia , Animais , Humanos , Receptores de Interleucina-17/química , Transdução de Sinais
6.
Cancer Control ; 28: 1073274821989314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33618536

RESUMO

OBJECTIVE: Intrahepatic cholangiocarcinoma (iCCA), the second most common type of primary liver tumor, has an increasing incidence in the past few decades. iCCA is highly malignant, with a 5-year survival rate of approximately 5-10%. Surgical resection is usually the prescribed treatment for patients with early stage iCCA; however, patients are usually in an advanced stage iCCA upon diagnosis. Currently, targeted therapy combined with chemotherapy and other comprehensive treatment measures have been mainly adopted as palliative treatment measures. As a common candidate of targeted therapy, FGFR inhibitors have demonstrated their unique advantages in clinical trials. At present, the prospect of FGFR targeted therapy is encouraging. The landscape of FGFR inhibitors in iCCA is needed to be showed urgently. METHODS: We searched relative reports of clinical trials on FGFR inhibitors in PubMed as well as Web of Science. We also concluded other available clinical trials of FGFR inhibitors (Data were collected from clinicaltrials.gov). RESULTS: Several relatively effective targeted drugs are being used in clinical trials. Some preliminary results indicate the outlook of targeted therapy such as BGJ398, TAS120, and HSP90 inhibitors. CONCLUSIONS: In summary, FGFR targeted therapy has broad prospects for the treatment of iCCA.


Assuntos
Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Humanos
7.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804608

RESUMO

Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that have been associated not only with various cellular processes, such as embryonic development and adult wound healing but also enhanced tumor survival, angiogenesis, and metastatic spread. Proteolytic cleavage of these single-pass transmembrane receptors has been suggested to regulate biological activities of their ligands during growth and development, yet little is known about the proteases responsible for this process. In this study, we monitored the release of membrane-anchored FGFRs 1, 2, 3, and 4 in cell-based assays. We demonstrate here that metalloprotease-dependent metalloprotease family, ADAM10 and ADAM17. Loss- and gain-of-function studies in murine embryonic fibroblasts showed that constitutive shedding as well as phorbol-ester-induced processing of FGFRs 1, 3, and 4 is mediated by ADAM17. In contrast, treatment with the calcium ionophore ionomycin stimulated ADAM10-mediated FGFR2 shedding. Cell migration assays with keratinocytes in the presence or absence of soluble FGFRs suggest that ectodomain shedding can modulate the function of ligand-induced FGFR signaling during cell movement. Our data identify ADAM10 and ADAM17 as differentially regulated FGFR membrane sheddases and may therefore provide new insight into the regulation of FGFR functions.


Assuntos
Metaloproteases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Animais , Linhagem Celular , Movimento Celular , Ativação Enzimática , Células Epiteliais/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Família Multigênica , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Proteína Quinase C/metabolismo , Proteólise , Receptores de Fatores de Crescimento de Fibroblastos/química , Receptores de Fatores de Crescimento de Fibroblastos/genética
8.
J Biol Chem ; 294(4): 1142-1151, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30487289

RESUMO

CRISPR/Cas9 is a powerful technology widely used for genome editing, with the potential to be used for correcting a wide variety of deleterious disease-causing mutations. However, the technique tends to generate more indels (insertions and deletions) than precise modifications at the target sites, which might not resolve the mutation and could instead exacerbate the initial genetic disruption. We sought to develop an improved protocol for CRISPR/Cas9 that would correct mutations without unintended consequences. As a case study, we focused on achondroplasia, a common genetic form of dwarfism defined by missense mutation in the Fgfr3 gene that results in glycine to arginine substitution at position 374 in mice in fibroblast growth factor receptor 3 (Fgfr3-G374R), which corresponds to G380R in humans. First, we designed a GFP reporter system that can evaluate the cutting efficiency and specificity of single guide RNAs (sgRNAs). Using the sgRNA selected based on our GFP reporter system, we conducted targeted therapy of achondroplasia in mice. We found that we achieved higher frequency of precise correction of the Fgfr3-G374R mutation using Cas9 protein rather than Cas9 mRNA. We further demonstrated that targeting oligos of 100 and 200 nucleotides precisely corrected the mutation at equal efficiency. We showed that our strategy completely suppressed phenotypes of achondroplasia and whole genome sequencing detected no off-target effects. These data indicate that improved protocols can enable the precise CRISPR/Cas9-mediated correction of individual mutations with high fidelity.


Assuntos
Acondroplasia/terapia , Sistemas CRISPR-Cas , Marcação de Genes , Mutação , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Acondroplasia/genética , Animais , Feminino , Edição de Genes , Masculino , Camundongos , Camundongos Knockout , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
9.
J Biol Chem ; 294(48): 18122-18130, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31628193

RESUMO

MicroRNA-150-5p (miR-150-5p) plays a complex role in normal early hematopoietic development and is also implicated in the development of various different leukemias. We have reported previously that, in myeloid and lymphoid malignancies associated with dysregulated fibroblast growth factor receptor 1 (FGFR1) activities, miR-150-5p is down-regulated compared with healthy cells. Here, using murine cells, we found that this down-regulation is accompanied by CpG methylation of the miR-150-5p promoter region. Of note, analysis of human acute lymphoblastic leukemia (ALL) cohorts also revealed an inverse relationship between miR-150-5p expression and disease progression. We also found that the DNA methyltransferase 1 (DNMT1) enzyme is highly up-regulated in FGFR1-driven leukemias and lymphomas and that FGFR1 inhibition reduces DNMT1 expression. DNMT1 knockdown in stem cell leukemia/lymphoma (SCLL) cells increased miR-150-5p levels and reduced levels of the MYB proto-oncogene transcription factor, a key regulator of leukemogenesis. FGFR1 directly activates the MYC proto-oncogene basic helix-loop-helix transcription factor, which, as we show here, binds and activates the DNMT1 promoter. MYC knockdown decreased DNMT1 expression, which, in turn, increased miR-150-5p expression. One of the known targets of miR-150-5p is MYB, and treatment of leukemic cells with the MYB inhibitor mebendazole dose-dependently increased apoptosis and reduced cell viability. Moreover, mebendazole treatment of murine xenografts models of FGFR1-driven leukemias enhanced survival. These findings provide evidence that MYC activates MYB by up-regulating DNMT1, which silences miR-150-5p and promotes SCLL progression. We propose that inclusion of mebendazole in a combination therapy with FGFR1 inhibitors may be a valuable option to manage SCLL.


Assuntos
Carcinogênese/metabolismo , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , DNA de Neoplasias/metabolismo , Leucemia/metabolismo , MicroRNAs/biossíntese , Proteínas de Neoplasias/metabolismo , Regiões Promotoras Genéticas , RNA Neoplásico/biossíntese , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/biossíntese , Carcinogênese/genética , Carcinogênese/patologia , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA de Neoplasias/genética , Humanos , Leucemia/genética , Leucemia/patologia , MicroRNAs/genética , Proteínas de Neoplasias/genética , Proto-Oncogene Mas , RNA Neoplásico/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-30031900

RESUMO

The plasmacytoma variant translocation 1 (PVT1)1 gene is a long non-coding RNA (lncRNA)2 that has been shown to be an oncogene in many cancers. Herein, the function and potential molecular mechanisms connecting PVT1 and miR-195-5p were elucidated in endometrial cancer cell lines. Quantitative real-time PCR and fluorescence in situ hybridization (FISH)3 demonstrated that PVT1 is up-regulated concomitant with miR-195-5p down-regulation in human endometrial carcinoma tissues. PVT1 knockdown inhibited cell proliferation, migration, and invasion while facilitating apoptosis of endometrial cancer cells. Moreover, restoration of miR-195-5p due to PVT1 knockdown exerted tumor-suppressive functions. We observed that PVT1 promotes malignant cell behavior by decreasing miR-195-5p expression. Binding of PVT1 and miR-195-5p was confirmed using luciferase assays. Furthermore, expression of miR-195-5p negatively correlates with PVT1 expression. At the molecular level, either PVT1 knockdown or miR-195-5p overexpression resulted in a decrease of acidic fibroblast growth factor receptor (FGFR1)4 and basic fibroblast growth factor (FGF2).5 FGFR1 and FGF2 are targets of miR-195-5p that play a critical role in endometrial carcinoma by activating PI3K/AKT and MAPK/Erk pathways. Remarkably, PVT1 knockdown combined with miR-195-5p overexpression led to tumor regression in vivo. Overall, these results depict a novel pathway mediated by PVT1 in endometrial carcinoma, which may have potential application for endometrial carcinoma therapy.

11.
J Biol Chem ; 293(23): 8761-8774, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29691281

RESUMO

Temporomandibular joint osteoarthritis (TMJ OA) is a common degenerative disease with few effective disease-modifying treatments in the clinic. Fibroblast growth factor (FGF) signaling is implicated in articular cartilage homeostasis, but the functional roles of FGFR1 in TMJ OA remain largely unknown. In this study, we report that deletion of Fgfr1 in TMJ chondrocytes delayed TMJ OA progression in the age-associated spontaneous OA model and the abnormal dental occlusion OA model. Immunohistochemical staining revealed that Fgfr1 deficiency decreased the expressions of MMP13 (matrix metalloproteinase-13), ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5), and COL10A1 but increased aggrecan expression level in two TMJ OA models. Furthermore, our data show that inactivation of FGFR1 signaling may promote autophagic activity in TMJ. FGFR1 inhibitor decreased the expressions of Mmp13, Adamts5, and Runx2 in IL-1ß-stimulated condylar chondrocytes, whereas autophagy inhibitors abrogated the protective effects of the FGFR1 inhibitor. Thus, our study indicates inactivated FGFR1 signaling ameliorates TMJ OA progression partially by promoting autophagic activity. Manipulation of this signaling may be a potential therapeutic approach to modify TMJ OA.


Assuntos
Autofagia , Condrócitos/patologia , Deleção de Genes , Osteoartrite/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Articulação Temporomandibular/patologia , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoartrite/patologia , Articulação Temporomandibular/metabolismo
12.
J Biol Chem ; 293(17): 6434-6448, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29540482

RESUMO

Fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling facilitates tumor initiation and progression. Although currently approved inhibitors of FGFR kinase have shown therapeutic benefit in clinical trials, overexpression or mutations of FGFRs eventually confer drug resistance and thereby abrogate the desired activity of kinase inhibitors in many cancer types. In this study, we report that loss of myristoylation of fibroblast growth factor receptor substrate 2 (FRS2α), a scaffold protein essential for FGFR signaling, inhibits FGF/FGFR-mediated oncogenic signaling and FGF10-induced tumorigenesis. Moreover, a previously synthesized myristoyl-CoA analog, B13, which targets the activity of N-myristoyltransferases, suppressed FRS2α myristoylation and decreased the phosphorylation with mild alteration of FRS2α localization at the cell membrane. B13 inhibited oncogenic signaling induced by WT FGFRs or their drug-resistant mutants (FGFRsDRM). B13 alone or in combination with an FGFR inhibitor suppressed FGF-induced WT FGFR- or FGFRDRM-initiated phosphoinositide 3-kinase (PI3K) activity or MAPK signaling, inducing cell cycle arrest and thereby inhibiting cell proliferation and migration in several cancer cell types. Finally, B13 significantly inhibited the growth of xenograft tumors without pathological toxicity to the liver, kidney, or lung in vivo In summary, our study suggests a possible therapeutic approach for inhibiting FGF/FGFR-mediated cancer progression and drug-resistant FGF/FGFR mutants.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Amidas/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Lipoilação/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/metabolismo , Propanolaminas/farmacologia , Neoplasias da Próstata/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular Tumoral , Fatores de Crescimento de Fibroblastos/genética , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos SCID , Células NIH 3T3 , Proteínas de Neoplasias/efeitos dos fármacos , Proteínas de Neoplasias/genética , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/genética , Receptores de Fatores de Crescimento de Fibroblastos/genética
13.
J Biol Chem ; 293(16): 5909-5919, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29483191

RESUMO

Bispecific antibodies have become important formats for therapeutic discovery. They allow for potential synergy by simultaneously engaging two separate targets and enable new functions that are not possible to achieve by using a combination of two monospecific antibodies. Antagonistic antibodies dominate drug discovery today, but only a limited number of agonistic antibodies (i.e. those that activate receptor signaling) have been described. For receptors formed by two components, engaging both of these components simultaneously may be required for agonistic signaling. As such, bispecific antibodies may be particularly useful in activating multicomponent receptor complexes. Here, we describe a biparatopic (i.e. targeting two different epitopes on the same target) format that can activate the endocrine fibroblast growth factor (FGF) 21 receptor (FGFR) complex containing ß-Klotho and FGFR1c. This format was constructed by grafting two different antigen-specific VH domains onto the VH and VL positions of an IgG, yielding a tetravalent binder with two potential geometries, a close and a distant, between the two paratopes. Our results revealed that the biparatopic molecule provides activities that are not observed with each paratope alone. Our approach could help address the challenges with heterogeneity inherent in other bispecific formats and could provide the means to adjust intramolecular distances of the antibody domains to drive optimal activity in a bispecific format. In conclusion, this format is versatile, is easy to construct and produce, and opens a new avenue for agonistic antibody discovery and development.


Assuntos
Anticorpos Biespecíficos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Sítios de Ligação de Anticorpos , Linhagem Celular , Epitopos/metabolismo , Humanos , Proteínas Klotho , Ligantes , Ratos , Anticorpos de Cadeia Única/metabolismo
14.
J Biol Chem ; 293(44): 17218-17228, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30217817

RESUMO

Fibroblast growth factor receptor-1 (FGFR1) activity at the plasma membrane is tightly controlled by the availability of co-receptors and competing receptor isoforms. We have previously shown that FGFR1 activity in pancreatic beta-cells modulates a wide range of processes, including lipid metabolism, insulin processing, and cell survival. More recently, we have revealed that co-expression of FGFR5, a receptor isoform that lacks a tyrosine-kinase domain, influences FGFR1 responses. We therefore hypothesized that FGFR5 is a co-receptor to FGFR1 that modulates responses to ligands by forming a receptor heterocomplex with FGFR1. We first show here increased FGFR5 expression in the pancreatic islets of nonobese diabetic (NOD) mice and also in mouse and human islets treated with proinflammatory cytokines. Using siRNA knockdown, we further report that FGFR5 and FGFR1 expression improves beta-cell survival. Co-immunoprecipitation and quantitative live-cell imaging to measure the molecular interaction between FGFR5 and FGFR1 revealed that FGFR5 forms a mixture of ligand-independent homodimers (∼25%) and homotrimers (∼75%) at the plasma membrane. Interestingly, co-expressed FGFR5 and FGFR1 formed heterocomplexes with a 2:1 ratio and subsequently responded to FGF2 by forming FGFR5/FGFR1 signaling complexes with a 4:2 ratio. Taken together, our findings identify FGFR5 as a co-receptor that is up-regulated by inflammation and promotes FGFR1-induced survival, insights that reveal a potential target for intervention during beta-cell pathogenesis.


Assuntos
Citocinas/imunologia , Diabetes Mellitus/genética , Células Secretoras de Insulina/imunologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Animais , Diabetes Mellitus/imunologia , Dimerização , Feminino , Fator 2 de Crescimento de Fibroblastos/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/imunologia , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/imunologia , Regulação para Cima
15.
Childs Nerv Syst ; 35(9): 1451-1455, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31222448

RESUMO

INTRODUCTION: Pfeiffer syndrome is a rare autosomal dominant inherited disorder associated with craniosynostosis, midfacial hypoplasia, and broad thumbs and toes. The syndrome has been divided into three clinical subtypes based on clinical findings. METHODS: This review will specifically examine the most severe type, Pfeiffer syndrome type 2, focusing on its genetics and molecular biology. CONCLUSION: This subtype of the syndrome is caused by de novo sporadic mutations, the majority of which occur in the fibroblast growth factor receptor type 1 and 2 (FGFR1/2) genes. There is not one specific mutation, however. This disorder is genetically heterogeneous and may have varying phenotypic expressions that in various cases have overlapped with other similar craniosynostoses. A specific missense mutation of FGFR2 causing both Pfeiffer and Crouzon syndromes has been identified, with findings suggesting that gene expression may be affected by polymorphism within the same gene. Compared to other craniosynostosis-related disorders, Pfeiffer syndrome is the most extreme phenotype, as the underlying mutations cause wider effects on the secondary and tertiary protein structures and exhibit harsher clinical findings.


Assuntos
Acrocefalossindactilia/genética , Genótipo , Fenótipo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Humanos
16.
Childs Nerv Syst ; 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30740633

RESUMO

INTRODUCTION: Pfeiffer syndrome is a rare autosomal dominant inherited disorder associated with craniosynostosis, midfacial hypoplasia, and broad thumbs and toes. The syndrome has been divided into three clinical subtypes based on clinical findings. METHODS: This review will specifically examine the most severe type, Pfeiffer syndrome type 2, focusing on its genetics and molecular biology. CONCLUSION: This subtype of the syndrome is caused by de novo sporadic mutations, the majority of which occur in the fibroblast growth factor receptor type 1 and 2 (FGFR1/2) genes. There is not one specific mutation, however. This disorder is genetically heterogeneous and may have varying phenotypic expressions that in various cases have overlapped with other similar craniosynostoses. A specific missense mutation of FGFR2 causing both Pfeiffer and Crouzon syndromes has been identified, with findings suggesting that gene expression may be affected by polymorphism within the same gene. Compared to other craniosynostosis-related disorders, Pfeiffer syndrome is the most extreme phenotype, as the underlying mutations cause wider effects on the secondary and tertiary protein structures and exhibit harsher clinical findings.

17.
Int J Mol Sci ; 20(8)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999623

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the seventh most frequently diagnosed tumor in adults in Europe and represents approximately 2.5% of cancer deaths. The molecular biology underlying renal cell carcinoma (RCC) development and progression has been a key milestone in the management of this type of tumor. The discovery of Von Hippel Lindau (VHL) gene alterations that arouse in 50% of ccRCC patients, leads the identification of an intracellular accumulation of HIF and, consequently an increase of VEGFR expression. This change in cell biology represents a new paradigm in the treatment of metastatic renal cancer by targeting angiogenesis. Currently, there are multiple therapeutic drugs available for advanced disease, including therapies against VEGFR with successful results in patients´ survival. Other tyrosine kinases' pathways, including PDGFR, Axl or MET have emerged as key signaling pathways involved in RCC biology. Indeed, promising new drugs targeting those tyrosine kinases have exhibited outstanding efficacy. In this review we aim to present an overview of the central role of these tyrosine kinases' activities in relevant biological processes for kidney cancer and their usefulness in RCC targeted therapy development. In the immunotherapy era, angiogenesis is still an "old guy" that the medical community is trying to fight using "new bullets".


Assuntos
Inibidores da Angiogênese/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Inibidores da Angiogênese/farmacologia , Animais , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/terapia , Humanos , Imunoterapia/métodos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Terapia de Alvo Molecular/métodos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/terapia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/metabolismo
18.
Int J Mol Sci ; 20(17)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461904

RESUMO

In patients with chronic kidney disease (CKD), adverse outcomes such as systemic inflammation and anemia are contributing pathologies which increase the risks for cardiovascular mortality. Amongst these complications, abnormalities in mineral metabolism and the metabolic milieu are associated with chronic inflammation and iron dysregulation, and fibroblast growth factor 23 (FGF23) is a risk factor in this context. FGF23 is a bone-derived hormone that is essential for regulating vitamin D and phosphate homeostasis. In the early stages of CKD, serum FGF23 levels rise 1000-fold above normal values in an attempt to maintain normal phosphate levels. Despite this compensatory action, clinical CKD studies have demonstrated powerful and dose-dependent associations between FGF23 levels and higher risks for mortality. A prospective pathomechanism coupling elevated serum FGF23 levels with CKD-associated anemia and cardiovascular injury is its strong association with chronic inflammation. In this review, we will examine the current experimental and clinical evidence regarding the role of FGF23 in renal physiology as well as in the pathophysiology of CKD with an emphasis on chronic inflammation and anemia.


Assuntos
Anemia Ferropriva/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Insuficiência Renal Crônica/metabolismo , Anemia Ferropriva/etiologia , Anemia Ferropriva/patologia , Animais , Fator de Crescimento de Fibroblastos 23 , Hepcidinas/metabolismo , Humanos , Inflamação/metabolismo , Ferro/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/patologia
19.
J Biol Chem ; 292(5): 1951-1969, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28011645

RESUMO

The discovery of brown adipose tissue (BAT) as a key regulator of energy expenditure has sparked interest in identifying novel soluble factors capable of activating inducible BAT (iBAT) to combat obesity. Using a high content cell-based screen, we identified fibroblast growth factor 16 (FGF16) as a potent inducer of several physical and transcriptional characteristics analogous to those of both "classical" BAT and iBAT. Overexpression of Fgf16 in vivo recapitulated several of our in vitro findings, specifically the significant induction of the Ucp1 gene and UCP1 protein expression in inguinal white adipose tissue (iWAT), a common site for emergent active iBAT. Despite significant UCP1 up-regulation in iWAT and dramatic weight loss, the metabolic improvements observed due to Fgf16 overexpression in vivo were not the result of increased energy expenditure, as measured by indirect calorimetric assessment. Instead, a pattern of reduced food and water intake, combined with feces replete with lipid and bile acid, indicated a phenotype more akin to that of starvation and intestinal malabsorption. Gene expression analysis of the liver and ileum indicated alterations in several steps of bile acid metabolism, including hepatic synthesis and reabsorption. Histological analysis of intestinal tissue revealed profound abnormalities in support of this conclusion. The in vivo data, together with FGF receptor binding analysis, indicate that the in vivo outcome observed is the likely result of both direct and indirect mechanisms and probably involves multiple receptors. These results highlight the complexity of FGF signaling in the regulation of various metabolic processes.


Assuntos
Tecido Adiposo Branco/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Termogênese , Proteases Específicas de Ubiquitina/biossíntese , Tecido Adiposo Branco/patologia , Animais , Linhagem Celular , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Fatores de Crescimento de Fibroblastos/genética , Humanos , Camundongos , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/metabolismo , Proteases Específicas de Ubiquitina/genética
20.
J Biol Chem ; 292(25): 10364-10378, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28487375

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by progressive pulmonary scarring, decline in lung function, and often results in death within 3-5 five years after diagnosis. Fibroblast growth factor (FGF) signaling has been implicated in the pathogenesis of IPF; however, the mechanism through which FGF signaling contributes to pulmonary fibrosis remains unclear. We hypothesized that FGF receptor (FGFR) signaling in fibroblasts is required for the fibrotic response to bleomycin. To test this, mice with mesenchyme-specific tamoxifen-inducible inactivation of FGF receptors 1, 2, and 3 (Col1α2-CreER; TCKO mice) were lineage labeled and administered intratracheal bleomycin. Lungs were collected for histologic analysis, whole lung RNA and protein, and dissociated for flow cytometry and FACS. Bleomycin-treated Col1α2-CreER; TCKO mice have decreased pulmonary fibrosis, collagen production, and fewer α-smooth muscle actin-positive (αSMA+) myofibroblasts compared with controls. Freshly isolated Col1α2-CreER; TCKO mesenchymal cells from bleomycin-treated mice have decreased collagen expression compared with wild type mesenchymal cells. Furthermore, lineage labeled FGFR-deficient fibroblasts have decreased enrichment in fibrotic areas and decreased proliferation. These data identify a cell autonomous requirement for mesenchymal FGFR signaling in the development of pulmonary fibrosis, and for the enrichment of the Col1α2-CreER-positive (Col1α2+) mesenchymal lineage in fibrotic tissue following bleomycin exposure. We conclude that mesenchymal FGF signaling is required for the development of pulmonary fibrosis, and that therapeutic strategies aimed directly at mesenchymal FGF signaling could be beneficial in the treatment of IPF.


Assuntos
Bleomicina/efeitos adversos , Fator de Crescimento Epidérmico/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Bleomicina/farmacologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Fator de Crescimento Epidérmico/genética , Camundongos , Camundongos Knockout , Fibrose Pulmonar/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA