Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273509

RESUMO

Changes to the spatiotemporal patterns of wildfire are having profound implications for ecosystems and society globally, but we have limited understanding of the extent to which fire regimes will reorganize in a warming world. While predicting regime shifts remains challenging because of complex climate-vegetation-fire feedbacks, understanding the climate niches of fire regimes provides a simple way to identify locations most at risk of regime change. Using globally available satellite datasets, we constructed 14 metrics describing the spatiotemporal dimensions of fire and then delineated Australia's pyroregions-the geographic area encapsulating a broad fire regime. Cluster analysis revealed 18 pyroregions, notably including the (1) high-intensity, infrequent fires of the temperate forests, (2) high-frequency, smaller fires of the tropical savanna, and (3) low-intensity, diurnal, human-engineered fires of the agricultural zones. To inform the risk of regime shifts, we identified locations where the climate under three CMIP6 scenarios is projected to shift (i) beyond each pyroregion's historical climate niche, and (ii) into climate space that is novel to the Australian continent. Under middle-of-the-road climate projections (SSP2-4.5), an average of 65% of the extent of the pyroregions occurred beyond their historical climate niches by 2081-2100. Further, 52% of pyroregion extents, on average, were projected to occur in climate space without present-day analogues on the Australian continent, implying high risk of shifting to states that also lack present-day counterparts. Pyroregions in tropical and hot-arid climates were most at risk of shifting into both locally and continentally novel climate space because (i) their niches are narrower than southern temperate pyroregions, and (ii) their already-hot climates lead to earlier departure from present-day climate space. Such a shift implies widespread risk of regime shifts and the emergence of no-analogue fire regimes. Our approach can be applied to other regions to assess vulnerability to rapid fire regime change.


Assuntos
Ecossistema , Incêndios , Humanos , Austrália , Florestas , Clima , Mudança Climática
2.
Glob Chang Biol ; 28(23): 6944-6960, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35582991

RESUMO

Narratives of landscape degradation are often linked to unsustainable fire use by local communities. Madagascar is a case in point: the island is considered globally exceptional, with its remarkable endemic biodiversity viewed as threatened by unsustainable anthropogenic fire. Yet, fire regimes on Madagascar have not been empirically characterised or globally contextualised. Here, we contribute a comparative approach to determining relationships between regional fire regimes and global patterns and trends, applied to Madagascar using MODIS remote sensing data (2003-2019). Rather than a global exception, we show that Madagascar's fire regimes are similar to 88% of tropical burned area with shared climate and vegetation characteristics, and can be considered a microcosm of most tropical fire regimes. From 2003-2019, landscape-scale fire declined across tropical grassy biomes (17%-44% excluding Madagascar), and on Madagascar at a relatively fast rate (36%-46%). Thus, high tree loss anomalies on the island (1.25-4.77× the tropical average) were not explained by any general expansion of landscape-scale fire in grassy biomes. Rather, tree loss anomalies centred in forests, and could not be explained by landscape-scale fire escaping from savannas into forests. Unexpectedly, the highest tree loss anomalies on Madagascar (4.77×) occurred in environments without landscape-scale fire, where the role of small-scale fires (<21 h [0.21 km2 ]) is unknown. While landscape-scale fire declined across tropical grassy biomes, trends in tropical forests reflected important differences among regions, indicating a need to better understand regional variation in the anthropogenic drivers of forest loss and fire risk. Our new understanding of Madagascar's fire regimes offers two lessons with global implications: first, landscape-scale fire is declining across tropical grassy biomes and does not explain high tree loss anomalies on Madagascar. Second, landscape-scale fire is not uniformly associated with tropical forest loss, indicating a need for socio-ecological context in framing new narratives of fire and ecosystem degradation.


Assuntos
Ecossistema , Incêndios , Madagáscar , Florestas , Árvores , Poaceae
3.
Ecol Appl ; 32(6): e2588, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35334132

RESUMO

Climate and natural vegetation dynamics are key drivers of global vegetation fire, but anthropogenic burning now prevails over vast areas of the planet. Fire regime classification and mapping may contribute towards improved understanding of relationships between those fire drivers. We used 15 years of daily active fire data from the MODIS fire product (MCD14ML, collection 6) to create global maps of six fire descriptors (incidence, size inequality, season length, interannual variability, intensity, and fire season modality). Using multiple correspondence analysis (MCA) and hierarchical agglomerative clustering, we identified three fire macroregimes: Wild, Tamed, and Domesticated, each of which splitting into prototypical and transitional regimes. Interpretation of the six fire regimes in terms of their main drivers relied on the global maps of anthromes and Köppen climate types. The analysis yielded a two-dimensional space where the principal dimension of variability is primarily defined by interannual variability in fire activity and fire season length, and the secondary axis is based mainly on fire incidence. The Wild fire macroregime occurs mostly in cold wildlands, where burning is sporadic and fire seasons are short. Tamed fires predominate in seasonally dry tropical rangelands and croplands with high fire incidence. Domesticated fires are characteristic of humid, warm temperate and tropical croplands and villages with low fire incidence. The Tamed and Domesticated fire macroregimes, representing managed burning, account for 86% of all active fires in our dataset and for 70% of the global burnable area. Fourteen percent of active fires were found in the cold wildlands, and in the rangelands and forests of steppe and desert climates of the Wild macroregime. These results highlight the extent of human control over global pyrogeography in the Anthropocene.


Assuntos
Clima , Florestas , Ecossistema , Estações do Ano
4.
Ecol Appl ; 31(8): e02431, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34339067

RESUMO

Implementation of wildfire- and climate-adaptation strategies in seasonally dry forests of western North America is impeded by numerous constraints and uncertainties. After more than a century of resource and land use change, some question the need for proactive management, particularly given novel social, ecological, and climatic conditions. To address this question, we first provide a framework for assessing changes in landscape conditions and fire regimes. Using this framework, we then evaluate evidence of change in contemporary conditions relative to those maintained by active fire regimes, i.e., those uninterrupted by a century or more of human-induced fire exclusion. The cumulative results of more than a century of research document a persistent and substantial fire deficit and widespread alterations to ecological structures and functions. These changes are not necessarily apparent at all spatial scales or in all dimensions of fire regimes and forest and nonforest conditions. Nonetheless, loss of the once abundant influence of low- and moderate-severity fires suggests that even the least fire-prone ecosystems may be affected by alteration of the surrounding landscape and, consequently, ecosystem functions. Vegetation spatial patterns in fire-excluded forested landscapes no longer reflect the heterogeneity maintained by interacting fires of active fire regimes. Live and dead vegetation (surface and canopy fuels) is generally more abundant and continuous than before European colonization. As a result, current conditions are more vulnerable to the direct and indirect effects of seasonal and episodic increases in drought and fire, especially under a rapidly warming climate. Long-term fire exclusion and contemporaneous social-ecological influences continue to extensively modify seasonally dry forested landscapes. Management that realigns or adapts fire-excluded conditions to seasonal and episodic increases in drought and fire can moderate ecosystem transitions as forests and human communities adapt to changing climatic and disturbance regimes. As adaptation strategies are developed, evaluated, and implemented, objective scientific evaluation of ongoing research and monitoring can aid differentiation of warranted and unwarranted uncertainties.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Florestas , Humanos , América do Norte
5.
J Environ Manage ; 290: 112568, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33887642

RESUMO

Savannas are the most fire-prone of Earth's biomes and currently account for most global burned area and associated carbon emissions. In Australia, over recent decades substantial development of savanna burning emissions accounting methods has been undertaken to incentivise more conservative savanna fire management and reduce the extent and severity of late dry season wildfires. Since inception of Australia's formal regulated savanna burning market in 2012, today 25% of the 1.2M km2 fire-prone northern savanna region is managed under such arrangements. Although savanna burning projects generate significant emissions reductions and associated financial benefits especially for Indigenous landowners, various biodiversity conservation considerations, including fine-scale management requirements for conservation of fire-vulnerable taxa, remain contentious. For the entire savanna burning region, here we compare outcomes achieved at 'with-project' vs 'non-project' sites over the period 2000-19, with respect to explicit ecologically defined fire regime metrics, and assembled fire history and spatial mapping coverages. We find that there has been little significant fire regime change at non-project sites, whereas, at with-project sites under all land uses, from 2013 there has been significant reduction in late season wildfire, increase in prescribed early season mitigation burning and patchiness metrics, and seasonally variable changes in extent of unburnt (>2, >5 years) habitat. Despite these achievements, it is acknowledged that savanna burning projects do not provide a fire management panacea for a variety of key regional conservation, production, and cultural management issues. Rather, savanna burning projects can provide an effective operational funded framework to assist with delivering various landscape-scale management objectives. With these caveats in mind, significant potential exists for implementing incentivised fire management approaches in other fire-prone international savanna settings.


Assuntos
Incêndios , Pradaria , Austrália , Biodiversidade , Ecossistema
6.
Glob Chang Biol ; 26(2): 616-628, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31587449

RESUMO

Human activities affect fire in many ways, often unintentionally or with considerable time-lags before they manifest themselves. Anticipating these changes is critical, so that insidious impacts on ecosystems, their biodiversity and associated goods and services can be avoided, mitigated or managed. Here we explore the impact of anthropogenic land cover change on fire and biodiversity in adjacent ecosystems on the hyperdiverse Cape Peninsula, South Africa. We develop a conceptual framework based on the notion of an ignition catchment, or the spatial extent and temporal range where an ignition is likely to result in a site burning. We apply this concept using fire models to estimate spatial changes in burn probability between historical and current land cover. This change layer was used to predict the observed record of fires and forest encroachment into fire-dependent Fynbos ecosystems in Table Mountain National Park. Urban expansion has created anthropogenic fire shadows that are modifying fire return intervals, facilitating a state shift to low-diversity, non-flammable forest at the expense of hyperdiverse, flammable Fynbos ecosystems. Despite occurring in a conservation area, these ecosystems are undergoing a hidden collapse and desperately require management intervention. Anthropogenic fire shadows can be caused by many human activities and are likely to be a universal phenomenon, not only contributing to the observed global decline in fire activity but also causing extreme fires in ecosystems where there is no shift to a less flammable state and flammable fuels accumulate. The ignition catchment framework is highly flexible and allows detection or prediction of changes in the fire regime, the threat this poses for ecosystems or fire risk and areas where management interventions and/or monitoring are required. Identifying anthropogenic impacts on ignition catchments is key for both understanding global impacts of humans on fire and guiding management of human-altered landscapes for desirable outcomes.


Assuntos
Ecossistema , Florestas , Biodiversidade , Atividades Humanas , Humanos , África do Sul
7.
Proc Natl Acad Sci U S A ; 114(11): 2946-2951, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28242690

RESUMO

The economic and ecological costs of wildfire in the United States have risen substantially in recent decades. Although climate change has likely enabled a portion of the increase in wildfire activity, the direct role of people in increasing wildfire activity has been largely overlooked. We evaluate over 1.5 million government records of wildfires that had to be extinguished or managed by state or federal agencies from 1992 to 2012, and examined geographic and seasonal extents of human-ignited wildfires relative to lightning-ignited wildfires. Humans have vastly expanded the spatial and seasonal "fire niche" in the coterminous United States, accounting for 84% of all wildfires and 44% of total area burned. During the 21-y time period, the human-caused fire season was three times longer than the lightning-caused fire season and added an average of 40,000 wildfires per year across the United States. Human-started wildfires disproportionally occurred where fuel moisture was higher than lightning-started fires, thereby helping expand the geographic and seasonal niche of wildfire. Human-started wildfires were dominant (>80% of ignitions) in over 5.1 million km2, the vast majority of the United States, whereas lightning-started fires were dominant in only 0.7 million km2, primarily in sparsely populated areas of the mountainous western United States. Ignitions caused by human activities are a substantial driver of overall fire risk to ecosystems and economies. Actions to raise awareness and increase management in regions prone to human-started wildfires should be a focus of United States policy to reduce fire risk and associated hazards.


Assuntos
Atividades Humanas , Incêndios Florestais , Geografia , Humanos , Estações do Ano , Análise Espaço-Temporal , Estados Unidos
8.
Glob Chang Biol ; 25(1): 254-268, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30270480

RESUMO

Landscape fire is a key but poorly understood component of the global carbon cycle. Predicting biomass consumption by fire at large spatial scales is essential to understanding carbon dynamics and hence how fire management can reduce greenhouse gas emissions and increase ecosystem carbon storage. An Australia-wide field-based survey (at 113 locations) across large-scale macroecological gradients (climate, productivity and fire regimes) enabled estimation of how biomass combustion by surface fire directly affects continental-scale carbon budgets. In terms of biomass consumption, we found clear trade-offs between the frequency and severity of surface fires. In temperate southern Australia, characterised by less frequent and more severe fires, biomass consumed per fire was typically very high. In contrast, surface fires in the tropical savannas of northern Australia were very frequent but less severe, with much lower consumption of biomass per fire (about a quarter of that in the far south). When biomass consumption was expressed on an annual basis, biomass consumed was far greater in the tropical savannas (>20 times that of the far south). This trade-off is also apparent in the ratio of annual carbon consumption to net primary production (NPP). Across Australia's naturally vegetated land area, annual carbon consumption by surface fire is equivalent to about 11% of NPP, with a sharp contrast between temperate southern Australia (6%) and tropical northern Australia (46%). Our results emphasise that fire management to reduce greenhouse gas emissions should focus on fire prone tropical savanna landscapes, where the vast bulk of biomass consumption occurs globally. In these landscapes, grass biomass is a key driver of frequency, intensity and combustion completeness of surface fires, and management actions that increase grass biomass are likely to lead to increases in greenhouse gas emissions from savanna fires.


Assuntos
Biomassa , Ciclo do Carbono , Incêndios , Austrália , Clima , Ecossistema
10.
Ecol Appl ; 28(2): 284-290, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29345744

RESUMO

An understanding of how historical fire and structure in dry forests (ponderosa pine, dry mixed conifer) varied across the western United States remains incomplete. Yet, fire strongly affects ecosystem services, and forest restoration programs are underway. We used General Land Office survey reconstructions from the late 1800s across 11 landscapes covering ~1.9 million ha in four states to analyze spatial variation in fire regimes and forest structure. We first synthesized the state of validation of our methods using 20 modern validations, 53 historical cross-validations, and corroborating evidence. These show our method creates accurate reconstructions with low errors. One independent modern test reported high error, but did not replicate our method and made many calculation errors. Using reconstructed parameters of historical fire regimes and forest structure from our validated methods, forests were found to be non-uniform across the 11 landscapes, but grouped together in three geographical areas. Each had a mixture of fire severities, but dominated by low-severity fire and low median tree density in Arizona, mixed-severity fire and intermediate to high median tree density in Oregon-California, and high-severity fire and intermediate median tree density in Colorado. Programs to restore fire and forest structure could benefit from regional frameworks, rather than one size fits all.


Assuntos
Incêndios/história , Florestas , História do Século XIX , História do Século XX , História do Século XXI , Oregon , Sudoeste dos Estados Unidos
11.
Environ Monit Assess ; 189(10): 518, 2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28948417

RESUMO

Tropical forests are well known to have great species diversity and contribute substantial share in terrestrial carbon (C) stocks worldwide. Shrubs are long-neglected life form in the forest ecosystem, playing many roles in the forest and human life. Shrub has great impact on vegetation attributes which in turn modify the C storage and capture. In the present investigation, an attempt has been made to explore the dynamics of shrub species in four fire regimes, viz. high, medium, low, and no fire zones of Bhoramdeo Wildlife Sanctuary of Kawardha forest division (Chhattisgarh), India. The variations in structure, diversity, biomass, productivity, and C sequestration potential in all the sites were quantified. The density and basal area of shrub varied from 1250 to 3750 individuals ha-1 and 2.79 to 4.92 m2 ha-1, respectively. The diversity indices showed that the value of Shannon index was highest in medium fire zone (3.77) followed by high, low, and no fire zones as 3.25, 3.12, and 2.32, respectively. The value of Simpson's index or concentration of dominance (Cd) ranged from 0.08 to 0.20, species richness from 0.56 to 1.58, equitability from 1.41 to 1.44, and beta diversity from 1.50 to 4.20, respectively. The total biomass and C storage ranged from 6.82 to 15.71 and from 2.93 to 6.76 t ha-1, respectively. The shrub density, importance value index (IVI), and abundance to frequency ratio (A/F) significantly correlated between high fire and medium fire zone. The basal area was found to be significantly positively correlated between high fire and medium fire, and low and no fire zones, respectively. Two-way cluster analysis reflected various patterns of clustering due to influence of the forest fire which showed that some species have distant clustering while some have smaller cluster. Principal component analysis (PCA) reflects variable scenario with respect to shrub layer. Ventilago calyculata and Zizyphus rotundifolia showed higher correlation between themselves in terms of basal area (BA). The total shrub production was 1.59-3.53 t ha-1 year-1 while the C sequestration potential of 0.71-1.57 t ha-1 year-1 under different fire regimes. Shrub community in the medium fire zone reflected higher productivity and higher C sequestration in comparison to other fire zone. Among the different plant parts, the biomass accumulation ratio was highest in the root of shrub community among various fire regimes. Screening of species for restoration and different land-use pattern on the basis of biomass accumulation and carbon sequestering potential would be an effective strategy for decision-making in sustainable forest management.


Assuntos
Sequestro de Carbono , Biomassa , Carbono/análise , Clima , Ecologia , Ecossistema , Monitoramento Ambiental , Incêndios , Florestas , Índia
12.
Ecol Appl ; 31(8): e02452, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34536253
13.
Ecol Appl ; 26(8): 2422-2436, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27875007

RESUMO

Escalating wildfire in subalpine forests with stand-replacing fire regimes is increasing the extent of early-seral forests throughout the western USA. Post-fire succession generates the fuel for future fires, but little is known about fuel loads and their variability in young post-fire stands. We sampled fuel profiles in 24-year-old post-fire lodgepole pine (Pinus contorta var. latifolia) stands (n = 82) that regenerated from the 1988 Yellowstone Fires to answer three questions. (1) How do canopy and surface fuel loads vary within and among young lodgepole pine stands? (2) How do canopy and surface fuels vary with pre- and post-fire lodgepole pine stand structure and environmental conditions? (3) How have surface fuels changed between eight and 24 years post-fire? Fuel complexes varied tremendously across the landscape despite having regenerated from the same fires. Available canopy fuel loads and canopy bulk density averaged 8.5 Mg/ha (range 0.0-46.6) and 0.24 kg/m3 (range: 0.0-2.3), respectively, meeting or exceeding levels in mature lodgepole pine forests. Total surface-fuel loads averaged 123 Mg/ha (range: 43-207), and 88% was in the 1,000-h fuel class. Litter, 1-h, and 10-h surface fuel loads were lower than reported for mature lodgepole pine forests, and 1,000-h fuel loads were similar or greater. Among-plot variation was greater in canopy fuels than surface fuels, and within-plot variation was greater than among-plot variation for nearly all fuels. Post-fire lodgepole pine density was the strongest positive predictor of canopy and fine surface fuel loads. Pre-fire successional stage was the best predictor of 100-h and 1,000-h fuel loads in the post-fire stands and strongly influenced the size and proportion of sound logs (greater when late successional stands had burned) and rotten logs (greater when early successional stands had burned). Our data suggest that 76% of the young post-fire lodgepole pine forests have 1,000-h fuel loads that exceed levels associated with high-severity surface fire potential, and 63% exceed levels associated with active crown fire potential. Fire rotations in Yellowstone National Park are predicted to shorten to a few decades and this prediction cannot be ruled out by a lack of fuels to carry repeated fires.


Assuntos
Incêndios , Florestas , Pinus , Animais , Besouros , Árvores
14.
Jamba ; 16(1): 1673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113928

RESUMO

Fire regimes are often considered to be either driven by climate, fuel load or human activities. A significant proportion of fires across various ecosystems occur via large fire events. Recently, suggestions have been made that fires are becoming more severe and frequent as a consequence of current climate change. Although there are many factors influencing fire events, scientists have not found a suitable framework that can provide for understanding fires at the macroscale level. This review article proposes a new conceptual framework to better understand fire regimes. The proposed framework relies on a biogeographical perspective of fire regimes that include characteristics that have been underestimated in previous frameworks and to mitigate time as well as spatial scale issues at the macrolevel.

15.
Trends Ecol Evol ; 38(11): 1072-1084, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37479555

RESUMO

Fire regimes are a major agent of evolution in terrestrial animals. Changing fire regimes and the capacity for rapid evolution in wild animal populations suggests the potential for rapid, fire-driven adaptive animal evolution in the Pyrocene. Fire drives multiple modes of evolutionary change, including stabilizing, directional, disruptive, and fluctuating selection, and can strongly influence gene flow and genetic drift. Ongoing and future research in fire-driven animal evolution will benefit from further development of generalizable hypotheses, studies conducted in highly responsive taxa, and linking fire-adapted phenotypes to their underlying genetic basis. A better understanding of evolutionary responses to fire has the potential to positively influence conservation strategies that embrace evolutionary resilience to fire in the Pyrocene.

16.
Ecology ; 104(3): e3894, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36208282

RESUMO

The fate of natural populations is mediated by complex interactions among vital rates, which can vary within and among years. Although the effects of random, among-year variation in vital rates have been studied extensively, relatively little is known about how periodic, nonrandom variation in vital rates affects populations. This knowledge gap is potentially alarming as global environmental change is projected to alter common periodic variations, such as seasonality. We investigated the effects of changes in vital-rate periodicity on populations of three species representing different forms of adaptation to periodic environments: the yellow-bellied marmot (Marmota flaviventer), adapted to strong seasonality in snowfall; the meerkat (Suricata suricatta), adapted to inter-annual stochasticity as well as seasonal patterns in rainfall; and the dewy pine (Drosophyllum lusitanicum), adapted to fire regimes and periodic post-fire habitat succession. To assess how changes in periodicity affect population growth, we parameterized periodic matrix population models and projected population dynamics under different scenarios of perturbations in the strength of vital-rate periodicity. We assessed the effects of such perturbations on various metrics describing population dynamics, including the stochastic growth rate, log λS . Overall, perturbing the strength of periodicity had strong effects on population dynamics in all three study species. For the marmots, log λS decreased with increased seasonal differences in adult survival. For the meerkats, density dependence buffered the effects of perturbations of periodicity on log λS . Finally, dewy pines were negatively affected by changes in natural post-fire succession under stochastic or periodic fire regimes with fires occurring every 30 years, but were buffered by density dependence from such changes under presumed more frequent fires or large-scale disturbances. We show that changes in the strength of vital-rate periodicity can have diverse but strong effects on population dynamics across different life histories. Populations buffered from inter-annual vital-rate variation can be affected substantially by changes in environmentally driven vital-rate periodic patterns; however, the effects of such changes can be masked in analyses focusing on inter-annual variation. As most ecosystems are affected by periodic variations in the environment such as seasonality, assessing their contributions to population viability for future global-change research is crucial.


Assuntos
Ecossistema , Incêndios , Periodicidade , Dinâmica Populacional , Crescimento Demográfico
17.
Trends Ecol Evol ; 37(9): 749-758, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35577616

RESUMO

Grasses fuel most fires on Earth and strongly influence local fire behaviour through traits that determine how flammable they are. Therefore, grass communities that differ in their species and trait compositions give rise to significant spatial variation in savanna fire regimes across the world, which cannot be otherwise explained. Likewise, fire regimes are continuously modified by alterations to savanna grass community traits, through species introductions and climatic changes. However, current representation of grassy fuels in global fire models misses important variation and therefore limits predictive power. The inclusion of grass trait diversity in models, using remotely sensed trait proxies, for example, will greatly improve our ability to understand and project savanna fires and their roles in the Earth system.


Assuntos
Incêndios , Poaceae , Ecossistema , Pradaria , Árvores
18.
Trends Plant Sci ; 27(12): 1218-1230, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36244895

RESUMO

Global change is altering interactions between ecological disturbances. We review interactions between tropical cyclones and fires that affect woody biomes in many islands and coastal areas. Cyclone-induced damage to trees can increase fuel loads on the ground and dryness in the understory, which increases the likelihood, intensity, and area of subsequent fires. In forest biomes, cyclone-fire interactions may initiate a grass-fire cycle and establish stable open-canopy biomes. In cyclone-prone regions, frequent cyclone-enhanced fires may generate and maintain stable open-canopy biomes (e.g., savannas and woodlands). We discuss how global change is transforming fire and cyclone regimes, extensively altering cyclone-fire interactions. These altered cyclone-fire interactions are shifting biomes away from historical states and causing loss of biodiversity.


Assuntos
Tempestades Ciclônicas , Incêndios , Ecossistema , Árvores , Florestas
19.
Sci Total Environ ; 771: 144647, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33736177

RESUMO

Humid tropical forests are increasingly exposed to devastating wildfires. Major efforts are needed to prevent fire-related tipping points and to enable the effective recovery of fire-affected areas. Here, we provide a synthesis of the most common forest restoration strategies, thereby focusing on post-fire forest dynamics in the humid tropics. A variety of restoration strategies can be adopted in restoring humid tropical forests, including natural regeneration, assisted natural regeneration (i.e. fire breaks, weed control, erosion control, topsoil replacement, peatland rewetting), enrichment planting (i.e. planting nursery-raised seedlings, direct seeding) and commercial restoration (i.e. plantation forests, agroforestry). Our analysis shows that while natural regeneration can be effective under favourable ecological conditions, humid tropical forests are often ill-adapted to fire, and therefore less likely to recover unassisted after a wildfire event. Active restoration practices may be more effective, but can be costly and challenging to implement. We also identify gaps in knowledge needed for effective restoration of humid tropical forests after fire, hereby taking into account the ecosystems and socio-economic conditions in which these fires occur. We suggest to incorporate fire severity in future studies, to better understand and predict post-fire ecosystem responses. In addition, as fire poses a recurring and intensifying threat throughout the recovery process, more emphasis should be placed on post-restoration management and the prevention of fire throughout the different phases of the restoration process. Furthermore, as tropical wildfires are increasing in scale, establishing collaborative capacity and setting priorities for efficient resource allocation should become a major priority for restoration practitioners in the humid tropics. Finally, as global fire regimes are changing and expected to intensify in the context of climate change, land use and land cover change, we suggest to put continuous effort into fire monitoring and modelling to inform the development of effective restoration strategies in the long-run.


Assuntos
Incêndios , Incêndios Florestais , Mudança Climática , Ecossistema , Florestas , Árvores
20.
Sci Total Environ ; 797: 149104, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34303242

RESUMO

Fuel moisture limits the availability of fuel to wildfires in many forest areas worldwide, but the effects of climate change on moisture constraints remain largely unknown. Here we addressed how climate affects fuel moisture in pine stands from Catalonia, NE Spain, and the potential effects of increasing climate aridity on burned area in the Pyrenees, a mesic mountainous area where fire is currently rare. We first quantified variation in fuel moisture in six sites distributed across an altitudinal gradient where the long-term mean annual temperature and precipitation vary by 6-15 °C and 395-933 mm, respectively. We observed significant spatial variation in live (78-162%) and dead (10-15%) fuel moisture across sites. The pattern of variation was negatively linked (r = |0.6|-|0.9|) to increases in vapor pressure deficit (VPD) and in the Aridity Index. Using seasonal fire records over 2006-2020, we observed that summer burned area in the Mediterranean forests of Northeast Spain and Southern France was strongly dependent on VPD (r = 0.93), the major driver (and predictor) of dead fuel moisture content (DFMC) at our sites. Based on the difference between VPD thresholds associated with large wildfire seasons in the Mediterranean (3.6 kPa) and the maximum VPD observed in surrounding Pyrenean mountains (3.1 kPa), we quantified the "safety margin" for Pyrenean forests (difference between actual VPD and that associated with large wildfires) at 0.5 kPa. The effects of live fuel moisture content (LFMC) on burned area were not significant under current conditions, a situation that may change with projected increases in climate aridity. Overall, our results indicate that DFMC in currently fire-free areas in Europe, like the Pyrenees, with vast amounts of fuel in many forest stands, may reach critical dryness thresholds beyond the safety margin and experience large wildfires after only mild increases in VPD, although LFMC can modulate the response.


Assuntos
Incêndios , Incêndios Florestais , Mudança Climática , Ecossistema , Florestas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA