Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
1.
J Biol Chem ; 300(5): 107267, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583863

RESUMO

Phospholamban (PLB) is a transmembrane micropeptide that regulates the sarcoplasmic reticulum Ca2+-ATPase (SERCA) in cardiac muscle, but the physical mechanism of this regulation remains poorly understood. PLB reduces the Ca2+ sensitivity of active SERCA, increasing the Ca2+ concentration required for pump cycling. However, PLB does not decrease Ca2+ binding to SERCA when ATP is absent, suggesting PLB does not inhibit SERCA Ca2+ affinity. The prevailing explanation for these seemingly conflicting results is that PLB slows transitions in the SERCA enzymatic cycle associated with Ca2+ binding, altering transport Ca2+ dependence without actually affecting the equilibrium binding affinity of the Ca2+-coordinating sites. Here, we consider another hypothesis, that measurements of Ca2+ binding in the absence of ATP overlook important allosteric effects of nucleotide binding that increase SERCA Ca2+ binding affinity. We speculated that PLB inhibits SERCA by reversing this allostery. To test this, we used a fluorescent SERCA biosensor to quantify the Ca2+ affinity of non-cycling SERCA in the presence and absence of a non-hydrolyzable ATP-analog, AMPPCP. Nucleotide activation increased SERCA Ca2+ affinity, and this effect was reversed by co-expression of PLB. Interestingly, PLB had no effect on Ca2+ affinity in the absence of nucleotide. These results reconcile the previous conflicting observations from ATPase assays versus Ca2+ binding assays. Moreover, structural analysis of SERCA revealed a novel allosteric pathway connecting the ATP- and Ca2+-binding sites. We propose this pathway is disrupted by PLB binding. Thus, PLB reduces the equilibrium Ca2+ affinity of SERCA by interrupting allosteric activation of the pump by ATP.


Assuntos
Proteínas de Ligação ao Cálcio , Cálcio , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Animais , Humanos , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Miocárdio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Cães , Células HEK293 , Modelos Moleculares , Estrutura Terciária de Proteína
2.
J Biol Chem ; 300(2): 105636, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199572

RESUMO

The sequence-specific endoribonuclease MazF is widely conserved among prokaryotes. Approximately 20 different MazF cleavage sequences have been discovered, varying from three to seven nucleotides in length. Although MazFs from various prokaryotes were found, the cleavage sequences of most MazFs are unknown. Here, we characterized the conserved MazF of Salmonella enterica subsp. arizonae (MazF-SEA). Using massive parallel sequencing and fluorometric assays, we revealed that MazF-SEA preferentially cleaves the sequences U∧ACG and U∧ACU (∧ represents cleavage sites). In addition, we predicted the 3D structure of MazF-SEA using AlphaFold2 and aligned it with the crystal structure of RNA-bound Bacillus subtilis MazF to evaluate RNA interactions. We found Arg-73 of MazF-SEA interacts with RNAs containing G and U at the third position from the cleavage sites (U∧ACG and U∧ACU). We then obtained the mutated MazF-SEA R73L protein to evaluate the significance of Arg-73 interaction with RNAs containing G and U at this position. We also used fluorometric and kinetic assays and showed the enzymatic activity of MazF-SEA R73L for the sequence UACG and UACU was significantly decreased. These results suggest Arg-73 is essential for recognizing G and U at the third position from the cleavage sites. This is the first study to our knowledge to identify a single residue responsible for RNA recognition by MazF. Owing to its high specificity and ribosome-independence, MazF is useful for RNA cleavage in vitro. These results will likely contribute to increasing the diversity of MazF specificity and to furthering the application of MazF in RNA engineering.


Assuntos
Salmonella enterica , Endonucleases , Endorribonucleases/metabolismo , Guanina , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , Salmonella enterica/enzimologia , Salmonella enterica/genética , Uracila
3.
J Biol Chem ; 300(6): 107410, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38796062

RESUMO

Over the past decade, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become increasingly apparent. This growing awareness has created a need for biochemical tools that can be used to identify and characterize potential inhibitors of this enzyme family. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination assay. This assay offers a single-step set-up and real-time fluorescent read-out, and it is capable of providing insights into enzyme kinetics. The assay also offers a high-sensitivity and easily scalable method for identifying APOBEC3 inhibitors. This assay serves as a crucial addition to the existing APOBEC3 biochemical and cellular toolkit and possesses the versatility to be readily adapted into a high-throughput format for inhibitor discovery.


Assuntos
Citidina Desaminase , DNA , Humanos , Desaminação , Citidina Desaminase/metabolismo , DNA/metabolismo , DNA/química , Cinética , Desaminases APOBEC/metabolismo , Inibidores Enzimáticos/farmacologia
4.
J Mol Cell Cardiol ; 186: 125-137, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008210

RESUMO

N-terminal cardiac myosin-binding protein C (cMyBP-C) domains (C0-C2) bind to thick (myosin) and thin (actin) filaments to coordinate contraction and relaxation of the heart. These interactions are regulated by phosphorylation of the M-domain situated between domains C1 and C2. In cardiomyopathies and heart failure, phosphorylation of cMyBP-C is significantly altered. We aimed to investigate how cMyBP-C interacts with myosin and actin. We developed complementary, high-throughput, C0-C2 FRET-based binding assays for myosin and actin to characterize the effects due to 5 HCM-linked variants or functional mutations in unphosphorylated and phosphorylated C0-C2. The assays indicated that phosphorylation decreases binding to both myosin and actin, whereas the HCM mutations in M-domain generally increase binding. The effects of mutations were greatest in phosphorylated C0-C2, and some mutations had a larger effect on actin than myosin binding. Phosphorylation also altered the spatial relationship of the probes on C0-C2 and actin. The magnitude of these structural changes was dependent on C0-C2 probe location (C0, C1, or M-domain). We conclude that binding can differ between myosin and actin due to phosphorylation or mutations. Additionally, these variables can change the mode of binding, affecting which of the interactions in cMyBP-C N-terminal domains with myosin or actin take place. The opposite effects of phosphorylation and M-domain mutations is consistent with the idea that cMyBP-C phosphorylation is critical for normal cardiac function. The precision of these assays is indicative of their usefulness in high-throughput screening of drug libraries for targeting cMyBP-C as therapy.


Assuntos
Citoesqueleto de Actina , Actinas , Proteínas de Transporte , Actinas/metabolismo , Fosforilação , Citoesqueleto de Actina/metabolismo , Miosinas/genética , Miosinas/metabolismo , Mutação
5.
J Biol Chem ; 299(5): 104634, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963492

RESUMO

Upon activation by RAS, RAF family kinases initiate signaling through the MAP kinase cascade to control cell growth, proliferation, and differentiation. Among RAF isoforms (ARAF, BRAF, and CRAF), oncogenic mutations are by far most frequent in BRAF. The BRAFV600E mutation drives more than half of all malignant melanoma and is also found in many other cancers. Selective inhibitors of BRAFV600E (vemurafenib, dabrafenib, encorafenib) are used clinically for these indications, but they are not effective inhibitors in the context of oncogenic RAS, which drives dimerization and activation of RAF, nor for malignancies driven by aberrantly dimerized truncation/fusion variants of BRAF. By contrast, a number of "type II" RAF inhibitors have been developed as potent inhibitors of RAF dimers. Here, we compare potency of type II inhibitors tovorafenib (TAK-580) and naporafenib (LHX254) in biochemical assays against the three RAF isoforms and describe crystal structures of both compounds in complex with BRAF. We find that tovorafenib and naporafenib are most potent against CRAF but markedly less potent against ARAF. Crystal structures of both compounds with BRAFV600E or WT BRAF reveal the details of their molecular interactions, including the expected type II-binding mode, with full occupancy of both subunits of the BRAF dimer. Our findings have important clinical ramifications. Type II RAF inhibitors are generally regarded as pan-RAF inhibitors, but our studies of these two agents, together with recent work with type II inhibitors belvarafenib and naporafenib, indicate that relative sparing of ARAF may be a property of multiple drugs of this class.


Assuntos
Modelos Moleculares , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Humanos , Linhagem Celular Tumoral , Cristalografia por Raios X , Sistema de Sinalização das MAP Quinases , Melanoma/tratamento farmacológico , Estrutura Molecular , Mutação , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
6.
J Biol Chem ; 299(12): 105369, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865311

RESUMO

Cardiac MyBP-C (cMyBP-C) interacts with actin and myosin to fine-tune cardiac muscle contractility. Phosphorylation of cMyBP-C, which reduces the binding of cMyBP-C to actin and myosin, is often decreased in patients with heart failure (HF) and is cardioprotective in model systems of HF. Therefore, cMyBP-C is a potential target for HF drugs that mimic its phosphorylation and/or perturb its interactions with actin or myosin. We labeled actin with fluorescein-5-maleimide (FMAL) and the C0-C2 fragment of cMyBP-C (cC0-C2) with tetramethylrhodamine (TMR). We performed two complementary high-throughput screens (HTS) on an FDA-approved drug library, to discover small molecules that specifically bind to cMyBP-C and affect its interactions with actin or myosin, using fluorescence lifetime (FLT) detection. We first excited FMAL and detected its FLT, to measure changes in fluorescence resonance energy transfer (FRET) from FMAL (donor) to TMR (acceptor), indicating binding. Using the same samples, we then excited TMR directly, using a longer wavelength laser, to detect the effects of compounds on the environmentally sensitive FLT of TMR, to identify compounds that bind directly to cC0-C2. Secondary assays, performed on selected modulators with the most promising effects in the primary HTS assays, characterized the specificity of these compounds for phosphorylated versus unphosphorylated cC0-C2 and for cC0-C2 versus C1-C2 of fast skeletal muscle (fC1-C2). A subset of identified compounds modulated ATPase activity in cardiac and/or skeletal myofibrils. These assays establish the feasibility of the discovery of small-molecule modulators of the cMyBP-C-actin/myosin interaction, with the ultimate goal of developing therapies for HF.


Assuntos
Proteínas de Transporte , Descoberta de Drogas , Insuficiência Cardíaca , Miofibrilas , Bibliotecas de Moléculas Pequenas , Humanos , Actinas/metabolismo , Descoberta de Drogas/métodos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Miosinas/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Miofibrilas/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Técnicas Biossensoriais , Adenosina Trifosfatases/metabolismo , Músculo Esquelético/metabolismo , Proteínas Recombinantes/metabolismo , Ativação Enzimática/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência
7.
J Fluoresc ; 33(2): 613-629, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36469207

RESUMO

A facile bottom up synthesis technique is opted for the preparation of novel composite SnO2@Zn-BTC. This synthesized composite is fully characterized by Fourier Transform Infrared (FTIR) Spectroscopy, Powder X-Ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), and Elemental mapping techniques. Optical analysis was performed using UV-Visible absorption spectroscopy and fluorescence studies. Further this composite was utilized for the first time as a photocatalyst for methylene blue (MB) dye degradation under sunlight irradiation. This photocatalyst shows degradation efficiency of 89% within 100 min of exposure of sunlight. In addition to that, the synthesized composite can be utilized as a fluorescence probe for detection of NACs via 'turn-off" quenching response. This composite is extremely sensitive towards 3-NA in aqueous medium with quenching efficiency of 75.42%, which is highest quenching rate till reported. There occurs no interference for detecting 3-NA in the presence of other NACs. The linear fitting of the Stern-Volmer plot for 3-NA shows large quenching constant (KSV) of 0.0115 ppb-1 with correlation coefficient R2 = 0.9943 proves higher sensitivity of composite in sensing process. The outstanding sensitivity of composite for 3-NA is certified by the low detection limit (LOD) of 25 ppb (0.18 µM). Photoinduced Electron Transfer (PET) and Fluorescence Resonance Energy Transfer (FRET) are the mechanisms used for clarification of quenching response of PL intensity by NACs via density functional theory (DFT) calculations and extent spectral overlap, respectively. Hence, synthesized composite is verified as multi-component system to act as excellent photocatalyst as well as fluorescent sensor.

8.
J Fluoresc ; 33(1): 339-357, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36422819

RESUMO

A Schiff base functionalized Cu(II)-based metal-organic framework (MOF) denoted as Cu-L, was developed via a solvothermal method using low-cost starting material, i.e., Schiff base linker, 4,4'-(hydrazine-1,2-diylidenedimethylylidene)dibenzoic acid (L). Good crystallinity and thermal stability of synthesized Cu-L was confirmed by the crystallographic and thermogravimetric studies. An excellent photoluminescent properties of Cu-L ensure their suitability for the ultrafast detection of Fe3+ ions and nitrobenzene via a turn-off quenching response. The remarkable sensitivity of Cu-L towards Fe3+ ions and nitrobenzene was certified by the low limit of detection (LOD) of 47 ppb and 0.004 ppm, respectively. With incorporated free azine groups, this MOF could selectively capture Fe3+ ions and nitrobenzene in aqueous solution. The plausible mechanistic pathway for the quenching in the fluorescence intensity of the Cu-L in the presence of Fe3+ ions and nitrobenzene have been explained in detail through the density functional theory calculations, photo-induced electron transfer (PET), fluorescence resonance energy transfer (FRET), and competitive energy adsorption. This present study open a new avenue to synthesize novel crystalline MOF-based sensing materials from cheap Schiff base linkers for fast sensing of toxic pollutants.

9.
J Fluoresc ; 33(6): 2415-2429, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37084064

RESUMO

A novel SnO2@Cu3(BTC)2 composite was synthesized using a quick and affordable bottom-up approach via impregnation of SnO2 nanoparticles into the porous Cu3(BTC)2 metal-organic framework (MOF). This composite material is characterized by Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD) spectra, scanning electron microscope (SEM) analysis, and energy-dispersive X-ray spectroscopy (EDS) analysis. SnO2@Cu3(BTC)2 degraded the methylene blue (MB) dye within 80 min under sunlight with a maximum degradation efficiency of 85.12%. This composite easily recyclable up to five cycles with the retention of its MB degradation efficiency. Moreover, SnO2@Cu3(BTC)2 can be also used efficiently for fast sensing of 2,4,6-trinitrophenol (TNP) in water with noticeable turn-off quenching response. Its limits of detection (LOD) for TNP was 2.82 µM with enhanced selectivity toward TNP (over other NACs) as verified by competitive nitro explosive tests. Density functional theory (DFT) calculations and spectral overlap were used to assess the sensing mechanism. This composite fluorescent sensing system for TNP are demonstrated to have high selectivity and sensitivity. Our findings imply that the prepared low cost SnO2@Cu3(BTC)2 composite can be used as a superior fluorescence sensor and photo catalyst for large scale industrial applications.

10.
Anal Bioanal Chem ; 415(10): 1991-1999, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36853410

RESUMO

MicroRNA (miRNA) sensing strategies employing rolling circle amplification (RCA) coupled with the hairpin DNA (HD) probe-mediated FRET assay have shown promise, but achieving rapid, sensitive, and specific detection of target miRNA remains a challenge in clinical diagnostics. Herein, we incorporate PstI endonuclease cleavage (PEC) into a conventional RCA-based HD probe FRET assay to develop an effective and feasible method. Long single-stranded RCA products are synthesized from miRNA-21 loaded on a circular dumbbell DNA, and the resultant RCA products self-assemble to generate long HD structures with double-stranded stem regions that are specifically recognized and cleaved by PstI endonucleases when incubated with PstI enzymes. This releases large amounts of short single-stranded DNA fragments that hybridize and open to the complementary loop-stem regions of HD probes labeled with FAM at one end and BHQ-1 at the other, resulting in a reduction in FRET efficiency. This assay achieves a 39.7 aM detection limit for target miRNA-21, approximately 37-fold higher than that of the conventional assay (1.5 fM). Moreover, quantitative detection is possible in a wide range from 1 aM to 1 pM within 90 min with high sequence specificity. We demonstrate the assay with the detection of target miRNA-21 in total RNA extracted from MCF-7 cancer cells.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Humanos , MicroRNAs/genética , Endonucleases , DNA/química , Sondas de DNA/química , Bioensaio , Corantes , Técnicas de Amplificação de Ácido Nucleico/métodos , Limite de Detecção , Técnicas Biossensoriais/métodos
11.
Mikrochim Acta ; 190(11): 427, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37792071

RESUMO

The simple preparation of a nanohybrid of terbium-doped carbon dots/glutathione-capped copper nanoclusters (Tb@CDs/GSH-CuNCs) was for the first time developed for ratiometric detection of phosphate anion (Pi). Blue-emission of Tb@CDs can trigger non-luminescence of GSH-CuNCs for aggregation-induced emission (AIE) performance due to the strong reserved coordination capacity of Tb3+. Thus, Tb@CDs/GSH-CuNCs rapidly generated dual-emission signals at 630 nm and 545 nm by directly mixing the two individual materials via the AIE effect, alongside fluorescence resonance energy transfer (FRET) process. However, by the introduction of Pi, both AIE and FRET processes were blocked because of the stronger binding affinity of Tb3+ and Pi than that of Tb3+ and -COOH on Tb@CDs, thus realizing successful ratiometric detection of Pi. The linear concentration range was 0-16 µM, with the limit of detection (LOD) of 0.32 µM. The proposed method provided new ideas for designing nanohybrid of CDs and nanoclusters (MNCs) as ratiometric fluorescent probes for analytical applications.

12.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674576

RESUMO

We attempted to examine the alterations elicited by opioids via coexpressed µ-opioid (MOP) and nociceptin/orphanin FQ (NOP) receptors for receptor localization and Erk1/2 (p44/42 MAPK) in human embryonic kidney (HEK) 293 cells. Through two-photon microscopy, the proximity of MOP and NOP receptors was verified by fluorescence resonance energy transfer (FRET), and morphine but not buprenorphine facilitated the process of MOP-NOP heterodimerization. Single-particle tracking (SPT) further revealed that morphine or buprenorphine hindered the movement of the MOP-NOP heterodimers. After exposure to morphine or buprenorphine, receptor localization on lipid rafts was detected by immunocytochemistry, and phosphorylation of Erk1/2 was determined by immunoblotting in HEK 293 cells expressing MOP, NOP, or MOP+NOP receptors. Colocalization of MOP and NOP on lipid rafts was enhanced by morphine but not buprenorphine. Morphine stimulated the phosphorylation of Erk1/2 with a similar potency in HEK 293 cells expressing MOP and MOP+NOP receptors, but buprenorphine appeared to activate Erk1/2 solely through NOP receptors. Our results suggest that opioids can fine-tune the cellular localization of opioid receptors and phosphorylation of Erk1/2 in MOP+NOP-expressing cells.


Assuntos
Buprenorfina , Receptores Opioides , Humanos , Receptores Opioides/metabolismo , Receptor de Nociceptina , Analgésicos Opioides/farmacologia , Células HEK293 , Fosforilação , Receptores Opioides mu/metabolismo , Buprenorfina/farmacologia , Morfina/farmacologia
13.
J Biol Chem ; 297(4): 101157, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34481842

RESUMO

The interacting-heads motif (IHM) is a structure of myosin that has been proposed to modulate cardiac output by occluding myosin molecules from undergoing the force-generating cycle. It is hypothesized to be the structural basis for the super-relaxed state (SRX), a low-ATPase kinetic state thought to be cardioprotective. The goal of the present study was to test this hypothesis by determining directly and quantitatively the fractions of myosin in the IHM and SRX under the same conditions in solution. To detect the structural IHM, we used time-resolved fluorescence resonance energy transfer to quantitate two distinct populations. One population was observed at a center distance of 2.0 nm, whereas the other was not detectable by fluorescence resonance energy transfer, implying a distance greater than 4 nm. We confirmed the IHM assignment to the 2.0-nm population by applying the same cross-linking protocol used previously to image the IHM by electron microscopy. Under the same conditions, we also measured the fraction of myosin in the SRX using stopped-flow kinetics. Our results show that the populations of SRX and IHM myosin were similar, unless treated with mavacamten, a drug that recently completed phase III clinical trials to treat hypertrophic cardiomyopathy and is proposed to act by stabilizing both the SRX and IHM. However, we found that mavacamten had a much greater effect on the SRX (55% increase) than on the IHM (4% increase). We conclude that the IHM structure is sufficient but not necessary to produce the SRX kinetic state.


Assuntos
Benzilaminas/química , Transferência Ressonante de Energia de Fluorescência , Miosinas/química , Uracila/análogos & derivados , Motivos de Aminoácidos , Animais , Benzilaminas/uso terapêutico , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/metabolismo , Bovinos , Cinética , Miosinas/metabolismo , Uracila/química , Uracila/uso terapêutico
14.
J Biol Chem ; 296: 100502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33667546

RESUMO

Ca2+/calmodulin-dependent inactivation (CDI) of CaV channels is a critical regulatory process that tunes the kinetics of Ca2+ entry for different cell types and physiologic responses. CDI is mediated by calmodulin (CaM), which is bound to the IQ domain of the CaV carboxy tail. This modulatory process is tailored by alternative splicing such that select splice variants of CaV1.3 and CaV1.4 contain a long distal carboxy tail (DCT). The DCT harbors an inhibitor of CDI (ICDI) module that competitively displaces CaM from the IQ domain, thereby diminishing CDI. While this overall mechanism is now well described, the detailed interactions required for ICDI binding to the IQ domain are yet to be elucidated. Here, we perform alanine-scanning mutagenesis of the IQ and ICDI domains and evaluate the contribution of neighboring regions to CDI inhibition. Through FRET binding analysis, we identify functionally relevant residues within the CaV1.3 IQ domain and the CaV1.4 ICDI and nearby A region, which are required for high-affinity IQ/ICDI binding. Importantly, patch-clamp recordings demonstrate that disruption of this interaction commensurately diminishes ICDI function resulting in the re-emergence of CDI in mutant channels. Furthermore, CaV1.2 channels harbor a homologous DCT; however, the ICDI region of this channel does not appear to appreciably modulate CaV1.2 CDI. Yet coexpression of CaV1.2 ICDI with select CaV1.3 splice variants significantly disrupts CDI, implicating a cross-channel modulatory scheme in cells expressing both channel subtypes. In all, these findings provide new insights into a molecular rheostat that fine-tunes Ca2+-entry and supports normal neuronal and cardiac function.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Caveolina 1/metabolismo , Ativação do Canal Iônico , Mutação , Caveolina 1/antagonistas & inibidores , Caveolina 1/genética , Células Cultivadas , Humanos , Cinética , Ligação Proteica , Relação Estrutura-Atividade
15.
J Biol Chem ; 296: 100442, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33617875

RESUMO

The adipocyte hormone leptin regulates glucose homeostasis both centrally and peripherally. A key peripheral target is the pancreatic ß-cell, which secretes insulin upon glucose stimulation. Leptin is known to suppress glucose-stimulated insulin secretion by promoting trafficking of KATP channels to the ß-cell surface, which increases K+ conductance and causes ß-cell hyperpolarization. We have previously shown that leptin-induced KATP channel trafficking requires protein kinase A (PKA)-dependent actin remodeling. However, whether PKA is a downstream effector of leptin signaling or PKA plays a permissive role is unknown. Using FRET-based reporters of PKA activity, we show that leptin increases PKA activity at the cell membrane and that this effect is dependent on N-methyl-D-aspartate receptors, CaMKKß, and AMPK, which are known to be involved in the leptin signaling pathway. Genetic knockdown and rescue experiments reveal that the increased PKA activity upon leptin stimulation requires the membrane-targeted PKA-anchoring protein AKAP79/150, indicating that PKA activated by leptin is anchored to AKAP79/150. Interestingly, disrupting protein phosphatase 2B (PP2B) anchoring to AKAP79/150, known to elevate basal PKA signaling, leads to increased surface KATP channels even in the absence of leptin stimulation. Our findings uncover a novel role of AKAP79/150 in coordinating leptin and PKA signaling to regulate KATP channel trafficking in ß-cells, hence insulin secretion. The study further advances our knowledge of the downstream signaling events that may be targeted to restore insulin secretion regulation in ß-cells defective in leptin signaling, such as those from obese individuals with type 2 diabetes.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Secretoras de Insulina/metabolismo , Canais KATP/metabolismo , Leptina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Calcineurina/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Glucose/metabolismo , Homeostase , Humanos , Insulina/metabolismo , Secreção de Insulina , Leptina/metabolismo , Fosforilação , Cultura Primária de Células , Transporte Proteico , Transdução de Sinais
16.
J Biol Chem ; 297(1): 100862, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34116057

RESUMO

The Elongin complex was originally identified as an RNA polymerase II (RNAPII) elongation factor and subsequently as the substrate recognition component of a Cullin-RING E3 ubiquitin ligase. More recent evidence indicates that the Elongin ubiquitin ligase assembles with the Cockayne syndrome B helicase (CSB) in response to DNA damage and can target stalled polymerases for ubiquitylation and removal from the genome. In this report, we present evidence that the CSB-Elongin ubiquitin ligase pathway has roles beyond the DNA damage response in the activation of RNAPII-mediated transcription. We observed that assembly of the CSB-Elongin ubiquitin ligase is induced not just by DNA damage, but also by a variety of signals that activate RNAPII-mediated transcription, including endoplasmic reticulum (ER) stress, amino acid starvation, retinoic acid, glucocorticoids, and doxycycline treatment of cells carrying several copies of a doxycycline-inducible reporter. Using glucocorticoid receptor (GR)-regulated genes as a model, we showed that glucocorticoid-induced transcription is accompanied by rapid recruitment of CSB and the Elongin ubiquitin ligase to target genes in a step that depends upon the presence of transcribing RNAPII on those genes. Consistent with the idea that the CSB-Elongin pathway plays a direct role in GR-regulated transcription, mouse cells lacking the Elongin subunit Elongin A exhibit delays in both RNAPII accumulation on and dismissal from target genes following glucocorticoid addition and withdrawal, respectively. Taken together, our findings bring to light a new role for the CSB-Elongin pathway in RNAPII-mediated transcription.


Assuntos
DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Elonguina/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Polimerase II/genética , Ubiquitina-Proteína Ligases/genética , Animais , Síndrome de Cockayne/enzimologia , Síndrome de Cockayne/genética , DNA Helicases/química , DNA Helicases/ultraestrutura , Reparo do DNA/genética , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/ultraestrutura , Elonguina/química , Elonguina/ultraestrutura , Humanos , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/ultraestrutura , RNA Polimerase II/química , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Ubiquitina/química , Ubiquitina/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/ultraestrutura , Ubiquitinação/genética
17.
Chembiochem ; 23(20): e202200406, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-35999178

RESUMO

To discover the cytomimetic that accounts for cytoplasmic crowding and sticking on RNA stability, we conducted a two-dimensional scan of mixtures of artificial crowding and sticking agents, PEG10k and M-PERTM . As our model RNA, we investigate the fourU RNA thermometer motif of Salmonella, a hairpin-structured RNA that regulates translation by unfolding and exposing its ribosome binding site (RBS) in response to temperature perturbations. We found that the addition of artificial crowding and sticking agents leads to a stabilization and destabilization of RNA folding, respectively, through the excluded volume effect and surface interactions. FRET-labels were added to the fourU RNA and Fast Relaxation Imaging (FReI), fluorescence microscopy coupled to temperature-jump spectroscopy, probed differences between folding stability of RNA inside single living cells and in vitro. Our results suggest that the cytoplasmic environment affecting RNA folding is comparable to a combination of 20 % v/v M-PERTM and 150 g/L PEG10k.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Dobramento de RNA , RNA/química , Microscopia de Fluorescência , Temperatura , Dobramento de Proteína , Cinética
18.
New Phytol ; 234(5): 1817-1831, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35274313

RESUMO

Arbuscular mycorrhizal (AM) symbiosis is accompanied by alterations to root cell metabolism and physiology, and to the pathways of orthophosphate (Pi) entry into the root, which increase with Pi delivery to cortical cells via arbuscules. How AM symbiosis influences the Pi content and Pi response dynamics of cells in the root cortex and epidermis is unknown. Using fluorescence resonance energy transfer (FRET)-based Pi biosensors, we mapped the relative cytosolic and plastidic Pi content of Brachypodium distachyon mycorrhizal root cells, analyzed responses to extracellular Pi and traced extraradical hyphae-mediated Pi transfer to colonized cells. Colonized cortical cells had a higher cytosolic Pi content relative to noncolonized cortical and epidermal cells, while plastidic Pi content was highest in cells at the infection front. Pi application to the entire mycorrhizal root resulted in transient changes in cytosolic Pi that differed in direction and magnitude depending on cell type and arbuscule status; cells with mature arbuscules showed a substantial transient increase in cytosolic Pi while those with collapsed arbuscules showed a decrease. Directed Pi application to extraradical hyphae resulted in measurable changes in cytosolic Pi of colonized cells 18 h after application. Our experiments reveal that cells within a mycorrhizal root vary in Pi content and Pi response dynamics.


Assuntos
Técnicas Biossensoriais , Brachypodium , Micorrizas , Brachypodium/genética , Brachypodium/metabolismo , Regulação da Expressão Gênica de Plantas , Micorrizas/fisiologia , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Simbiose/fisiologia
19.
Luminescence ; 37(6): 907-912, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35322537

RESUMO

Quinoline derivative, i.e. quinilone yellow with the scientific name [sodium 2-(2,3-dihydro-1,3-dioxo-1H-inden-2-yl)quinoline-6,8-disulphonate] (SQDS) is analysed for fluorescence resonance energy transfer (FRET). Fluorescence quenching mechanism is studied by employing steady state and transient state spectroscopic measurements. Cobalt chloride is used as quencher in the present study. Linearity was observed in Stern-Volmer plots for transient state as well as steady state. This was further attributed to a mechanism of collisional quenching. Efficiency in fluorescence quenching is observed as there is a correlation between quenching constants of both transient and steady state. A significant energy transfer is reported between metal ions and SQDS molecule, according to FRET theory. Characterization results are studied and analysed. Application in the field of non-linear optics are predicted for SQDS. With Kurtz and Perry powder technique, SHG (second harmonic generation) efficiency was measured using Q-switched mode locked Nd:YAG laser emitting 1064 nm the first time with this compound.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Quinolinas , Cobalto , Fluorescência , Íons , Metais , Espectrometria de Fluorescência
20.
Sensors (Basel) ; 22(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35062524

RESUMO

The development of faster, sensitive and real-time methods for detecting organophosphate (OP) pesticides is of utmost priority in the in situ monitoring of these widespread compounds. Research on enzyme-based biosensors is increasing, and a promising candidate as a bioreceptor is the thermostable enzyme esterase-2 from Alicyclobacillus acidocaldarius (EST2), with a lipase-like Ser-His-Asp catalytic triad with a high affinity for OPs. This study aimed to evaluate the applicability of Förster resonance energy transfer (FRET) as a sensitive and reliable method to quantify OPs at environmentally relevant concentrations. For this purpose, the previously developed IAEDANS-labelled EST2-S35C mutant was used, in which tryptophan and IAEDANS fluorophores are the donor and the acceptor, respectively. Fluorometric measurements showed linearity with increased EST2-S35C concentrations. No significant interference was observed in the FRET measurements due to changes in the pH of the medium or the addition of other organic components (glucose, ascorbic acid or yeast extract). Fluorescence quenching due to the presence of paraoxon was observed at concentrations as low as 2 nM, which are considered harmful for the ecosystem. These results pave the way for further experiments encompassing more complex matrices.


Assuntos
Técnicas Biossensoriais , Inseticidas , Praguicidas , Ecossistema , Transferência Ressonante de Energia de Fluorescência , Paraoxon/toxicidade , Praguicidas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA