Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 767
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(4): 899-911.e13, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33545089

RESUMO

Changes in appendage structure underlie key transitions in vertebrate evolution. Addition of skeletal elements along the proximal-distal axis facilitated critical transformations, including the fin-to-limb transition that permitted generation of diverse modes of locomotion. Here, we identify zebrafish mutants that form supernumerary long bones in their pectoral fins. These new bones integrate into musculature, form joints, and articulate with neighboring elements. This phenotype is caused by activating mutations in previously unrecognized regulators of appendage patterning, vav2 and waslb, that function in a common pathway. This pathway is required for appendage development across vertebrates, and loss of Wasl in mice causes defects similar to those seen in murine Hox mutants. Concordantly, formation of supernumerary bones requires Hox11 function, and mutations in the vav2/wasl pathway drive enhanced expression of hoxa11b, indicating developmental homology with the forearm. Our findings reveal a latent, limb-like pattern ability in fins that is activated by simple genetic perturbation.


Assuntos
Osso e Ossos/embriologia , Extremidades/embriologia , Peixe-Zebra/embriologia , Actinas/metabolismo , Nadadeiras de Animais/embriologia , Animais , Sequência de Bases , Padronização Corporal , Sistemas CRISPR-Cas/genética , Linhagem da Célula , Epistasia Genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Genes Reporter , Células HeLa , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Mutação/genética , Fenótipo , Filogenia , Transdução de Sinais/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Development ; 150(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36938965

RESUMO

Blood vessels form elaborate networks that depend on tissue-specific signalling pathways and anatomical structures to guide their growth. However, it is not clear which morphogenetic principles organize the stepwise assembly of the vasculature. We therefore performed a longitudinal analysis of zebrafish caudal fin vascular assembly, revealing the existence of temporally and spatially distinct morphogenetic processes. Initially, vein-derived endothelial cells (ECs) generated arteries in a reiterative process requiring vascular endothelial growth factor (Vegf), Notch and cxcr4a signalling. Subsequently, veins produced veins in more proximal fin regions, transforming pre-existing artery-vein loops into a three-vessel pattern consisting of an artery and two veins. A distinct set of vascular plexuses formed at the base of the fin. They differed in their diameter, flow magnitude and marker gene expression. At later stages, intussusceptive angiogenesis occurred from veins in distal fin regions. In proximal fin regions, we observed new vein sprouts crossing the inter-ray tissue through sprouting angiogenesis. Together, our results reveal a surprising diversity among the mechanisms generating the mature fin vasculature and suggest that these might be driven by separate local cues.


Assuntos
Células Endoteliais , Peixe-Zebra , Animais , Peixe-Zebra/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Fisiológica , Veias/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(21): e2219770120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186843

RESUMO

Processes that regulate size and patterning along an axis must be highly integrated to generate robust shapes; relative changes in these processes underlie both congenital disease and evolutionary change. Fin length mutants in zebrafish have provided considerable insight into the pathways regulating fin size, yet signals underlying patterning have remained less clear. The bony rays of the fins possess distinct patterning along the proximodistal axis, reflected in the location of ray bifurcations and the lengths of ray segments, which show progressive shortening along the axis. Here, we show that thyroid hormone (TH) regulates aspects of proximodistal patterning of the caudal fin rays, regardless of fin size. TH promotes distal gene expression patterns, coordinating ray bifurcations and segment shortening with skeletal outgrowth along the proximodistal axis. This distalizing role for TH is conserved between development and regeneration, in all fins (paired and medial), and between Danio species as well as distantly related medaka. During regenerative outgrowth, TH acutely induces Shh-mediated skeletal bifurcation. Zebrafish have multiple nuclear TH receptors, and we found that unliganded Thrab-but not Thraa or Thrb-inhibits the formation of distal features. Broadly, these results demonstrate that proximodistal morphology is regulated independently from size-instructive signals. Modulating proximodistal patterning relative to size-either through changes to TH metabolism or other hormone-independent pathways-can shift skeletal patterning in ways that recapitulate aspects of fin ray diversity found in nature.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Hormônios Tireóideos/genética , Nadadeiras de Animais/fisiologia , Regeneração/fisiologia
4.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35132436

RESUMO

The pectoral fins of teleost fish are analogous structures to human forelimbs, and the developmental mechanisms directing their initial growth and patterning are conserved between fish and tetrapods. The forelimb vasculature is crucial for limb function, and it appears to play important roles during development by promoting development of other limb structures, but the steps leading to its formation are poorly understood. In this study, we use high-resolution imaging to document the stepwise assembly of the zebrafish pectoral fin vasculature. We show that fin vascular network formation is a stereotyped, choreographed process that begins with the growth of an initial vascular loop around the pectoral fin. This loop connects to the dorsal aorta to initiate pectoral vascular circulation. Pectoral fin vascular development continues with concurrent formation of three elaborate vascular plexuses, one in the distal fin that develops into the fin-ray vasculature and two near the base of the fin in association with the developing fin musculature. Our findings detail a complex, yet highly choreographed, series of steps involved in the development of a complete, functional, organ-specific vascular network.


Assuntos
Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/crescimento & desenvolvimento , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/crescimento & desenvolvimento , Animais
5.
Development ; 149(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35297968

RESUMO

Vascular networks comprise endothelial cells and mural cells, which include pericytes and smooth muscle cells. To elucidate the mechanisms controlling mural cell recruitment during development and tissue regeneration, we studied zebrafish caudal fin arteries. Mural cells colonizing arteries proximal to the body wrapped around them, whereas those in more distal regions extended protrusions along the proximo-distal vascular axis. Both cell populations expressed platelet-derived growth factor receptor ß (pdgfrb) and the smooth muscle cell marker myosin heavy chain 11a (myh11a). Most wrapping cells in proximal locations additionally expressed actin alpha2, smooth muscle (acta2). Loss of Pdgfrb signalling specifically decreased mural cell numbers at the vascular front. Using lineage tracing, we demonstrate that precursor cells located in periarterial regions and expressing Pgdfrb can give rise to mural cells. Studying tissue regeneration, we did not find evidence that newly formed mural cells were derived from pre-existing cells. Together, our findings reveal conserved roles for Pdgfrb signalling in development and regeneration, and suggest a limited capacity of mural cells to self-renew or contribute to other cell types during tissue regeneration.


Assuntos
Miócitos de Músculo Liso , Pericitos , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Células Endoteliais/metabolismo , Miócitos de Músculo Liso/metabolismo , Pericitos/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35274676

RESUMO

The 5'Hox genes play crucial roles in limb development and specify regions in the proximal-distal axis of limbs. However, there is no direct genetic evidence that Hox genes are essential for limb development in non-mammalian tetrapods or for limb regeneration. Here, we produced single to quadruple Hox13 paralog mutants using the CRISPR/Cas9 system in newts (Pleurodeles waltl), which have strong regenerative capacities, and also produced germline mutants. We show that Hox13 genes are essential for digit formation in development, as in mice. In addition, Hoxa13 has a predominant role in digit formation, unlike in mice. The predominance is probably due to the restricted expression pattern of Hoxd13 in limb buds and the strong dependence of Hoxd13 expression on Hoxa13. Finally, we demonstrate that Hox13 genes are also necessary for digit formation in limb regeneration. Our findings reveal that the general function of Hox13 genes is conserved between limb development and regeneration, and across taxa. The predominance of Hoxa13 function both in newt limbs and fish fins, but not in mouse limbs, suggests a potential contribution of Hoxa13 function in fin-to-limb transition.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Animais , Extremidades , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Botões de Extremidades/metabolismo , Camundongos , Salamandridae/genética , Salamandridae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Syst Biol ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158356

RESUMO

Phylogenomics has the power to uncover complex phylogenetic scenarios across the genome. In most cases, no single topology is reflected across the entire genome as the phylogenetic signal differs among genomic regions due to processes, such as introgression and incomplete lineage sorting. Baleen whales are among the largest vertebrates on Earth with a high dispersal potential in a relatively unrestricted habitat, the oceans. The fin whale (Balaenoptera physalus) is one of the most enigmatic baleen whale species, currently divided into four subspecies. It has been a matter of debate whether phylogeographic patterns explain taxonomic variation in fin whales. Here we present a chromosome-level whole genome analysis of the phylogenetic relationships among fin whales from multiple ocean basins. First, we estimated concatenated and consensus phylogenies for both the mitochondrial and nuclear genomes. The consensus phylogenies based upon the autosomal genome uncovered monophyletic clades associated with each ocean basin, aligning with the current understanding of subspecies division. Nevertheless, discordances were detected in the phylogenies based on the Y chromosome, mitochondrial genome, autosomal genome and X chromosome. Furthermore, we detected signs of introgression and pervasive phylogenetic discordance across the autosomal genome. This complex phylogenetic scenario could be explained by a puzzle of introgressive events, not yet documented in fin whales. Similarly, incomplete lineage sorting and low phylogenetic signal could lead to such phylogenetic discordances. Our study reinforces the pitfalls of relying on concatenated or single locus phylogenies to determine taxonomic relationships below the species level by illustrating the underlying nuances which some phylogenetic approaches may fail to capture. We emphasize the significance of accurate taxonomic delineation in fin whales by exploring crucial information revealed through genome-wide assessments.

8.
Proc Natl Acad Sci U S A ; 119(10): e2120150119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238632

RESUMO

The origin and diversification of appendage types is a central question in vertebrate evolution. Understanding the genetic mechanisms that underlie fin and limb development can reveal relationships between different appendages. Here we demonstrate, using chemical genetics, a mutually agonistic interaction between Fgf and Shh genes in the developing dorsal fin of the channel catfish, Ictalurus punctatus. We also find that Fgf8 and Shh orthologs are expressed in the apical ectodermal ridge and zone of polarizing activity, respectively, in the median fins of representatives from other major vertebrate lineages. These findings demonstrate the importance of this feedback loop in median fins and offer developmental evidence for a median fin-first scenario for vertebrate paired appendage origins.


Assuntos
Nadadeiras de Animais/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Ictaluridae/embriologia , Animais , Padronização Corporal/genética , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Ictaluridae/anatomia & histologia , Ictaluridae/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(48): e2209231119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36417434

RESUMO

The shaping of bone structures relies on various cell types and signaling pathways. Here, we use the zebrafish bifurcating fin rays during regeneration to investigate bone patterning. We found that the regenerating fin rays form via two mineralization fronts that undergo an osteoblast-dependent fusion/stitching until the branchpoint, and that bifurcation is not simply the splitting of one unit into two. We identified tartrate-resistant acid phosphatase-positive osteolytic tubular structures at the branchpoints, hereafter named osteolytic tubules (OLTs). Chemical inhibition of their bone-resorbing activity strongly impairs ray bifurcation, indicating that OLTs counteract the stitching process. Furthermore, by testing different osteoactive compounds, we show that the position of the branchpoint depends on the balance between bone mineralization and resorption activities. Overall, these findings provide a unique perspective on fin ray formation and bifurcation, and reveal a key role for OLTs in defining the proximo-distal position of the branchpoint.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Osteoblastos/metabolismo , Transdução de Sinais , Osso e Ossos/metabolismo
10.
BMC Biol ; 22(1): 74, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561802

RESUMO

BACKGROUND: The tunicates form a group of filter-feeding marine animals closely related to vertebrates. They share with them a number of features such as a notochord and a dorsal neural tube in the tadpole larvae of ascidians, one of the three groups that make tunicates. However, a number of typical chordate characters have been lost in different branches of tunicates, a diverse and fast-evolving phylum. Consequently, the tunic, a sort of exoskeleton made of extracellular material including cellulose secreted by the epidermis, is the unifying character defining the tunicate phylum. In the larva of ascidians, the tunic differentiates in the tail into a median fin (with dorsal and ventral extended blades) and a caudal fin. RESULTS: Here we have performed experiments in the ascidian Phallusia mammillata to address the molecular control of tunic 3D morphogenesis. We have demonstrated that the tail epidermis medio-lateral patterning essential for peripheral nervous system specification also controls tunic elongation into fins. More specifically, when tail epidermis midline identity was abolished by BMP signaling inhibition, or CRISPR/Cas9 inactivation of the transcription factor coding genes Msx or Klf1/2/4/17, median fin did not form. We postulated that this genetic program should regulate effectors of tunic secretion. We thus analyzed the expression and regulation in different ascidian species of two genes acquired by horizontal gene transfer (HGT) from bacteria, CesA coding for a cellulose synthase and Gh6 coding for a cellulase. We have uncovered an unexpected dynamic history of these genes in tunicates and high levels of variability in gene expression and regulation among ascidians. Although, in Phallusia, Gh6 has a regionalized expression in the epidermis compatible with an involvement in fin elongation, our functional studies indicate a minor function during caudal fin formation only. CONCLUSIONS: Our study constitutes an important step in the study of the integration of HGT-acquired genes into developmental networks and a cellulose-based morphogenesis of extracellular material in animals.


Assuntos
Urocordados , Animais , Urocordados/genética , Morfogênese/genética , Epiderme , Sistema Nervoso Periférico , Larva/genética , Celulose
11.
Dev Dyn ; 253(3): 283-295, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37732630

RESUMO

BACKGROUND: Although vertebrae are the defining character of vertebrates, they are found only in rudimentary form in extant agnathans. In addition, the vertebrae of agnathans possess several unique features, such as elastin-like molecules as the main matrix component and late (post-metamorphosis) differentiation of lamprey vertebrae. In this study, by tracing the developmental process of vertebrae in lamprey, we examined the homology of vertebrae between lampreys and gnathostomes. RESULTS: We found that the lamprey somite is first subdivided mediolaterally, with myotome cells differentiating medially and non-myotome cells emerging laterally. Subsequently, collagen-positive non-myotome cells surround the myotome. This pattern of somitogenesis is rather similar to that in amphioxi and sheds doubt on the presence of a sclerotome, in terms of mesenchyme cells induced by a signal from the notochord, in lamprey. Further tracing of non-myotome cell development revealed that fin cartilage develops in ammocoete larvae approximately 35 mm in body length. The development of the fin cartilage occurs much earlier than that of the vertebra whose development proceeds during metamorphosis. CONCLUSION: We propose that the homology of vertebrae between agnathans and gnathostomes should be discussed carefully, because the developmental process of the lamprey vertebra is different from that of gnathostomes.


Assuntos
Sistema Musculoesquelético , Animais , Coluna Vertebral , Esqueleto , Lampreias , Vertebrados
12.
Dev Dyn ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003620

RESUMO

BACKGROUND: The gene cAMP-Responsive Element Binding protein 3-like-1 (CREB3L1) has been implicated in bone development in mice, with CREB3L1 knock-out mice exhibiting fragile bones, and in humans, with CREB3L1 mutations linked to osteogenesis imperfecta. However, the mechanism through which Creb3l1 regulates bone development is not fully understood. RESULTS: To probe the role of Creb3l1 in organismal physiology, we used CRISPR-Cas9 genome editing to generate a Danio rerio (zebrafish) model of Creb3l1 deficiency. In contrast to mammalian phenotypes, the Creb3l1 deficient fish do not display abnormalities in osteogenesis, except for a decrease in the bifurcation pattern of caudal fin. Both, skeletal morphology and overall bone density appear normal in the mutant fish. However, the regeneration of caudal fin postamputation is significantly affected, with decreased overall regenerate and mineralized bone area. Moreover, the mutant fish exhibit a severe patterning defect during regeneration, with a significant decrease in bifurcation complexity of the fin rays and distalization of the bifurcation sites. Analysis of genes implicated in bone development showed aberrant patterning of shha and ptch2 in Creb3l1 deficient fish, linking Creb3l1 with Sonic Hedgehog signaling during fin regeneration. CONCLUSIONS: Our results uncover a novel role for Creb3l1 in regulating tissue growth and patterning during regeneration.

13.
Dev Biol ; 498: 35-48, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933633

RESUMO

Fibroblasts play an important role in maintaining tissue integrity by secreting components of the extracellular matrix and initiating response to injury. Although the function of fibroblasts has been extensively studied in adults, the embryonic origin and diversification of different fibroblast subtypes during development remain largely unexplored. Using zebrafish as a model, we show that the sclerotome, a sub-compartment of the somite, is the embryonic source of multiple fibroblast subtypes including tenocytes (tendon fibroblasts), blood vessel associated fibroblasts, fin mesenchymal cells, and interstitial fibroblasts. High-resolution imaging shows that different fibroblast subtypes occupy unique anatomical locations with distinct morphologies. Long-term Cre-mediated lineage tracing reveals that the sclerotome also contributes to cells closely associated with the axial skeleton. Ablation of sclerotome progenitors results in extensive skeletal defects. Using photoconversion-based cell lineage analysis, we find that sclerotome progenitors at different dorsal-ventral and anterior-posterior positions display distinct differentiation potentials. Single-cell clonal analysis combined with in vivo imaging suggests that the sclerotome mostly contains unipotent and bipotent progenitors prior to cell migration, and the fate of their daughter cells is biased by their migration paths and relative positions. Together, our work demonstrates that the sclerotome is the embryonic source of trunk fibroblasts as well as the axial skeleton, and local signals likely contribute to the diversification of distinct fibroblast subtypes.


Assuntos
Somitos , Peixe-Zebra , Animais , Diferenciação Celular , Linhagem da Célula , Fibroblastos
14.
Evol Dev ; 26(3): e12478, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38650470

RESUMO

The origin of paired appendages became one of the most important adaptations of vertebrates, allowing them to lead active lifestyles and explore a wide range of ecological niches. The basic form of paired appendages in evolution is the fins of fishes. The problem of paired appendages has attracted the attention of researchers for more than 150 years. During this time, a number of theories have been proposed, mainly based on morphological data, two of which, the Balfour-Thacher-Mivart lateral fold theory and Gegenbaur's gill arch theory, have not lost their relevance. So far, however, none of the proposed ideas has been supported by decisive evidence. The study of the evolutionary history of the appearance and development of paired appendages lies at the intersection of several disciplines and involves the synthesis of paleontological, morphological, embryological, and genetic data. In this review, we attempt to summarize and discuss the results accumulated in these fields and to analyze the theories put forward regarding the prerequisites and mechanisms that gave rise to paired fins and limbs in vertebrates.


Assuntos
Nadadeiras de Animais , Evolução Biológica , Peixes , Animais , Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/crescimento & desenvolvimento , Peixes/anatomia & histologia , Peixes/genética , Peixes/crescimento & desenvolvimento , Peixes/embriologia , Vertebrados/anatomia & histologia , Vertebrados/crescimento & desenvolvimento , Vertebrados/genética
15.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35107164

RESUMO

Reactive oxygen species (ROS), originally classified as toxic molecules, have attracted increasing interest given their actions in cell signaling. Hydrogen peroxide (H2O2), the major ROS produced by cells, acts as a second messenger to modify redox-sensitive proteins or lipids. After caudal fin amputation, tight spatiotemporal regulation of ROS is required first for wound healing and later to initiate the regenerative program. However, the mechanisms carrying out this sustained ROS production and their integration with signaling pathways remain poorly understood. We focused on the early dialog between H2O2 and Sonic hedgehog (Shh) during zebrafish fin regeneration. We demonstrate that H2O2 controls Shh expression and that Shh in turn regulates the H2O2 level via a canonical pathway. Moreover, the means of this tight reciprocal control change during the successive phases of the regenerative program. Dysregulation of the Hedgehog pathway has been implicated in several developmental syndromes, diabetes and cancer. These data support the existence of an early positive crosstalk between Shh and H2O2 that might be more generally involved in various processes paving the way to improve regenerative processes, particularly in vertebrates.


Assuntos
Proteínas Hedgehog , Peixe-Zebra , Animais , Proteínas Hedgehog/metabolismo , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio , Cicatrização , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
16.
Development ; 148(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34338288

RESUMO

Proper function of the vertebrate skeleton requires the development of distinct articulating embryonic cartilages. Irx transcription factors are arranged in co-regulated clusters that are expressed in the developing skeletons of the face and appendages. IrxB cluster genes are required for the separation of toes in mice and formation of the hyoid joint in zebrafish, yet whether Irx genes have broader roles in skeletal development remains unclear. Here, we perform a comprehensive loss-of-function analysis of all 11 Irx genes in zebrafish. We uncover conserved requirements for IrxB genes in formation of the fish and mouse scapula. In the face, we find a requirement for IrxAb genes and irx7 in formation of anterior neural crest precursors of the jaw, and for IrxBa genes in formation of endodermal pouches and gill cartilages. We also observe extensive joint loss and cartilage fusions in animals with combinatorial losses of Irx clusters, with in vivo imaging revealing that at least some of these fusions arise through inappropriate chondrogenesis. Our analysis reveals diverse roles for Irx genes in the formation and later segmentation of the facial skeleton.


Assuntos
Cartilagem/embriologia , Condrogênese/genética , Proteínas de Homeodomínio/metabolismo , Família Multigênica , Proteínas Mutantes/metabolismo , Crânio/embriologia , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Alelos , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Mutação , Crista Neural/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética
17.
Development ; 148(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061172

RESUMO

Organs stop growing to achieve a characteristic size and shape in scale with the body of an animal. Likewise, regenerating organs sense injury extents to instruct appropriate replacement growth. Fish fins exemplify both phenomena through their tremendous diversity of form and remarkably robust regeneration. The classic zebrafish mutant longfint2 develops and regenerates dramatically elongated fins and underlying ray skeleton. We show longfint2 chromosome 2 overexpresses the ether-a-go-go-related voltage-gated potassium channel kcnh2a. Genetic disruption of kcnh2a in cis rescues longfint2, indicating longfint2 is a regulatory kcnh2a allele. We find longfint2 fin overgrowth originates from prolonged outgrowth periods by showing Kcnh2a chemical inhibition during late stage regeneration fully suppresses overgrowth. Cell transplantations demonstrate longfint2-ectopic kcnh2a acts tissue autonomously within the fin intra-ray mesenchymal lineage. Temporal inhibition of the Ca2+-dependent phosphatase calcineurin indicates it likewise entirely acts late in regeneration to attenuate fin outgrowth. Epistasis experiments suggest longfint2-expressed Kcnh2a inhibits calcineurin output to supersede growth cessation signals. We conclude ion signaling within the growth-determining mesenchyme lineage controls fin size by tuning outgrowth periods rather than altering positional information or cell-level growth potency.


Assuntos
Nadadeiras de Animais/fisiologia , Expressão Ectópica do Gene/fisiologia , Canais de Potássio Éter-A-Go-Go/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Nadadeiras de Animais/anatomia & histologia , Animais , Sistemas CRISPR-Cas , Calcineurina/metabolismo , Proliferação de Células , Expressão Ectópica do Gene/genética , Éter , Canais de Potássio Éter-A-Go-Go/genética , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Tamanho do Órgão , Regeneração/fisiologia , Transdução de Sinais/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
18.
J Anat ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845054

RESUMO

Mudskippers are a group of extant ray-finned fishes with an amphibious lifestyle and serve as exemplars for understanding the evolution of amphibious capabilities in teleosts. A comprehensive anatomical profile of both the soft and hard tissues within their propulsive fins is essential for advancing our understanding of terrestrial locomotor adaptations in fish. Despite the ecological significance of mudskippers, detailed data on their musculoskeletal anatomy remains limited. In the present research, we utilized contrast-enhanced high-resolution microcomputed tomography (µCT) imaging to investigate the barred mudskipper, Periophthalmus argentilineatus. This technique enabled detailed reconstruction and quantification of the morphological details of the pectoral, pelvic, and caudal fins of this terrestrial mudskipper, facilitating comparison with its aquatic relatives. Our findings reveal that P. argentilineatus has undergone complex musculoskeletal adaptations for terrestrial movement, including an increase in muscle complexity and muscle volume, as well as the development of specialized structures like aponeuroses for pectoral fin extension. Skeletal modifications are also evident, with features such as a reinforced shoulder-pelvic joint and thickened fin rays. These evolutionary modifications suggest biomechanically advanced fins capable of overcoming the gravitational challenges of terrestrial habitats, indicating a strong selective advantage for these features in land-based environments. The unique musculoskeletal modifications in the fins of mudskippers like P. argentilineatus, compared with their aquatic counterparts, mark a critical evolutionary shift toward terrestrial adaptations. This study not only sheds light on the specific anatomical changes facilitating this transition but also offers broader insights into the early evolutionary mechanisms of terrestrial locomotion, potentially mirroring the transformative journey from aquatic to terrestrial life in the lineage leading to tetrapods.

19.
Dev Growth Differ ; 66(3): 235-247, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38439516

RESUMO

In this study, we comprehensively searched for fish-specific genes in gnathostomes that contribute to development of the fin, a fish-specific trait. Many previous reports suggested that animal group-specific genes are often important for group-specific traits. Clarifying the roles of fish-specific genes in fin development of gnathostomes, for example, can help elucidate the mechanisms underlying the formation of this trait. We first identified 91 fish-specific genes in gnathostomes by comparing the gene repertoire in 16 fish and 35 tetrapod species. RNA-seq analysis narrowed down the 91 candidates to 33 genes that were expressed in the developing pectoral fin. We analyzed the functions of approximately half of the candidate genes by loss-of-function analysis in zebrafish. We found that some of the fish-specific and fin development-related genes, including fgf24 and and1/and2, play roles in fin development. In particular, the newly identified fish-specific gene qkia is expressed in the developing fin muscle and contributes to muscle morphogenesis in the pectoral fin as well as body trunk. These results indicate that the strategy of identifying animal group-specific genes is functional and useful. The methods applied here could be used in future studies to identify trait-associated genes in other animal groups.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Genômica , Nadadeiras de Animais/fisiologia
20.
Cells Tissues Organs ; : 1-19, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38964305

RESUMO

INTRODUCTION: The formation of normal bone and bone healing requires the cAMP-responsive element binding protein 3-like-1 (Creb3l1) transmembrane transcription factor, as deletion of the murine CREB3L1 results in osteopenic animals with limited capacity to repair bone after a fracture. Creb3l1 undergoes regulated intramembrane proteolysis (RIP) to release the N-terminal transcription activating (TA) fragment that enters the nucleus and regulates the expression of target genes. METHODS: To expand our understanding of Creb3l1's role in skeletal development and skeletal patterning, we aimed to generate animals expressing only the TA fragment of Creb3l1 lacking the transmembrane domain and thereby not regulated through RIP. However, the CRISPR/Cas9-mediated genome editing in zebrafish Danio rerio caused a frameshift mutation that added 56 random amino acids at the C-terminus of the TA fragment (TA+), making it unable to enter the nucleus. Thus, TA+ does not regulate transcription, and the creb3l1TA+/TA+ fish do not mediate creb3l1-dependent transcription. RESULTS: We document that the creb3l1TA+/TA+ fish exhibit defects in the patterning of caudal fin lepidotrichia, with significantly distalized points of proximal bifurcation and decreased secondary bifurcations. Moreover, using the caudal fin amputation model, we show that creb3l1TA+/TA+ fish have decreased regeneration and that their regenerates replicate the distalization and bifurcation defects observed in intact fins of creb3l1TA+/TA+ animals. These defects correlate with altered expression of the shha and ptch2 components of the Sonic Hedgehog signaling pathway in creb3l1TA+/TA+ regenerates. CONCLUSION: Together, our results uncover a previously unknown intersection between Creb3l1 and the Sonic Hedgehog pathway and document a novel role of Creb3l1 in tissue patterning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA