Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Dairy Sci ; 107(10): 7718-7733, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38851574

RESUMO

The bacterium Lactobacillus kefiranofaciens OSU-BDGOA1 and yeast Kluyveromyces marxianus bdgo-ym6 were previously isolated from kefir grains and have shown probiotic traits in mono- and coculture. This research evaluates the effect of introducing probiotic kefir microorganisms in monoculture and in coculture alongside yogurt starter cultures on the physicochemical and rheological properties, volatile flavor compounds, survival of the microorganisms during simulated digestion, and sensory attributes of the final fermented products. The incorporation of L. kefiranofaciens OSU-BDGOA1 in monoculture showed promising outcomes, resulting in a final product showing more solid-like characteristics and potentially improving the texture of the product. There was also a significant increase in the concentration of desirable volatile flavor compounds in the yogurt with the monoculture, particularly 2,3-butanedione, displaying a positive correlation with buttery flavor in the sensory analysis. The inclusion of L. kefiranofaciens in monoculture also promoted better sensory attributes and was significantly better than the yogurt with the coculture with the yeast, showing promising results for the incorporation of this probiotic bacterium into functional fermented dairy products.


Assuntos
Fermentação , Kluyveromyces , Lactobacillus , Probióticos , Iogurte , Iogurte/microbiologia , Kefir/microbiologia , Técnicas de Cocultura
2.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999011

RESUMO

Coffee pulp wines were produced through the mixed fermentation of Saccharomyces cerevisiae, and the flavor and sensory characteristics were comparatively evaluated. A total of 87 volatile components were identified from five coffee pulp wines, of which 68 were present in all samples, accounting for over 99% of the total concentration. The sample fermented contained significantly higher levels of volatile metabolites (56.80 mg/g). Alcohols (22 species) and esters (26 species) were the main flavor components, with the contents accounting for 56.45 ± 3.93% and 31.18 ± 4.24%, respectively, of the total. Furthermore, 14 characteristic components were identified as potential odor-active compounds, contributing to sweet and floral apple brandy flavor. Although the characteristic components are similar, the difference in the content makes the overall sensory evaluation of the samples different. The samples formed by fermentation of four strains, which obtained the highest score (86.46 ± 0.36) in sensory evaluation, were further interpreted and demonstrated through the Mantel test. The results of the component analysis were effectively distinguished by OPLS-DA and PCA, and this validation was supported by sensory evaluation. The research results provided a technical reference for the production of coffee pulp wines.


Assuntos
Café , Fermentação , Paladar , Compostos Orgânicos Voláteis , Vinho , Vinho/análise , Café/química , Compostos Orgânicos Voláteis/análise , Aromatizantes/análise , Odorantes/análise , Saccharomyces cerevisiae/metabolismo , Humanos
3.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880974

RESUMO

Shrimps are a widely cultivated species among crustaceans worldwide due to their nutritional profile and delicacy. Because of their unique flavor, shrimp-based food products are gaining consumer demand, so there is a need to understand the flavor chemistry of shrimp meat. Further, the processing and macromolecules of shrimp meat play a significant role in flavor generation and suggest a focus on their research. However, shrimp processing generates a large amount of solid and liquid waste, creating disposal problems and environmental hazards. To overcome this, utilizing these waste products, a rich source of valuable flavor compounds is necessary. This review comprehensively discusses the nutritional aspects, flavor profile, and role of macromolecules in the flavor generation of shrimp meat. Besides, recent trends in analyzing the aroma profile of shrimp and the benefits of shrimp by-products as a source of flavor compounds have been addressed. The delicious flavor of shrimp meat is due to its volatile and nonvolatile flavor compounds. Proteins play a major role in the textural and flavor adsorption properties of shrimp meat-based products. Green extraction technologies, especially ultrasonication, are recommended for valorizing shrimp by-products as a source of flavor compounds, which have enormous applications in the food and flavor industries.

4.
Molecules ; 28(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37836821

RESUMO

Using Meyerozyma guilliermondii YB4, which was isolated and screened from southern Sichuan pickles in the laboratory, as the experimental group, we investigated the changes in growth, total ester content, and volatile flavor substances of M. guilliermondii YB4 under different NaCl concentrations. The growth of M. guilliermondii YB4 was found to be inhibited by NaCl, and the degree of inhibition increased at higher NaCl concentrations. Additionally, the total ester content of the control group (CK) was significantly lower compared to the other groups (p < 0.05). The application of NaCl also resulted in distinct changes in the volatile profile of YB4, as evidenced by E-nose results. Gas chromatography-mass spectrometry (GC-MS) and gas chromatography-ion mobility spectrometry (GC-IMS) were employed to analyze the volatile compounds. A total of 148 and 86 volatiles were detected and identified using GC-MS and GC-IMS, respectively. Differential volatiles among the various NaCl concentrations in YB4 were determined by a variable importance in projection (VIP) analysis in partial least squares-discriminant analysis (PLS-DA). These differentially expressed volatiles were further confirmed by their relative odor activity value (ROAV) and odor description. Ten key contributing volatiles were identified, including ethanol, 1-pentanol, nonanal, octanal, isoamyl acetate, palmitic acid ethyl ester, acrolein, ethyl isobutanoate, prop-1-ene-3,3'-thiobis, and 2-acetylpyrazine. This study provides insights into the specificities and contributions of volatiles in YB4 under different NaCl concentrations. These findings offer valuable information for the development of aroma-producing yeast agents and the subsequent enhancement in the flavor of southern Sichuan pickles.


Assuntos
Nariz Eletrônico , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cloreto de Sódio , Compostos Orgânicos Voláteis/análise , Odorantes/análise , Ésteres/análise
5.
Food Microbiol ; 105: 104011, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35473972

RESUMO

Fermented soybean products are gaining attention in the food industry owing to their nutritive value and health benefits. In this study, we performed genomic analysis and physiological characterization of two Debaryomyces spp. yeast isolates obtained from a Korean traditional fermented soy sauce "ganjang". Both Debaryomyces hansenii ganjang isolates KD2 and C11 showed halotolerance to concentrations of up to 15% NaCl and improved growth in the presence of salt. Ploidy and whole-genome sequencing analyses indicated that the KD2 genome is haploid, whereas the C11 genome is heterozygous diploid with two distinctive subgenomes. Interestingly, phylogenetic analysis using intron sequences indicated that the C11 strain was generated via hybridization between D. hansenii and D. tyrocola ancestor strains. The D. hansenii KD2 and D. hansenii-hybrid C11 produced various volatile flavor compounds associated with butter, caramel, cheese, and fruits, and showed high bioconversion activity from ferulic acid to 4-vinylguaiacol, a characteristic flavor compound of soybean products. Both KD2 and C11 exhibited viability in the presence of bile salts and at low pH and showed immunomodulatory activity to induce high levels of the anti-inflammatory cytokine IL-10. The safety of the yeast isolates was confirmed by analyzing virulence and acute oral toxicity. Together, the D. hansenii ganjang isolates possess physiological properties beneficial for improving the flavor and nutritional value of fermented products.


Assuntos
Queijo , Debaryomyces , Fabaceae , Probióticos , Saccharomycetales , Debaryomyces/genética , Genômica , Odorantes , Filogenia , República da Coreia , Saccharomyces cerevisiae , Saccharomycetales/genética , Glycine max
6.
Food Microbiol ; 106: 104059, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690435

RESUMO

Thirty-seven lactic acid bacteria (LAB) strains were isolated from traditional dry sausages collected from Northeast China, including Latilactobacillus sakei (29 strains), Lactiplantibacillus plantarum (4 strains), Latilactobacillus curvatus (2 strains), Weissella hellenica (1 strain), and Lactococcus lactis (1 strain). Some LAB strains had tolerance to high concentrations of sodium chloride (6%), sodium nitrite (150 mg/L NaNO2), and acid (pH 4.0). They showed good growth and acidification properties and antimicrobial activity. Among them, five LAB strains that exhibited the best technological properties were selected and inoculated in the sausage model to explore their roles in flavor development. The contents of total free amino acids (FAAs) decreased ranging from 109.11 mg/g to 58.06 mg/g. A total of 46 volatile compounds were identified and the contents of volatile compounds increased in the sausage model during fermentation. Partial least squares regression analysis showed that Lb. sakei HRB10, Lb. plantarum MDJ2, W. hellenica HRB6, and Lc. lactis HRB0 promoted the generation of FAAs and volatile compounds in the sausage model. These findings demonstrated that the autochthonous LAB species are promising for the production of sausage with better flavor and fermentation performance.


Assuntos
Lactobacillales , Latilactobacillus sakei , Produtos da Carne , Fermentação , Microbiologia de Alimentos , Produtos da Carne/microbiologia
7.
Molecules ; 27(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35164204

RESUMO

The volatile flavor profiles and sensory properties of different vegetable soybean varieties popularized and cultivated in China for 20, 10, and 2 years (TW292, X3, and SX6, respectively) were investigated. Nutrient composition analysis revealed that TW292 had a high soluble protein and soluble sugar content but low fat content. The total free amino acid content (15.43 mg/g) and umami free amino acid content (6.08 mg/g) of SX6 were significantly higher (p < 0.05) than those of the other varieties. An electronic tongue effectively differentiated between the umami and sweetness characteristics of the vegetable soybeans. Differences in sensory evaluation results were mainly reflected in texture and taste. A total of 41 volatile compounds were identified through HS-SPME-GC-MS, and the main flavor compounds were 1-octen-3-ol, hexanal, (Z)-2-heptenal, 2-octene, nonanal, (Z)-2-decenal, and 3,5-octadien-2-one. However, the volatile composition of different vegetable soybean varieties exhibited large variability in type and relative contents. Considerable differences in nutritional, organoleptic, and aroma characteristics were found among different varieties. The results of this study will provide a good basis for the assessment and application of the major vegetable soybean varieties grown in China.


Assuntos
Glycine max/química , Paladar , Verduras/química , Volatilização
8.
J Sci Food Agric ; 102(11): 4609-4619, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35174491

RESUMO

BACKGROUND: Sturgeon is one of the most precious fish resources worldwide. Low temperature vacuum heating (LTVH) has been confirmed as a good way of maintaining food quality. However, there is a lack of in-depth studies assessing the impact of LTVH on lipid oxidation and flavor formation. RESULTS: The present study compared the effect of LTVH and traditional cooking on lipid oxidation and flavor of sturgeon fillets. In total, 13 fatty acids were detected, of which polyunsaturated fatty acids content was the highest (P < 0.05). LTVH prevented the formation of conjugated diene and thiobarbituric acid reactive substances (P < 0.05), as manifested by an increased signal intensity of free radicals of electron spin resonance. The characteristic peaks intensity of lipid by Raman at 970 cm-1 , 1080 cm-1 and 1655 cm-1 were reduced, whereas peaks at 1068 cm-1 and 1125 cm-1 displayed the opposite trend. Confocal fluorescence microscopy showed that the lipids particles were reduced and distributed more evenly with an increase in heating temperature. Principal component analysis of electronic nose cannot effectively separate all groups; however, gas chromatography-ion migration spectrometry showed that the volatile flavor compounds were relatively stable during LTVH. Correlation analysis of all the above lipid oxidation indices and characteristic flavor substances showed that each treatment group was located in different quadrants and demonstrated great differentiation. CONCLUSION: Overall, the results of the present study support the view that LTVH is a healthier way of cooking. © 2022 Society of Chemical Industry.


Assuntos
Ácidos Graxos , Calefação , Animais , Cromatografia Gasosa-Espectrometria de Massas/métodos , Temperatura , Vácuo
9.
J Sci Food Agric ; 101(6): 2371-2379, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33009832

RESUMO

BACKGROUND: Chinese horsebean-chili-paste (CHCP) is a traditional fermented condiment in China, known as 'the soul of Sichuan cuisine'. The horsebean-to-meju phase in its preparation is important for CHCP production and contributes significantly to its taste and odor. In this study, a comprehensive flavor compound profiling analysis of the naturally brewed horsebean meju (NBHM) and the temperature-controlled brewed horsebean meju (TCBHM) was performed with two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS), and the analysis of physicochemical characteristics and free amino acids. Their aroma-active components and characteristic flavor compounds were evaluated. The flavor compounds responsible for differentiating NBHM and TCBHM were also determined based on the Fisher ratio and principal component analysis. RESULTS: The pH and the reducing sugar and amino-acid nitrogen content of NBHM were 5.38, 64.43, and 5.76 g kg-1 , respectively, whereas those of TCBHM were 5.13, 29.20, and 7.43 g kg-1 . A total of 356 volatiles were identified from 2571 compounds, and 257 volatile compounds were identified in NBHM compared to 322 volatiles in TCBHM. These two horsebean mejus (HMs) exhibited a similar proportion profile for 30 aroma-active compounds. Benzoic acid ethyl ester, 4-ethyl-2-methoxy-phenol and argnine were determined to be characteristic flavor components for NBHM, while 1-(2-furanyl)-ethanone, 2,6-dimethyl-pyrazine, threonine, valine and tyrosine were specific to TCBHM. CONCLUSION: Temperature-controlled brewed horsebean meju possessed better physicochemical and flavor characteristics than NBHM. The temperature-controlled brewing technique in CHCP production can be used as a promising alternative to the traditional natural brewing method. © 2020 Society of Chemical Industry.


Assuntos
Manipulação de Alimentos/métodos , Vicia faba/química , China , Condimentos/análise , Fermentação , Alimentos Fermentados/análise , Aromatizantes/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Odorantes/análise , Sementes/química , Paladar , Temperatura
10.
J Sci Food Agric ; 101(13): 5368-5377, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33650176

RESUMO

BACKGROUND: This study was carried out in order to investigate the role of post-harvest methods and roasting degree on the sensory profile of Turkish coffees and to compare the results between two sensory panels: Turkey and Brazil. Bourbon variety of Arabica coffee beans processed by three different post-harvest methods (natural, pulped natural and fully washed) and roasted at three different roasting degrees (light, medium and dark). RESULTS: Ground coffee in powder size was heated with cold water and prepared in a Turkish coffee machine. Twenty assessors - ten Turkish and ten Brazilian - were selected and trained to assess 20 flavor attributes of nine Turkish coffee samples. Sensory evaluation results showed that the effects of roasting method on flavor development were perceived more dominantly than effects of post-harvest methods. For the first time, this study highlighted the sensory analysis of Turkish coffees assessed by Turkish and Brazilian assessors. CONCLUSION: Turkish coffee flavor profiles were significantly influenced by roasting method and no significant effects of post-harvest method were observed. Sensorial properties of Turkish coffee were affected by several factors, such as geographical origin and techniques used for preparation of coffee beans, cultural tradition, lifestyle, social behavior and habit. © 2021 Society of Chemical Industry.


Assuntos
Coffea/química , Culinária/métodos , Sementes/química , Paladar , Brasil , Coffea/metabolismo , Café/química , Café/metabolismo , Manipulação de Alimentos/métodos , Temperatura Alta , Humanos , Sementes/metabolismo , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA