Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytochem Rev ; 21(3): 725-764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34104125

RESUMO

Flavaglines are formed by cycloaddition of a flavonoid nucleus with a cinnamic acid moiety representing a typical chemical character of the genus Aglaia of the family Meliaceae. Based on biosynthetic considerations 148 derivatives are grouped together into three skeletal types representing 77 cyclopenta[b]benzofurans, 61 cyclopenta[bc]benzopyrans, and 10 benzo[b]oxepines. Apart from different hydroxy, methoxy, and methylenedioxy groups of the aromatic rings, important structural variation is created by different substitutions and stereochemistries of the central cyclopentane ring. Putrescine-derived bisamides constitute important building blocks occurring as cyclic 2-aminopyrrolidines or in an open-chained form, and are involved in the formation of pyrimidinone flavaglines. Regarding the central role of cinnamic acid in the formation of the basic skeleton, rocagloic acid represents a biosynthetic precursor from which aglafoline- and rocaglamide-type cyclopentabenzofurans can be derived, while those of the rocaglaol-type are the result of decarboxylation. Broad-based comparison revealed characteristic substitution trends which contribute as chemical markers to natural delimitation and grouping of taxonomically problematic Aglaia species. A wide variety of biological activities ranges from insecticidal, antifungal, antiprotozoal, and anti-inflammatory properties, especially to pronounced anticancer and antiviral activities. The high insecticidal activity of flavaglines is comparable with that of the well-known natural insecticide azadirachtin. Comparative feeding experiments informed about structure-activity relationships and exhibited different substitutions of the cyclopentane ring essential for insecticidal activity. Parallel studies on the antiproliferative activity of flavaglines in various tumor cell lines revealed similar structural prerequisites that let expect corresponding molecular mechanisms. An important structural modification with very high cytotoxic potency was found in the benzofuran silvestrol characterized by an unusual dioxanyloxy subunit. It possessed comparable cytotoxicity to that of the natural anticancer compounds paclitaxel (Taxol®) and camptothecin without effecting normal cells. The primary effect was the inhibition of protein synthesis by binding to the translation initiation factor eIF4A, an ATP-dependent DEAD-box RNA helicase. Flavaglines were also shown to bind to prohibitins (PHB) responsible for regulation of important signaling pathways, and to inhibit the transcriptional factor HSF1 deeply involved in metabolic programming, survival, and proliferation of cancer cells. Flavaglines were shown to be not only promising anticancer agents but gained now also high expectations as agents against emerging RNA viruses like SARS-CoV-2. Targeting the helicase eIF4A with flavaglines was recently described as pan-viral strategy for minimizing the impact of future RNA virus pandemics.

2.
Bioorg Med Chem Lett ; 47: 128111, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34353608

RESUMO

Flavaglines such as silvestrol (1) and rocaglamide (2) constitute an interesting class of natural products with promising anticancer activities. Their mode of action is based on inhibition of eukaryotic initiation factor 4A (eIF4A) dependent translation through formation of a stable ternary complex with eIF4A and mRNA, thus blocking ribosome scanning. Herein we describe initial SAR studies in a novel series of 1-aminomethyl substituted flavagline-inspired eIF4A inhibitors. We discovered that a variety of N-substitutions at the 1-aminomethyl group are tolerated, making this position pertinent for property and ADME profile tuning. The findings presented herein are relevant to future drug design efforts towards novel eIF4A inhibitors with drug-like properties.


Assuntos
Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Produtos Biológicos/farmacologia , Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Triterpenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzofuranos/síntese química , Benzofuranos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fator de Iniciação 4A em Eucariotos/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/química
3.
Microbiol Immunol ; 59(3): 129-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25643977

RESUMO

Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus that recently caused large epidemics in islands in, and countries around, the Indian Ocean. There is currently no specific drug for therapeutic treatment or for use as a prophylactic agent against infection and no commercially available vaccine. Prohibitin has been identified as a receptor protein used by chikungunya virus to enter mammalian cells. Recently, synthetic sulfonyl amidines and flavaglines (FLs), a class of naturally occurring plant compounds with potent anti-cancer and cytoprotective and neuroprotective activities, have been shown to interact directly with prohibitin. This study therefore sought to determine whether three prohibitin ligands (sulfonyl amidine 1 m and the flavaglines FL3 and FL23) were able to inhibit CHIKV infection of mammalian Hek293T/17 cells. All three compounds inhibited infection and reduced virus production when cells were treated before infection but not when added after infection. Pretreatment of cells for only 15 minutes prior to infection followed by washing out of the compound resulted in significant inhibition of entry and virus production. These results suggest that further investigation of prohibitin ligands as potential Chikungunya virus entry inhibitors is warranted.


Assuntos
Antivirais/farmacologia , Benzofuranos/farmacologia , Febre de Chikungunya/virologia , Vírus Chikungunya/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Antivirais/síntese química , Benzofuranos/síntese química , Vírus Chikungunya/fisiologia , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Replicação Viral/efeitos dos fármacos
4.
Biomed Pharmacother ; 177: 117047, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959604

RESUMO

Cancer remains a leading cause of death, with increasing incidence. Conventional treatments offer limited efficacy and cause significant side effects, hence novel drugs with improved pharmacological properties and safety are required. Silvestrol (SLV) is a flavagline derived from some plants of the Aglaia genus that has shown potent anticancer effects, warranting further study. Despite its efficacy in inhibiting the growth of several types of cancer cells, SLV is characterized by an unfavorable pharmacokinetics that hamper its use as a drug. A consistent research over the recent years has led to develop novel SLV derivatives with comparable pharmacodynamics and an ameliorated pharmacokinetic profile, demonstrating potential applications in the clinical management of cancer. This comprehensive review aims to highlight the most recent data available on SLV and its synthetic derivatives, addressing their pharmacological profile and therapeutic potential in cancer treatment. A systematic literature review of both in vitro and in vivo studies focusing on anticancer effects, pharmacodynamics, and pharmacokinetics of these compounds is presented. Overall, literature data highlight that rationale chemical modifications of SLV are critical for the development of novel drugs with high efficacy on a broad variety of cancers and improved bioavailability in vivo. Nevertheless, SLV analogues need to be further studied to better understand their mechanisms of action, which can be partially different to SLV. Furthermore, clinical research is still required to assess their efficacy in humans and their safety.


Assuntos
Antineoplásicos , Neoplasias , Triterpenos , Humanos , Animais , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Triterpenos/farmacocinética , Triterpenos/farmacologia , Triterpenos/química , Desenvolvimento de Medicamentos/métodos , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Benzofuranos
5.
Oncotarget ; 7(32): 51908-51921, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27340868

RESUMO

Chemotherapy is one of the pillars of anti-cancer therapy. Although chemotherapeutics cause regression of the primary tumor, many chemotherapeutics are often shown to induce or accelerate metastasis formation. Moreover, metastatic tumors are largely resistant against chemotherapy. As more than 90% of cancer patients die due to metastases and not due to primary tumor formation, novel drugs are needed to overcome these shortcomings. In this study, we identified the anticancer phytochemical Rocaglamide (Roc-A) to be an inhibitor of cancer cell migration, a crucial event in metastasis formation. We show that Roc-A inhibits cellular migration and invasion independently of its anti-proliferative and cytotoxic effects in different types of human cancer cells. Mechanistically, Roc-A treatment induces F-actin-based morphological changes in membrane protrusions. Further investigation of the molecular mechanisms revealed that Roc-A inhibits the activities of the small GTPases RhoA, Rac1 and Cdc42, the master regulators of cellular migration. Taken together, our results provide evidence that Roc-A may be a lead candidate for a new class of anticancer drugs that inhibit metastasis formation.


Assuntos
Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Movimento Celular/efeitos dos fármacos , Proteínas rho de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas rho de Ligação ao GTP/efeitos dos fármacos
6.
Nat Prod Res ; 30(4): 433-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25742723

RESUMO

Twelve compounds were isolated from the roots of Aglaia odorata. Their structures were established on the basis of NMR and MS data as rocaglaol (1), rocaglamide (2), eichlerialactone (3), sapelins A (4), isofouquierone (5), eichlerianic acid (6), shoreic acid (7), agladupol E (8), 3-epimeliantriol (9), cleomiscosins B (10), 2ß,3ß-dihydroxy-5α-pregnane-16-one (11) and ß-D-glucopyranos-1-yl N-methylpyrrole-2-carboxylate (12). Among them, compounds 1 and 2 showed significant cytotoxicity against human cancer cell (HL-60, SMMC-7721, A-549, MCF-7 and SW480) with IC50 values of 0.007-0.095 µM, while compounds 3-5 and 10 and 11 showed moderate to no cytotoxicity (IC50 0.43 to values >40 µM). Compound 6 showed only weak cytotoxicity (IC50 6.87 to >40 µM) and its epmier 7 was completely inactivite (IC50>40 µM) in the assay. However, potent synergistic effect was observed when the molar ratio of 6 to 7 is between 4:1 and 1:1.


Assuntos
Aglaia/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Extratos Vegetais/química , Raízes de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA