Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
J Neuroinflammation ; 21(1): 165, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937750

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a significant risk factor for Alzheimer's disease (AD), and accumulating evidence supports a role for adaptive immune B and T cells in both TBI and AD pathogenesis. We previously identified B cell and major histocompatibility complex class II (MHCII)-associated invariant chain peptide (CLIP)-positive B cell expansion after TBI. We also showed that antagonizing CLIP binding to the antigen presenting groove of MHCII after TBI acutely reduced CLIP + splenic B cells and was neuroprotective. The current study investigated the chronic effects of antagonizing CLIP in the 5xFAD Alzheimer's mouse model, with and without TBI. METHODS: 12-week-old male wild type (WT) and 5xFAD mice were administered either CLIP antagonist peptide (CAP) or vehicle, once at 30 min after either sham or a lateral fluid percussion injury (FPI). Analyses included flow cytometric analysis of immune cells in dural meninges and spleen, histopathological analysis of the brain, magnetic resonance diffusion tensor imaging, cerebrovascular analysis, and assessment of motor and neurobehavioral function over the ensuing 6 months. RESULTS: 9-month-old 5xFAD mice had significantly more CLIP + B cells in the meninges compared to age-matched WT mice. A one-time treatment with CAP significantly reduced this population in 5xFAD mice. Importantly, CAP also improved some of the immune, histopathological, and neurobehavioral impairments in 5xFAD mice over the ensuing six months. Although FPI did not further elevate meningeal CLIP + B cells, it did negate the ability of CAP to reduce meningeal CLIP + B cells in the 5xFAD mice. FPI at 3 months of age exacerbated some aspects of AD pathology in 5xFAD mice, including further reducing hippocampal neurogenesis, increasing plaque deposition in CA3, altering microgliosis, and disrupting the cerebrovascular structure. CAP treatment after injury ameliorated some but not all of these FPI effects.


Assuntos
Antígenos de Diferenciação de Linfócitos B , Linfócitos B , Lesões Encefálicas Traumáticas , Antígenos de Histocompatibilidade Classe II , Camundongos Transgênicos , Animais , Camundongos , Masculino , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Antígenos de Histocompatibilidade Classe II/metabolismo , Linfócitos B/efeitos dos fármacos , Meninges/patologia , Meninges/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/tratamento farmacológico , Humanos , Modelos Animais de Doenças , Presenilina-1/genética , Camundongos Endogâmicos C57BL
2.
NMR Biomed ; 37(8): e5142, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38494895

RESUMO

Integrating datasets from multiple sites and scanners can increase statistical power for neuroimaging studies but can also introduce significant inter-site confounds. We evaluated the effectiveness of ComBat, an empirical Bayes approach, to combine longitudinal preclinical MRI data acquired at 4.7 or 9.4 T at two different sites in Australia. Male Sprague Dawley rats underwent MRI on Days 2, 9, 28, and 150 following moderate/severe traumatic brain injury (TBI) or sham injury as part of Project 1 of the NIH/NINDS-funded Centre Without Walls EpiBioS4Rx project. Diffusion-weighted and multiple-gradient-echo images were acquired, and outcomes included QSM, FA, and ADC. Acute injury measures including apnea and self-righting reflex were consistent between sites. Mixed-effect analysis of ipsilateral and contralateral corpus callosum (CC) summary values revealed a significant effect of site on FA and ADC values, which was removed following ComBat harmonization. Bland-Altman plots for each metric showed reduced variability across sites following ComBat harmonization, including for QSM, despite appearing to be largely unaffected by inter-site differences and no effect of site observed. Following harmonization, the combined inter-site data revealed significant differences in the imaging metrics consistent with previously reported outcomes. TBI resulted in significantly reduced FA and increased susceptibility in the ipsilateral CC, and significantly reduced FA in the contralateral CC compared with sham-injured rats. Additionally, TBI rats also exhibited a reversal in ipsilateral CC ADC values over time with significantly reduced ADC at Day 9, followed by increased ADC 150 days after injury. Our findings demonstrate the need for harmonizing multi-site preclinical MRI data and show that this can be successfully achieved using ComBat while preserving phenotypical changes due to TBI.


Assuntos
Lesões Encefálicas Traumáticas , Imageamento por Ressonância Magnética , Ratos Sprague-Dawley , Animais , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Masculino , Ratos , Teorema de Bayes
3.
Epilepsia ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39401067

RESUMO

OBJECTIVE: This study was undertaken to test whether the postinjury plasma concentration of phosphorylated neurofilament heavy chain (pNF-H), a marker of axonal injury, is a prognostic biomarker for the development of posttraumatic epilepsy. METHODS: Tail vein plasma was sampled 48 h after traumatic brain injury (TBI) from 143 rats (10 naïve, 21 controls, 112 with lateral fluid percussion injury) to quantify pNF-H by enzyme-linked immunosorbent assay. During the 6th postinjury month, rats underwent 30 days of continuous video-electroencephalographic monitoring to detect unprovoked seizures and evaluate epilepsy severity. Somatomotor (composite neuroscore) and spatial memory (Morris water maze) testing and quantitative T2 magnetic resonance imaging were performed to assess comorbidities and lesion severity. RESULTS: Of the 112 TBI rats, 25% (28/112) developed epilepsy (TBI+) and 75% (84/112) did not (TBI-). Plasma pNF-H concentrations were higher in TBI+ rats than in TBI- rats (p < .05). Receiver operating characteristic curve analysis indicated that plasma pNF-H concentration distinguished TBI+ rats from TBI- rats (area under the curve [AUC] = .647, p < .05). Differentiation was stronger when comparing TBI+ rats exhibiting severe epilepsy (≥3 seizures/month) with all other TBI rats (AUC = .732, p < .01). Plasma pNF-H concentration on day 2 (D2) distinguished TBI+ rats with seizure clusters from other TBI rats (AUC = .732, p < .05). Higher plasma pNF-H concentration on D2 after TBI correlated with lower neuroscores on D2 (p < .001), D6 (p < .001), and D14 (p < .01). Higher pNF-H concentration on D2 correlated with greater T2 signal abnormality volume on D2 (p < .001) and D7 (p < .01) and larger cortical lesion area on D182 (p < .01). Plasma pNF-H concentration on D2 did not correlate with Morris water maze performance on D37-D39. SIGNIFICANCE: Plasma pNF-H is a promising clinically translatable prognostic biomarker for the development of posttraumatic epilepsy with frequent seizures or seizure clusters.

4.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769143

RESUMO

Traumatic brain injury (TBI) causes 10-20% of structural epilepsies and 5% of all epilepsies. The lack of prognostic biomarkers for post-traumatic epilepsy (PTE) is a major obstacle to the development of anti-epileptogenic treatments. Previous studies revealed TBI-induced alterations in blood microRNA (miRNA) levels, and patients with epilepsy exhibit dysregulation of blood miRNAs. We hypothesized that acutely altered plasma miRNAs could serve as prognostic biomarkers for brain damage severity and the development of PTE. To investigate this, epileptogenesis was induced in adult male Sprague Dawley rats by lateral fluid-percussion-induced TBI. Epilepsy was defined as the occurrence of at least one unprovoked seizure during continuous 1-month video-electroencephalography monitoring in the sixth post-TBI month. Cortical pathology was analyzed by magnetic resonance imaging on day 2 (D2), D7, and D21, and by histology 6 months post-TBI. Small RNA sequencing was performed from tail-vein plasma samples on D2 and D9 after TBI (n = 16, 7 with and 9 without epilepsy) or sham operation (n = 4). The most promising miRNA biomarker candidates were validated by droplet digital polymerase chain reaction in a validation cohort of 115 rats (8 naïve, 17 sham, and 90 TBI rats [21 with epilepsy]). These included 7 brain-enriched plasma miRNAs (miR-434-3p, miR-9a-3p, miR-136-3p, miR-323-3p, miR-124-3p, miR-212-3p, and miR-132-3p) that were upregulated on D2 post-TBI (p < 0.001 for all compared with naïve rats). The acute post-TBI plasma miRNA profile did not predict the subsequent development of PTE or PTE severity. Plasma miRNA levels, however, predicted the cortical pathology severity on D2 (Spearman ρ = 0.345-0.582, p < 0.001), D9 (ρ = 0.287-0.522, p < 0.001-0.01), D21 (ρ = 0.269-0.581, p < 0.001-0.05) and at 6 months post-TBI (ρ = 0.230-0.433, p < 0.001-0.05). We found that the levels of 6 of 7 miRNAs also reflected mild brain injury caused by the craniotomy during sham operation (ROC AUC 0.76-0.96, p < 0.001-0.05). In conclusion, our findings revealed that increased levels of neuronally enriched miRNAs in the blood circulation after TBI reflect the extent of cortical injury in the brain but do not predict PTE development.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , MicroRNA Circulante , Epilepsia , MicroRNAs , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas/complicações , MicroRNAs/genética , Epilepsia/genética , Biomarcadores , Modelos Animais de Doenças
5.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762352

RESUMO

We tested a hypothesis that in silico-discovered compounds targeting traumatic brain injury (TBI)-induced transcriptomics dysregulations will mitigate TBI-induced molecular pathology and augment the effect of co-administered antiseizure treatment, thereby alleviating functional impairment. In silico bioinformatic analysis revealed five compounds substantially affecting TBI-induced transcriptomics regulation, including calpain inhibitor, chlorpromazine, geldanamycin, tranylcypromine, and trichostatin A (TSA). In vitro exposure of neuronal-BV2-microglial co-cultures to compounds revealed that TSA had the best overall neuroprotective, antioxidative, and anti-inflammatory effects. In vivo assessment in a rat TBI model revealed that TSA as a monotherapy (1 mg/kg/d) or in combination with the antiseizure drug levetiracetam (LEV 150 mg/kg/d) mildly mitigated the increase in plasma levels of the neurofilament subunit pNF-H and cortical lesion area. The percentage of rats with seizures during 0-72 h post-injury was reduced in the following order: TBI-vehicle 80%, TBI-TSA (1 mg/kg) 86%, TBI-LEV (54 mg/kg) 50%, TBI-LEV (150 mg/kg) 40% (p < 0.05 vs. TBI-vehicle), and TBI-LEV (150 mg/kg) combined with TSA (1 mg/kg) 30% (p < 0.05). Cumulative seizure duration was reduced in the following order: TBI-vehicle 727 ± 688 s, TBI-TSA 898 ± 937 s, TBI-LEV (54 mg/kg) 358 ± 715 s, TBI-LEV (150 mg/kg) 42 ± 64 (p < 0.05 vs. TBI-vehicle), and TBI-LEV (150 mg/kg) combined with TSA (1 mg/kg) 109 ± 282 s (p < 0.05). This first preclinical intervention study on post-TBI acute seizures shows that a combination therapy with the tissue recovery enhancer TSA and LEV was safe but exhibited no clear benefit over LEV monotherapy on antiseizure efficacy. A longer follow-up is needed to confirm the possible beneficial effects of LEV monotherapy and combination therapy with TSA on chronic post-TBI structural and functional outcomes, including epileptogenesis.

6.
Epilepsia ; 63(7): 1835-1848, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35366338

RESUMO

OBJECTIVE: We examined whether posttraumatic epilepsy (PTE) is associated with measurable perturbations in gut microbiome. METHODS: Adult Sprague Dawley rats were subjected to lateral fluid percussion injury (LFPI). PTE was examined 7 months after LFPI, during 4-week continuous video-electroencephalographic monitoring. 16S ribosomal RNA gene sequencing was performed in fecal samples collected before LFPI/sham-LFPI and 1 week, 1 month, and 7 months thereafter. Longitudinal analyses of alpha diversity, beta diversity, and differential microbial abundance were performed. Short-chain fatty acids (SCFAs) were measured in fecal samples collected before LFPI by liquid chromatography with tandem mass spectrometry. RESULTS: Alpha diversity changed over time in both LFPI and sham-LFPI subjects; no association was observed between alpha diversity and LFPI, the severity of post-LFPI neuromotor impairments, and PTE. LFPI produced significant changes in beta diversity and selective changes in microbial abundances associated with the severity of neuromotor impairments. No association between LFPI-dependent microbial perturbations and PTE was detected. PTE was associated with beta diversity irrespective of timepoint vis-à-vis LFPI, including at baseline. Preexistent fecal microbial abundances of four amplicon sequence variants belonging to the Lachnospiraceae family (three enriched and one depleted) predicted the risk of PTE, with area under the curve (AUC) of .73. Global SCFA content was associated with the increased risk of PTE, with AUC of .722, and with 2-methylbutyric (depleted), valeric (depleted), isobutyric (enriched), and isovaleric (enriched) acids being the most important factors (AUC = .717). When the analyses of baseline microbial and SCFA compositions were combined, AUC to predict PTE increased to .78. SIGNIFICANCE: Whereas LFPI produces no perturbations in the gut microbiome that are associated with PTE, the risk of PTE can be stratified based on preexistent microbial abundances and SCFA content.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Microbioma Gastrointestinal , Animais , Lesões Encefálicas Traumáticas/complicações , Ácidos Graxos Voláteis , Microbioma Gastrointestinal/genética , Humanos , Ratos , Ratos Sprague-Dawley
7.
Epilepsy Behav ; 134: 108860, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914438

RESUMO

It has been well established that traumatic brain injury (TBI) modifies the composition of gut microbiome. Epilepsy, which represents one of the common sequelae of TBI, has been associated with dysbiosis. Earlier study showed that the risk of post-traumatic epilepsy (PTE) after lateral fluid percussion injury (LFPI) in rats can be stratified based on pre-existing (i.e., pre-TBI) gut microbiome profile. In the present study, we examined whether fecal microbiota transfer (FMT) from naïve rats with different prospective histories of PTE would affect the trajectory of PTE in recipients. Fecal samples were collected from naïve adult male Sprague-Dawley rats, followed by LFPI. Seven months later, upon four weeks of vide-EEG monitoring (vEEG), the rats were categorized as those with and without PTE. Recipients were subjected to LFPI, followed by FMT from donors with and without impending PTE. Control groups included auto-FMT and no-FMT subjects. Seven month after LFPI, recipients underwent four-week vEEG to detect spontaneous seizures. After completing vEEG, rats of all groups underwent kindling of basolateral amygdala. Fecal microbiota transfer from donors with impending PTE exerted mild-to-moderate pro-epileptic effects in recipients, evident as marginal increase in multiple spontaneous seizure incidence, and facilitation of kindling. Analysis of fecal samples in selected recipients and their respective donors confirmed that FMT modified microbiota in recipients along the donors' lines, albeit without full microbiome conversion. The findings provide further evidence that gut microbiome may actively modulate the susceptibility to epilepsy.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Animais , Transplante de Microbiota Fecal , Humanos , Masculino , Estudos Prospectivos , Ratos , Ratos Sprague-Dawley , Convulsões
8.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499527

RESUMO

Plasma neurofilament light chain (NF-L) levels were assessed as a diagnostic biomarker for traumatic brain injury (TBI) and as a prognostic biomarker for somatomotor recovery, cognitive decline, and epileptogenesis. Rats with severe TBI induced by lateral fluid-percussion injury (n = 26, 13 with and 13 without epilepsy) or sham-operation (n = 8) were studied. During a 6-month follow-up, rats underwent magnetic resonance imaging (MRI) (day (D) 2, D7, and D21), composite neuroscore (D2, D6, and D14), Morris-water maze (D35−D39), and a 1-month-long video-electroencephalogram to detect unprovoked seizures during the 6th month. Plasma NF-L levels were assessed using a single-molecule assay at baseline (i.e., naïve animals) and on D2, D9, and D178 after TBI or a sham operation. Plasma NF-L levels were 483-fold higher on D2 (5072.0 ± 2007.0 pg/mL), 89-fold higher on D9 (930.3 ± 306.4 pg/mL), and 3-fold higher on D176 32.2 ± 8.9 pg/mL after TBI compared with baseline (10.5 ± 2.6 pg/mL; all p < 0.001). Plasma NF-L levels distinguished TBI rats from naïve animals at all time-points examined (area under the curve [AUC] 1.0, p < 0.001), and from sham-operated controls on D2 (AUC 1.0, p < 0.001). Plasma NF-L increases on D2 were associated with somatomotor impairment severity (ρ = −0.480, p < 0.05) and the cortical lesion extent in MRI (ρ = 0.401, p < 0.05). Plasma NF-L increases on D2 or D9 were associated with the cortical lesion extent in histologic sections at 6 months post-injury (ρ = 0.437 for D2; ρ = 0.393 for D9, p < 0.05). Plasma NF-L levels, however, did not predict somatomotor recovery, cognitive decline, or epileptogenesis (p > 0.05). Plasma NF-L levels represent a promising noninvasive translational diagnostic biomarker for acute TBI and a prognostic biomarker for post-injury somatomotor impairment and long-term structural brain damage.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Disfunção Cognitiva , Animais , Ratos , Ratos Sprague-Dawley , Prognóstico , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Convulsões/complicações , Lesões Encefálicas/patologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/complicações , Modelos Animais de Doenças
9.
Epilepsia ; 62(6): 1472-1481, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33893636

RESUMO

OBJECTIVE: Traumatic brain injury (TBI) may lead to the disruption of the intestinal barrier (IB), and to the escape of products of commensal gut bacteria, including lipopolysaccharide (LPS), into the bloodstream. We examined whether lateral fluid percussion injury (LFPI) and post-traumatic epilepsy (PTE) are associated with the increased intestinal permeability and endotoxemia, and whether these events in turn are associated with PTE. METHODS: LFPI was delivered to adult male Sprague-Dawley rats. Before, 1 week, and 7 months after LFPI, the IB permeability was examined by measuring plasma concentration of fluorescein isothiocyanate-labeled dextran (FD4) upon its enteral administration. Plasma LPS concentration was measured in the same animals, using enzyme-linked immunosorbent assay. PTE was examined 7 months after LFPI, with use of video-EEG (electroencephalography) monitoring. RESULTS: One week after LFPI, the IB disruption was detected in 14 of 17 and endotoxemia - in 10 of 17 rats, with a strong positive correlation between FD4 and LPS levels, and between plasma levels of each of the analytes and the severity of neuromotor deficit. Seven months after LFPI, IB disruption was detected in 13 of 15 and endotoxemia in 8 of 15 rats, with a strong positive correlation between plasma levels of the two analytes. Five of 15 LFPI rats developed PTE. Plasma levels of both FD4 and LPS were significantly higher in animals with PTE than among the animals without PTE. The analysis of seven rats, which were examined repeatedly at 1 week and at 7 months, confirmed that late IB disruption and endotoxemia were not due to lingering of impairments occurring shortly after LFPI. SIGNIFICANCE: LFPI leads to early and remote disruption of IB and a secondary endotoxemia. Early and late perturbations may occur in different subjects. Early changes reflect the severity of acute post-traumatic motor dysfunction, whereas late changes are associated with PTE.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Endotoxemia/fisiopatologia , Epilepsia Pós-Traumática/fisiopatologia , Intestinos/fisiopatologia , Animais , Lesões Encefálicas Traumáticas/complicações , Dextranos , Eletroencefalografia , Endotoxemia/etiologia , Epilepsia Pós-Traumática/complicações , Fluoresceína-5-Isotiocianato/análogos & derivados , Lipopolissacarídeos/sangue , Masculino , Permeabilidade , Ratos , Ratos Sprague-Dawley
10.
Exp Brain Res ; 239(10): 2939-2950, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34324019

RESUMO

Traumatic brain injury (TBI) is one of the main causes of death and disability in both civilian and military population. TBI may occur via a variety of etiologies, all of which involve trauma to the head. However, the neuroprotective drugs which were found to be very effective in animal TBI models failed in phase II or phase III clinical trials, emphasizing a compelling need to review the current status of animal TBI models and therapeutic strategies. No single animal model can adequately mimic all aspects of human TBI owing to the heterogeneity of clinical TBI. However, due to the ethical limitations, it is difficult to precisely emulate the TBI mechanisms that occur in humans. Therefore, many animal models with varying severity and mechanisms of brain injury have been developed, and each model has its own pros and cons in its implementation for TBI research. These challenges pose a need for study of continued TBI mechanisms, brain injury severity, duration, treatment strategies, and optimization of animal models across the neurotrauma research community. The aim of this review is to discuss (1) causes of TBI, (2) its prevalence in military and civilian population, (3) classification and pathophysiology of TBI, (4) biomarkers and detection methods, (5) animal models of TBI, and (6) the advantages and disadvantages of each model and the species used, as well as possible treatments.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Biomarcadores , Encéfalo , Lesões Encefálicas Traumáticas/terapia , Modelos Animais de Doenças , Humanos
11.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638900

RESUMO

We assessed the effect of antioxidant therapy using the Food and Drug Administration-approved respiratory drug N-acetylcysteine (NAC) or sulforaphane (SFN) as monotherapies or duotherapy in vitro in neuron-BV2 microglial co-cultures and validated the results in a lateral fluid-percussion model of TBI in rats. As in vitro measures, we assessed neuronal viability by microtubule-associated-protein 2 immunostaining, neuroinflammation by monitoring tumor necrosis factor (TNF) levels, and neurotoxicity by measuring nitrite levels. In vitro, duotherapy with NAC and SFN reduced nitrite levels to 40% (p < 0.001) and neuroinflammation to -29% (p < 0.001) compared with untreated culture. The treatment also improved neuronal viability up to 72% of that in a positive control (p < 0.001). The effect of NAC was negligible, however, compared with SFN. In vivo, antioxidant duotherapy slightly improved performance in the beam walking test. Interestingly, duotherapy treatment decreased the plasma interleukin-6 and TNF levels in sham-operated controls (p < 0.05). After TBI, no treatment effect on HMGB1 or plasma cytokine levels was detected. Also, no treatment effects on the composite neuroscore or cortical lesion area were detected. The robust favorable effect of duotherapy on neuroprotection, neuroinflammation, and oxidative stress in neuron-BV2 microglial co-cultures translated to modest favorable in vivo effects in a severe TBI model.


Assuntos
Acetilcisteína/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Isotiocianatos/farmacologia , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Sulfóxidos/farmacologia , Animais , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Ratos Sprague-Dawley
12.
Int J Mol Sci ; 22(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199241

RESUMO

Traumatic brain injury (TBI) disrupts thalamic and cortical integrity. The effect of post-injury reorganization and plasticity in thalamocortical pathways on the functional outcome remains unclear. We evaluated whether TBI causes structural changes in the thalamocortical axonal projection terminals in the primary somatosensory cortex (S1) that lead to hyperexcitability. TBI was induced in adult male Sprague Dawley rats with lateral fluid-percussion injury. A virus carrying the fluorescent-tagged opsin channel rhodopsin 2 transgene was injected into the ventroposterior thalamus. We then traced the thalamocortical pathways and analyzed the reorganization of their axonal terminals in S1. Next, we optogenetically stimulated the thalamocortical relays from the ventral posterior lateral and medial nuclei to assess the post-TBI functionality of the pathway. Immunohistochemical analysis revealed that TBI did not alter the spatial distribution or lamina-specific targeting of projection terminals in S1. TBI reduced the axon terminal density in the motor cortex by 44% and in S1 by 30%. A nematic tensor-based analysis revealed that in control rats, the axon terminals in layer V were orientated perpendicular to the pial surface (60.3°). In TBI rats their orientation was more parallel to the pial surface (5.43°, difference between the groups p < 0.05). Moreover, the level of anisotropy of the axon terminals was high in controls (0.063) compared with TBI rats (0.045, p < 0.05). Optical stimulation of the sensory thalamus increased alpha activity in electroencephalography by 312% in controls (p > 0.05) and 237% (p > 0.05) in TBI rats compared with the baseline. However, only TBI rats showed increased beta activity (33%) with harmonics at 5 Hz. Our findings indicate that TBI induces reorganization of thalamocortical axonal terminals in the perilesional cortex, which alters responses to thalamic stimulation.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Córtex Motor/patologia , Córtex Somatossensorial/patologia , Tálamo/patologia , Animais , Anisotropia , Ritmo beta/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Masculino , Optogenética , Estimulação Luminosa , Ratos Sprague-Dawley
13.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769042

RESUMO

Neuroprotective effects of Sigma-1 receptor (S1R) ligands have been observed in multiple animal models of neurodegenerative diseases. Traumatic brain injury (TBI)-related neurodegeneration can induce long-lasting physical, cognitive, and behavioral disabilities. The aim of our study was to evaluate the role of S1R in the development of neurological deficits after TBI. Adult male wild-type CD-1 (WT) and S1R knockout (S1R-/-) mice were subjected to lateral fluid percussion injury, and behavioral and histological outcomes were assessed for up to 12 months postinjury. Neurological deficits and motor coordination impairment were less pronounced in S1R-/- mice with TBI than in WT mice with TBI 24 h after injury. TBI-induced short-term memory impairments were present in WT but not S1R-/- mice 7 months after injury. Compared to WT animals, S1R-/- mice exhibited better motor coordination and less pronounced despair behavior for up to 12 months postinjury. TBI induced astrocyte activation in the cortex of WT but not S1R-/- mice. S1R-/- mice presented a significantly reduced GFAP expression in Bergmann glial cells in the molecular layer of the cerebellum compared to WT mice. Our findings suggest that S1R deficiency reduces TBI-induced motor coordination impairments by reducing GFAP expression in Bergmann glial cells in the cerebellum.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Cerebelo/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Neuroglia/metabolismo , Receptores sigma/metabolismo , Animais , Astrócitos , Modelos Animais de Doenças , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/metabolismo , Receptor Sigma-1
14.
Brain Inj ; 34(1): 131-139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31526028

RESUMO

PRIMARY OBJECTIVE: This study characterized the acute and chronic effects of tau reduction in traumatic brain injury (TBI). RESEARCH DESIGN: A fluid percussion injury (FPI) or a sham-injury was administered to wild type (WT) or tau knockout (Tau-/-) mice. Mice were assigned to a one-week or twelve-week recovery period before behavioral testing and analysis of brain tissue. METHODS AND PROCEDURES: Mice were tested on the elevated-plus maze, the Y-maze, and rotarod. The twelve-week recovery mice underwent in vivo MRI. Phosphorylated tau in brain tissue was analyzed post-mortem using western blots. MAIN OUTCOMES AND RESULTS: FPI mice, regardless of genotype, had abnormalities on the elevated-plus maze (a task to assess anxiety-like behavior) at one-week post-injury. However, after twelve-weeks recovery, the Tau-/- mice that were given an FPI were less anxious and had improved motor function compared to their WT counterparts. MRI analysis found that while all FPI mice had brain damage, the Tau-/- mice had larger hippocampal volumes. The WT+FPI mice also had increased phosphorylated tau compared to WT+sham mice at both the one-week and twelve-week recovery times. CONCLUSION: These findings suggest that tau may play an important role in some of the consequences of TBI, particularly the long-term functional deficits.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Encéfalo/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/genética , Modelos Animais de Doenças , Camundongos , Percussão
15.
Neuroimage ; 200: 250-258, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31201986

RESUMO

A key event in the pathophysiology of traumatic brain injury (TBI) is the influx of substantial amounts of Ca2+ into neurons, particularly in the thalamus. Detection of this calcium influx in vivo would provide a window into the biochemical mechanisms of TBI with potentially significant clinical implications. In the present work, our central hypothesis was that the Ca2+ influx could be imaged in vivo with the relatively recent MRI technique of quantitative susceptibility mapping (QSM). Wistar rats were divided into five groups: naive controls, sham-operated experimental controls, single mild TBI, repeated mild TBI, and single severe TBI. We employed the lateral fluid percussion injury (FPI) model, which replicates clinical TBI without skull fracture, performed 9.4 Tesla MRI with a 3D multi-echo gradient-echo sequence at weeks 1 and 4 post-injury, computed susceptibility maps using V-SHARP and the QUASAR-HEIDI technique, and performed histology. Sham, experimental controls animals, and injured animals did not demonstrate calcifications at 1 week after the injury. At week 4, calcifications were found in the ipsilateral thalamus of 25-50% of animals after a single TBI and 83% of animals after repeated mild TBI. The location and appearance of calcifications on stained sections was consistent with the appearance on the in vivo susceptibility maps (correlation of volumes: r = 0.7). Our findings suggest that persistent calcium deposits represent a primary pathology of repeated injury and that FPI-QSM has the potential to become a sensitive tool for studying pathophysiology related to mild TBI in vivo.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Cálcio/metabolismo , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Tálamo/diagnóstico por imagem , Animais , Biomarcadores , Concussão Encefálica/metabolismo , Concussão Encefálica/patologia , Calcinose/metabolismo , Calcinose/patologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Tálamo/metabolismo , Tálamo/patologia
16.
Glia ; 66(12): 2719-2736, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30378170

RESUMO

Microglia undergo dynamic structural and transcriptional changes during the immune response to traumatic brain injury (TBI). For example, TBI causes microglia to form rod-shaped trains in the cerebral cortex, but their contribution to inflammation and pathophysiology is unclear. The purpose of this study was to determine the origin and alignment of rod microglia and to determine the role of microglia in propagating persistent cortical inflammation. Here, diffuse TBI in mice was modeled by midline fluid percussion injury (FPI). Bone marrow chimerism and BrdU pulse-chase experiments revealed that rod microglia derived from resident microglia with limited proliferation. Novel data also show that TBI-induced rod microglia were proximal to axotomized neurons, spatially overlapped with dense astrogliosis, and aligned with apical pyramidal dendrites. Furthermore, rod microglia formed adjacent to hypertrophied microglia, which clustered among layer V pyramidal neurons. To better understand the contribution of microglia to cortical inflammation and injury, microglia were eliminated prior to TBI by CSF1R antagonism (PLX5622). Microglial elimination did not affect cortical neuron axotomy induced by TBI, but attenuated rod microglial formation and astrogliosis. Analysis of 262 immune genes revealed that TBI caused profound cortical inflammation acutely (8 hr) that progressed in nature and complexity by 7 dpi. For instance, gene expression related to complement, phagocytosis, toll-like receptor signaling, and interferon response were increased 7 dpi. Critically, these acute and chronic inflammatory responses were prevented by microglial elimination. Taken together, TBI-induced neuronal injury causes microglia to structurally associate with neurons, augment astrogliosis, and propagate diverse and persistent inflammatory/immune signaling pathways.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Encefalite/etiologia , Microglia/patologia , Neurônios/patologia , Córtex Somatossensorial/patologia , Animais , Células da Medula Óssea/fisiologia , Transplante de Medula Óssea , Bromodesoxiuridina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Compostos Orgânicos/farmacologia , RNA Mensageiro/metabolismo , Transdução de Sinais
17.
Neurobiol Learn Mem ; 148: 38-49, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29294383

RESUMO

Traumatic brain injury (TBI) significantly decreases cyclic AMP (cAMP) signaling which produces long-term synaptic plasticity deficits and chronic learning and memory impairments. Phosphodiesterase 4 (PDE4) is a major family of cAMP hydrolyzing enzymes in the brain and of the four PDE4 subtypes, PDE4D in particular has been found to be involved in memory formation. Although most PDE4 inhibitors target all PDE4 subtypes, PDE4D can be targeted with a selective, negative allosteric modulator, D159687. In this study, we hypothesized that treating animals with D159687 could reverse the cognitive deficits caused by TBI. To test this hypothesis, adult male Sprague Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. After 3 months of recovery, animals were treated with D159687 (0.3 mg/kg, intraperitoneally) at 30 min prior to cue and contextual fear conditioning, acquisition in the water maze or during a spatial working memory task. Treatment with D159687 had no significant effect on these behavioral tasks in non-injured, sham animals, but did reverse the learning and memory deficits in chronic TBI animals. Assessment of hippocampal slices at 3 months post-TBI revealed that D159687 reversed both the depression in basal synaptic transmission in area CA1 as well as the late-phase of long-term potentiation. These results demonstrate that a negative allosteric modulator of PDE4D may be a potential therapeutic to improve chronic cognitive dysfunction following TBI.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/fisiopatologia , Hipocampo/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Compostos Benzidrílicos/farmacologia , Disfunção Cognitiva/etiologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Medo/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Compostos de Fenilureia/farmacologia , Inibidores da Fosfodiesterase 4/administração & dosagem , Ratos , Ratos Sprague-Dawley , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia
18.
Nanomedicine ; 14(7): 2155-2166, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29933022

RESUMO

Clinically, traumatic brain injury (TBI) results in complex heterogeneous pathology that cannot be recapitulated in single pre-clinical animal model. Therefore, we focused on evaluating utility of nanoparticle (NP)-based therapeutics following three diffuse-TBI models: mildclosed-head injury (mCHI), repetitive-mCHI and midline-fluid percussion injury (FPI). We hypothesized that NP accumulation after diffuse TBI correlates directly with blood-brainbarrier permeability. Mice received PEGylated-NP cocktail (20-500 nm) (intravenously) after single- or repetitive-(1 impact/day, 5 consecutive days) CHI (immediately) and midline-FPI (1 h, 3 h and 6 h). NPs circulated for 1 h before perfusion/brain extraction. NP accumulation was analyzed using fluorescent microscopy in brain regions vulnerable to neuropathology. Minimal/no NP accumulation after mCHI/RmCHI was observed. In contrast, midlineFPI resulted in significant peak accumulation of up to 500 nm NP at 3 h post-injury compared to sham, 1 h, and 6 h groups in the cortex. Therefore, our study provides the groundwork for feasibility of NP-delivery based on NPinjection time and NPsize after mCHI/RmCHI and midline-FPI.


Assuntos
Barreira Hematoencefálica/patologia , Lesões Encefálicas/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Modelos Animais de Doenças , Nanopartículas/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nanopartículas/química
19.
J Physiol ; 595(17): 6023-6044, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28726269

RESUMO

KEY POINTS: An early inflammatory response and oxidative stress are implicated in the signal transduction that alters both hepatic redox status and mitochondrial function after traumatic brain injury (TBI). Peripheral oxidative/inflammatory responses contribute to neuronal dysfunction after TBI Exercise training alters the profile of oxidative-inflammatory status in liver and protects against acute hyperglycaemia and a cerebral inflammatory response after TBI. Approaches such as exercise training, which attenuates neuronal damage after TBI, may have therapeutic potential through modulation of responses by metabolic organs. The vulnerability of the body to oxidative/inflammatory in TBI is significantly enhanced in sedentary compared to physically active counterparts. ABSTRACT: Although systemic responses have been described after traumatic brain injury (TBI), little is known regarding potential interactions between brain and peripheral organs after neuronal injury. Accordingly, we aimed to investigate whether a peripheral oxidative/inflammatory response contributes to neuronal dysfunction after TBI, as well as the prophylactic role of exercise training. Animals were submitted to fluid percussion injury after 6 weeks of swimming training. Previous exercise training increased mRNA expression of X receptor alpha and ATP-binding cassette transporter, and decreased inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α and interleukin (IL)-6 expression per se in liver. Interestingly, exercise training protected against hepatic inflammation (COX-2, iNOS, TNF-α and IL-6), oxidative stress (decreases in non-protein sulfhydryl and glutathione, as well as increases in 2',7'-dichlorofluorescein diacetate oxidation and protein carbonyl), which altered hepatic redox status (increases in myeloperoxidase and superoxide dismutase activity, as well as inhibition of catalase activity) mitochondrial function (decreases in methyl-tetrazolium and Δψ, as well as inhibition of citrate synthase activity) and ion gradient homeostasis (inhibition of Na+ ,K+ -ATPase activity inhibition) when analysed 24 h after TBI. Previous exercise training also protected against dysglycaemia, impaired hepatic signalling (increase in phosphorylated c-Jun NH2-terminal kinase, phosphorylated decreases in insulin receptor substrate and phosphorylated AKT expression), high levels of circulating and neuronal cytokines, the opening of the blood-brain barrier, neutrophil infiltration and Na+ ,K+ -ATPase activity inhibition in the ipsilateral cortex after TBI. Moreover, the impairment of protein function, neurobehavioural (neuromotor dysfunction and spatial learning) disability and hippocampal cell damage in sedentary rats suggests that exercise training also modulates peripheral oxidative/inflammatory pathways in TBI, which corroborates the ever increasing evidence regarding health-related outcomes with respect to a physically active lifestyle.


Assuntos
Lesões Encefálicas Traumáticas , Fígado/metabolismo , Condicionamento Físico Animal , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Glicemia/análise , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Catalase/metabolismo , Citrato (si)-Sintase/metabolismo , Ciclo-Oxigenase 2/genética , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Resistência à Insulina , Fígado/patologia , Masculino , Potencial da Membrana Mitocondrial , Óxido Nítrico Sintase Tipo II/genética , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , ATPase Trocadora de Sódio-Potássio , Aprendizagem Espacial , Superóxido Dismutase/metabolismo
20.
Curr Neurol Neurosci Rep ; 17(7): 52, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28500417

RESUMO

Memory is fundamental to everyday life, and cognitive impairments resulting from traumatic brain injury (TBI) have devastating effects on TBI survivors. A contributing component to memory impairments caused by TBI is alteration in the neural circuits associated with memory function. In this review, we aim to bring together experimental findings that characterize behavioral memory deficits and the underlying pathophysiology of memory-involved circuits after TBI. While there is little doubt that TBI causes memory and cognitive dysfunction, it is difficult to conclude which memory phase, i.e., encoding, maintenance, or retrieval, is specifically altered by TBI. This is most likely due to variation in behavioral protocols and experimental models. Additionally, we review a selection of experimental treatments that hold translational potential to mitigate memory dysfunction following injury.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/terapia , Transtornos da Memória/fisiopatologia , Transtornos da Memória/terapia , Animais , Lesões Encefálicas Traumáticas/complicações , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/fisiopatologia , Transtornos Cognitivos/terapia , Modelos Animais de Doenças , Humanos , Memória/fisiologia , Transtornos da Memória/etiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA