Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(20): 4422-4437.e21, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774680

RESUMO

Recent work has identified dozens of non-coding loci for Alzheimer's disease (AD) risk, but their mechanisms and AD transcriptional regulatory circuitry are poorly understood. Here, we profile epigenomic and transcriptomic landscapes of 850,000 nuclei from prefrontal cortexes of 92 individuals with and without AD to build a map of the brain regulome, including epigenomic profiles, transcriptional regulators, co-accessibility modules, and peak-to-gene links in a cell-type-specific manner. We develop methods for multimodal integration and detecting regulatory modules using peak-to-gene linking. We show AD risk loci are enriched in microglial enhancers and for specific TFs including SPI1, ELF2, and RUNX1. We detect 9,628 cell-type-specific ATAC-QTL loci, which we integrate alongside peak-to-gene links to prioritize AD variant regulatory circuits. We report differential accessibility of regulatory modules in late AD in glia and in early AD in neurons. Strikingly, late-stage AD brains show global epigenome dysregulation indicative of epigenome erosion and cell identity loss.


Assuntos
Doença de Alzheimer , Encéfalo , Regulação da Expressão Gênica , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Epigenoma , Epigenômica , Estudo de Associação Genômica Ampla
2.
Cell ; 182(5): 1198-1213.e14, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32888493

RESUMO

Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p < 5 × 10-9, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies.


Assuntos
Povo Asiático/genética , Mutação de Sentido Incorreto/genética , Polimorfismo de Nucleotídeo Único/genética , População Branca/genética , Genética , Estudo de Associação Genômica Ampla/métodos , Células HEK293 , Humanos , Interleucina-7/genética , Fenótipo
3.
Cell ; 182(5): 1214-1231.e11, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32888494

RESUMO

Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.


Assuntos
Predisposição Genética para Doença/genética , Herança Multifatorial/genética , Feminino , Redes Reguladoras de Genes/genética , Estudo de Associação Genômica Ampla/métodos , Hematopoese/genética , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
4.
Am J Hum Genet ; 111(6): 1061-1083, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38723632

RESUMO

To identify credible causal risk variants (CCVs) associated with different histotypes of epithelial ovarian cancer (EOC), we performed genome-wide association analysis for 470,825 genotyped and 10,163,797 imputed SNPs in 25,981 EOC cases and 105,724 controls of European origin. We identified five histotype-specific EOC risk regions (p value <5 × 10-8) and confirmed previously reported associations for 27 risk regions. Conditional analyses identified an additional 11 signals independent of the primary signal at six risk regions (p value <10-5). Fine mapping identified 4,008 CCVs in these regions, of which 1,452 CCVs were located in ovarian cancer-related chromatin marks with significant enrichment in active enhancers, active promoters, and active regions for CCVs from each EOC histotype. Transcriptome-wide association and colocalization analyses across histotypes using tissue-specific and cross-tissue datasets identified 86 candidate susceptibility genes in known EOC risk regions and 32 genes in 23 additional genomic regions that may represent novel EOC risk loci (false discovery rate <0.05). Finally, by integrating genome-wide HiChIP interactome analysis with transcriptome-wide association study (TWAS), variant effect predictor, transcription factor ChIP-seq, and motifbreakR data, we identified candidate gene-CCV interactions at each locus. This included risk loci where TWAS identified one or more candidate susceptibility genes (e.g., HOXD-AS2, HOXD8, and HOXD3 at 2q31) and other loci where no candidate gene was identified (e.g., MYC and PVT1 at 8q24) by TWAS. In summary, this study describes a functional framework and provides a greater understanding of the biological significance of risk alleles and candidate gene targets at EOC susceptibility loci identified by a genome-wide association study.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Neoplasias Ovarianas , Polimorfismo de Nucleotídeo Único , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/genética , Transcriptoma , Fatores de Risco , Genômica/métodos , Estudos de Casos e Controles , Multiômica
5.
Am J Hum Genet ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38925119

RESUMO

Recent studies have highlighted the essential role of RNA splicing, a key mechanism of alternative RNA processing, in establishing connections between genetic variations and disease. Genetic loci influencing RNA splicing variations show considerable influence on complex traits, possibly surpassing those affecting total gene expression. Dysregulated RNA splicing has emerged as a major potential contributor to neurological and psychiatric disorders, likely due to the exceptionally high prevalence of alternatively spliced genes in the human brain. Nevertheless, establishing direct associations between genetically altered splicing and complex traits has remained an enduring challenge. We introduce Spliced-Transcriptome-Wide Associations (SpliTWAS) to integrate alternative splicing information with genome-wide association studies to pinpoint genes linked to traits through exon splicing events. We applied SpliTWAS to two schizophrenia (SCZ) RNA-sequencing datasets, BrainGVEX and CommonMind, revealing 137 and 88 trait-associated exons (in 84 and 67 genes), respectively. Enriched biological functions in the associated gene sets converged on neuronal function and development, immune cell activation, and cellular transport, which are highly relevant to SCZ. SpliTWAS variants impacted RNA-binding protein binding sites, revealing potential disruption of RNA-protein interactions affecting splicing. We extended the probabilistic fine-mapping method FOCUS to the exon level, identifying 36 genes and 48 exons as putatively causal for SCZ. We highlight VPS45 and APOPT1, where splicing of specific exons was associated with disease risk, eluding detection by conventional gene expression analysis. Collectively, this study supports the substantial role of alternative splicing in shaping the genetic basis of SCZ, providing a valuable approach for future investigations in this area.

6.
Am J Hum Genet ; 111(2): 213-226, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171363

RESUMO

The aim of fine mapping is to identify genetic variants causally contributing to complex traits or diseases. Existing fine-mapping methods employ Bayesian discrete mixture priors and depend on a pre-specified maximum number of causal variants, which may lead to sub-optimal solutions. In this work, we propose a Bayesian fine-mapping method called h2-D2, utilizing a continuous global-local shrinkage prior. We also present an approach to define credible sets of causal variants in continuous prior settings. Simulation studies demonstrate that h2-D2 outperforms current state-of-the-art fine-mapping methods such as SuSiE and FINEMAP in accurately identifying causal variants and estimating their effect sizes. We further applied h2-D2 to prostate cancer analysis and discovered some previously unknown causal variants. In addition, we inferred 369 target genes associated with the detected causal variants and several pathways that were significantly over-represented by these genes, shedding light on their potential roles in prostate cancer development and progression.


Assuntos
Neoplasias da Próstata , Locos de Características Quantitativas , Masculino , Humanos , Teorema de Bayes , Polimorfismo de Nucleotídeo Único/genética , Simulação por Computador , Neoplasias da Próstata/genética , Estudo de Associação Genômica Ampla/métodos
7.
Am J Hum Genet ; 111(1): 181-199, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181733

RESUMO

Human humoral immune responses to SARS-CoV-2 vaccines exhibit substantial inter-individual variability and have been linked to vaccine efficacy. To elucidate the underlying mechanism behind this variability, we conducted a genome-wide association study (GWAS) on the anti-spike IgG serostatus of UK Biobank participants who were previously uninfected by SARS-CoV-2 and had received either the first dose (n = 54,066) or the second dose (n = 46,232) of COVID-19 vaccines. Our analysis revealed significant genome-wide associations between the IgG antibody serostatus following the initial vaccine and human leukocyte antigen (HLA) class II alleles. Specifically, the HLA-DRB1∗13:02 allele (MAF = 4.0%, OR = 0.75, p = 2.34e-16) demonstrated the most statistically significant protective effect against IgG seronegativity. This protective effect was driven by an alteration from arginine (Arg) to glutamic acid (Glu) at position 71 on HLA-DRß1 (p = 1.88e-25), leading to a change in the electrostatic potential of pocket 4 of the peptide binding groove. Notably, the impact of HLA alleles on IgG responses was cell type specific, and we observed a shared genetic predisposition between IgG status and susceptibility/severity of COVID-19. These results were replicated within independent cohorts where IgG serostatus was assayed by two different antibody serology tests. Our findings provide insights into the biological mechanism underlying individual variation in responses to COVID-19 vaccines and highlight the need to consider the influence of constitutive genetics when designing vaccination strategies for optimizing protection and control of infectious disease across diverse populations.


Assuntos
COVID-19 , Imunoglobulina G , Humanos , Formação de Anticorpos/genética , Vacinas contra COVID-19 , Estudo de Associação Genômica Ampla , COVID-19/genética , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação
8.
Hum Mol Genet ; 33(8): 687-697, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38263910

RESUMO

BACKGROUND: Expansion of genome-wide association studies across population groups is needed to improve our understanding of shared and unique genetic contributions to breast cancer. We performed association and replication studies guided by a priori linkage findings from African ancestry (AA) relative pairs. METHODS: We performed fixed-effect inverse-variance weighted meta-analysis under three significant AA breast cancer linkage peaks (3q26-27, 12q22-23, and 16q21-22) in 9241 AA cases and 10 193 AA controls. We examined associations with overall breast cancer as well as estrogen receptor (ER)-positive and negative subtypes (193,132 SNPs). We replicated associations in the African-ancestry Breast Cancer Genetic Consortium (AABCG). RESULTS: In AA women, we identified two associations on chr12q for overall breast cancer (rs1420647, OR = 1.15, p = 2.50×10-6; rs12322371, OR = 1.14, p = 3.15×10-6), and one for ER-negative breast cancer (rs77006600, OR = 1.67, p = 3.51×10-6). On chr3, we identified two associations with ER-negative disease (rs184090918, OR = 3.70, p = 1.23×10-5; rs76959804, OR = 3.57, p = 1.77×10-5) and on chr16q we identified an association with ER-negative disease (rs34147411, OR = 1.62, p = 8.82×10-6). In the replication study, the chr3 associations were significant and effect sizes were larger (rs184090918, OR: 6.66, 95% CI: 1.43, 31.01; rs76959804, OR: 5.24, 95% CI: 1.70, 16.16). CONCLUSION: The two chr3 SNPs are upstream to open chromatin ENSR00000710716, a regulatory feature that is actively regulated in mammary tissues, providing evidence that variants in this chr3 region may have a regulatory role in our target organ. Our study provides support for breast cancer variant discovery using prioritization based on linkage evidence.


Assuntos
População Negra , Neoplasias da Mama , Predisposição Genética para Doença , Feminino , Humanos , População Negra/genética , Neoplasias da Mama/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
9.
Am J Hum Genet ; 110(2): 284-299, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36693378

RESUMO

Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10-8), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.


Assuntos
Diabetes Mellitus Tipo 2 , Proinsulina , Humanos , Proinsulina/genética , Proinsulina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estudo de Associação Genômica Ampla/métodos , Insulina/genética , Insulina/metabolismo , Glucose , Fatores de Transcrição/genética , Proteínas de Homeodomínio/genética
10.
Am J Hum Genet ; 110(10): 1718-1734, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37683633

RESUMO

Genome-wide association studies of blood pressure (BP) have identified >1,000 loci, but the effector genes and biological pathways at these loci are mostly unknown. Using published association summary statistics, we conducted annotation-informed fine-mapping incorporating tissue-specific chromatin segmentation and colocalization to identify causal variants and candidate effector genes for systolic BP, diastolic BP, and pulse pressure. We observed 532 distinct signals associated with ≥2 BP traits and 84 with all three. For >20% of signals, a single variant accounted for >75% posterior probability, 65 were missense variants in known (SLC39A8, ADRB2, and DBH) and previously unreported BP candidate genes (NRIP1 and MMP14). In disease-relevant tissues, we colocalized >80 and >400 distinct signals for each BP trait with cis-eQTLs and regulatory regions from promoter capture Hi-C, respectively. Integrating mouse, human disorder, gene expression and tissue abundance data, and literature review, we provide consolidated evidence for 436 BP candidate genes for future functional validation and discover several potential drug targets.


Assuntos
Estudo de Associação Genômica Ampla , Hipertensão , Humanos , Animais , Camundongos , Locos de Características Quantitativas/genética , Multiômica , Predisposição Genética para Doença , Hipertensão/genética , Polimorfismo de Nucleotídeo Único/genética
11.
Genet Epidemiol ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606643

RESUMO

Recent advancement in genome-wide association studies (GWAS) comes from not only increasingly larger sample sizes but also the shift in focus towards underrepresented populations. Multipopulation GWAS increase power to detect novel risk variants and improve fine-mapping resolution by leveraging evidence and differences in linkage disequilibrium (LD) from diverse populations. Here, we expand upon our previous approach for single-population fine-mapping through Joint Analysis of Marginal SNP Effects (JAM) to a multipopulation analysis (mJAM). Under the assumption that true causal variants are common across studies, we implement a hierarchical model framework that conditions on multiple SNPs while explicitly incorporating the different LD structures across populations. The mJAM framework can be used to first select index variants using the mJAM likelihood with different feature selection approaches. In addition, we present a novel approach leveraging the ideas of mediation to construct credible sets for these index variants. Construction of such credible sets can be performed given any existing index variants. We illustrate the implementation of the mJAM likelihood through two implementations: mJAM-SuSiE (a Bayesian approach) and mJAM-Forward selection. Through simulation studies based on realistic effect sizes and levels of LD, we demonstrated that mJAM performs well for constructing concise credible sets that include the underlying causal variants. In real data examples taken from the most recent multipopulation prostate cancer GWAS, we showed several practical advantages of mJAM over other existing multipopulation methods.

12.
Plant J ; 119(2): 796-813, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733630

RESUMO

Skin color is an important trait that determines the cosmetic appearance and quality of fruits. In cucumber, the skin color ranges from white to brown in mature fruits. However, the genetic basis for this important trait remains unclear. We conducted a genome-wide association study of natural cucumber populations, along with map-based cloning techniques, on an F2 population resulting from a cross between Pepino (with yellow-brown fruit skin) and Zaoer-N (with creamy fruit skin). We identified CsMYB60 as a candidate gene responsible for skin coloration in mature cucumber fruits. In cucumber accessions with white to pale yellow skin color, a premature stop mutation (C to T) was found in the second exon region of CsMYB60, whereas light yellow cucumber accessions exhibited splicing premature termination caused by an intronic mutator-like element insertion in CsMYB60. Transgenic CsMYB60c cucumber plants displayed a yellow-brown skin color by promoting accumulation of flavonoids, especially hyperoside, a yellow-colored flavonol. CsMYB60c encodes a nuclear protein that primarily acts as a transcriptional activator through its C-terminal activation motif. RNA sequencing and DNA affinity purification sequencing assays revealed that CsMYB60c promotes skin coloration by directly binding to the YYTACCTAMYT motif in the promoter regions of flavonoid biosynthetic genes, including CsF3'H, which encodes flavonoid 3'-hydroxylase. The findings of our study not only offer insight into the function of CsMYB60 as dominantly controlling fruit coloration, but also highlight that intronic DNA mutations can have a similar phenotypic impact as exonic mutations, which may be valuable in future cucumber breeding programs.


Assuntos
Cucumis sativus , Flavonoides , Frutas , Regulação da Expressão Gênica de Plantas , Pigmentação , Proteínas de Plantas , Fatores de Transcrição , Cucumis sativus/genética , Cucumis sativus/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Flavonoides/metabolismo , Pigmentação/genética , Estudo de Associação Genômica Ampla , Plantas Geneticamente Modificadas
13.
Plant J ; 119(1): 595-603, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38576107

RESUMO

Wild species are an invaluable source of new traits for crop improvement. Over the years, the tomato community bred cultivated lines that carry introgressions from different species of the tomato tribe to facilitate trait discovery and mapping. The next phase in such projects is to find the genes that drive the identified phenotypes. This can be achieved by genotyping a few thousand individuals resulting in fine mapping that can potentially identify the causative gene. To couple trait discovery and fine mapping, we are presenting large, recombination-rich, Backcross Inbred Line (BIL) populations involving an unexplored accession of the wild, green-fruited species Solanum pennellii (LA5240; the 'Lost' Accession) with two modern tomato inbreds: LEA, determinate, and TOP, indeterminate. The LEA and TOP BILs are in BC2F6-8 generation and include 1400 and 500 lines, respectively. The BILs were genotyped with 5000 SPET markers, showing that in the euchromatic regions there was one recombinant every 17-18 Kb while in the heterochromatin a recombinant every 600-700 Kb (TOP and LEA respectively). To gain perspective on the topography of recombination we compared five independent members of the Self-pruning gene family with their respective neighboring genes; based on PCR markers, in all cases we found recombinants. Further mapping analysis of two known morphological mutations that segregated in the BILs (self-pruning and hairless) showed that the maximal delimited intervals were 73 Kb and 210 Kb, respectively, and included the known causative genes. The 'Lost'_BILs provide a solid framework to study traits derived from a drought-tolerant wild tomato.


Assuntos
Mapeamento Cromossômico , Solanum lycopersicum , Solanum , Solanum/genética , Solanum lycopersicum/genética , Fenótipo , Locos de Características Quantitativas/genética , Genótipo , Cruzamentos Genéticos , Cromossomos de Plantas/genética , Endogamia
14.
Am J Hum Genet ; 109(8): 1388-1404, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931050

RESUMO

Transcriptome-wide association studies (TWASs) are a powerful approach to identify genes whose expression is associated with complex disease risk. However, non-causal genes can exhibit association signals due to confounding by linkage disequilibrium (LD) patterns and eQTL pleiotropy at genomic risk regions, which necessitates fine-mapping of TWAS signals. Here, we present MA-FOCUS, a multi-ancestry framework for the improved identification of genes underlying traits of interest. We demonstrate that by leveraging differences in ancestry-specific patterns of LD and eQTL signals, MA-FOCUS consistently outperforms single-ancestry fine-mapping approaches with equivalent total sample sizes across multiple metrics. We perform TWASs for 15 blood traits using genome-wide summary statistics (average nEA = 511 k, nAA = 13 k) and lymphoblastoid cell line eQTL data from cohorts of primarily European and African continental ancestries. We recapitulate evidence demonstrating shared genetic architectures for eQTL and blood traits between the two ancestry groups and observe that gene-level effects correlate 20% more strongly across ancestries than SNP-level effects. Lastly, we perform fine-mapping using MA-FOCUS and find evidence that genes at TWAS risk regions are more likely to be shared across ancestries than they are to be ancestry specific. Using multiple lines of evidence to validate our findings, we find that gene sets produced by MA-FOCUS are more enriched in hematopoietic categories than alternative approaches (p = 2.36 × 10-15). Our work demonstrates that including and appropriately accounting for genetic diversity can drive more profound insights into the genetic architecture of complex traits.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Humanos , Desequilíbrio de Ligação , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética
15.
Am J Hum Genet ; 109(2): 223-239, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085493

RESUMO

Uncovering the functional impact of genetic variation on gene expression is important in understanding tissue biology and the pathogenesis of complex traits. Despite large efforts to map expression quantitative trait loci (eQTLs) across many human tissues, our ability to translate those findings to understanding human disease has been incomplete, and the majority of disease loci are not explained by association with expression of a target gene. Cell-type specificity and the presence of multiple independent causal variants for many eQTLs are potential confounders contributing to the apparent discrepancy with disease loci. In this study, we investigate the tissue specificity of genetic effects on gene expression and the overlap with disease loci while considering the presence of multiple causal variants within and across tissues. We find evidence of pervasive tissue specificity of eQTLs, often masked by linkage disequilibrium that misleads traditional meta-analytic approaches. We propose CAFEH (colocalization and fine-mapping in the presence of allelic heterogeneity), a Bayesian method that integrates genetic association data across multiple traits, incorporating linkage disequilibrium to identify causal variants. CAFEH outperforms previous approaches in colocalization and fine-mapping. Using CAFEH, we show that genes with highly tissue-specific genetic effects are under greater selection, enriched in differentiation and developmental processes, and more likely to be involved in human disease. Last, we demonstrate that CAFEH can efficiently leverage the widespread allelic heterogeneity in genetic regulation of gene expression to prioritize the target tissue in genome-wide association complex trait loci, thereby improving our ability to interpret complex trait genetics.


Assuntos
Alelos , Regulação da Expressão Gênica , Heterogeneidade Genética , Genoma Humano , Herança Multifatorial , Tecido Adiposo/metabolismo , Teorema de Bayes , Mapeamento Cromossômico , Fibroblastos/metabolismo , Estudo de Associação Genômica Ampla , Ventrículos do Coração/metabolismo , Humanos , Desequilíbrio de Ligação , Especificidade de Órgãos , Locos de Características Quantitativas , Glândula Tireoide/metabolismo
16.
Am J Hum Genet ; 109(4): 692-709, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35271803

RESUMO

Recent works have shown that SNP heritability-which is dominated by low-effect common variants-may not be the most relevant quantity for localizing high-effect/critical disease genes. Here, we introduce methods to estimate the proportion of phenotypic variance explained by a given assignment of SNPs to a single gene ("gene-level heritability"). We partition gene-level heritability by minor allele frequency (MAF) to find genes whose gene-level heritability is explained exclusively by "low-frequency/rare" variants (0.5% ≤ MAF < 1%). Applying our method to ∼16K protein-coding genes and 25 quantitative traits in the UK Biobank (N = 290K "White British"), we find that, on average across traits, ∼2.5% of nonzero-heritability genes have a rare-variant component and only ∼0.8% (327 gene-trait pairs) have heritability exclusively from rare variants. Of these 327 gene-trait pairs, 114 (35%) were not detected by existing gene-level association testing methods. The additional genes we identify are significantly enriched for known disease genes, and we find several examples of genes that have been previously implicated in phenotypically related Mendelian disorders. Notably, the rare-variant component of gene-level heritability exhibits trends different from those of common-variant gene-level heritability. For example, while total gene-level heritability increases with gene length, the rare-variant component is significantly larger among shorter genes; the cumulative distributions of gene-level heritability also vary across traits and reveal differences in the relative contributions of rare/common variants to overall gene-level polygenicity. While nonzero gene-level heritability does not imply causality, if interpreted in the correct context, gene-level heritability can reveal useful insights into complex-trait genetic architecture.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Frequência do Gene/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Herança Multifatorial/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
17.
Am J Hum Genet ; 109(8): 1366-1387, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931049

RESUMO

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Cromatina/genética , Genômica , Humanos , Lipídeos/genética , Polimorfismo de Nucleotídeo Único/genética
18.
Am J Hum Genet ; 109(2): 299-310, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090584

RESUMO

Spontaneous clearance of acute hepatitis C virus (HCV) infection is associated with single nucleotide polymorphisms (SNPs) on the MHC class II. We fine-mapped the MHC region in European (n = 1,600; 594 HCV clearance/1,006 HCV persistence) and African (n = 1,869; 340 HCV clearance/1,529 HCV persistence) ancestry individuals and evaluated HCV peptide binding affinity of classical alleles. In both populations, HLA-DQß1Leu26 (p valueMeta = 1.24 × 10-14) located in pocket 4 was negatively associated with HCV spontaneous clearance and HLA-DQß1Pro55 (p valueMeta = 8.23 × 10-11) located in the peptide binding region was positively associated, independently of HLA-DQß1Leu26. These two amino acids are not in linkage disequilibrium (r2 < 0.1) and explain the SNPs and classical allele associations represented by rs2647011, rs9274711, HLA-DQB1∗03:01, and HLA-DRB1∗01:01. Additionally, HCV persistence classical alleles tagged by HLA-DQß1Leu26 had fewer HCV binding epitopes and lower predicted binding affinities compared to clearance alleles (geometric mean of combined IC50 nM of persistence versus clearance; 2,321 nM versus 761.7 nM, p value = 1.35 × 10-38). In summary, MHC class II fine-mapping revealed key amino acids in HLA-DQß1 explaining allelic and SNP associations with HCV outcomes. This mechanistic advance in understanding of natural recovery and immunogenetics of HCV might set the stage for much needed enhancement and design of vaccine to promote spontaneous clearance of HCV infection.


Assuntos
Cadeias beta de HLA-DQ/genética , Hepacivirus/patogenicidade , Hepatite C/genética , Interações Hospedeiro-Patógeno/genética , Polimorfismo de Nucleotídeo Único , Doença Aguda , Alelos , Substituição de Aminoácidos , População Negra , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Cadeias beta de HLA-DQ/imunologia , Hepacivirus/crescimento & desenvolvimento , Hepacivirus/imunologia , Hepatite C/etnologia , Hepatite C/imunologia , Hepatite C/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Leucina/imunologia , Leucina/metabolismo , Masculino , Prolina/imunologia , Prolina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Remissão Espontânea , População Branca
19.
Genet Epidemiol ; 47(3): 249-260, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739616

RESUMO

Currently, the only effect size prior that is routinely implemented in a Bayesian fine-mapping multi-single-nucleotide polymorphism (SNP) analysis is the Gaussian prior. Here, we show how the Laplace prior can be deployed in Bayesian multi-SNP fine mapping studies. We compare the ranking performance of the posterior inclusion probability (PIP) using a Laplace prior with the ranking performance of the corresponding Gaussian prior and FINEMAP. Our results indicate that, for the simulation scenarios we consider here, the Laplace prior can lead to higher PIPs than either the Gaussian prior or FINEMAP, particularly for moderately sized fine-mapping studies. The Laplace prior also appears to have better worst-case scenario properties. We reanalyse the iCOGS case-control data from the CASP8 region on Chromosome 2. Even though this study has a total sample size of nearly 90,000 individuals, there are still some differences in the top few ranked SNPs if the Laplace prior is used rather than the Gaussian prior. R code to implement the Laplace (and Gaussian) prior is available at https://github.com/Kevin-walters/lapmapr.


Assuntos
Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Humanos , Teorema de Bayes , Simulação por Computador , Probabilidade
20.
Genet Epidemiol ; 47(1): 78-94, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36047334

RESUMO

Linkage analysis maps genetic loci for a heritable trait by identifying genomic regions with excess relatedness among individuals with similar trait values. Analysis may be conducted on related individuals from families, or on samples of unrelated individuals from a population. For allelically heterogeneous traits, population-based linkage analysis can be more powerful than genotypic-association analysis. Here, we focus on linkage analysis in a population sample, but use sequences rather than individuals as our unit of observation. Earlier investigations of sequence-based linkage mapping relied on known sequence relatedness, whereas we infer relatedness from the sequence data. We propose two ways to associate similarity in relatedness of sequences with similarity in their trait values and compare the resulting linkage methods to two genotypic-association methods. We also introduce a procedure to label case sequences as potential carriers or noncarriers of causal variants after an association has been found. This post hoc labeling of case sequences is based on inferred relatedness to other case sequences. Our simulation results indicate that methods based on sequence relatedness improve localization and perform as well as genotypic-association methods for detecting rare causal variants. Sequence-based linkage analysis therefore has potential to fine-map allelically heterogeneous disease traits.


Assuntos
Modelos Genéticos , Locos de Características Quantitativas , Humanos , Mapeamento Cromossômico/métodos , Fenótipo , Genótipo , Ligação Genética , Desequilíbrio de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA