Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Plant J ; 117(5): 1305-1316, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38169533

RESUMO

Seeds of the root parasitic plant Striga hermonthica undergo a conditioning process under humid and warm environments before germinating in response to host-released stimulants, particularly strigolactones (SLs). The plant hormone abscisic acid (ABA) regulates different growth and developmental processes, and stress response; however, its role during Striga seed germination and early interactions with host plants is under-investigated. Here, we show that ABA inhibited Striga seed germination and that hindering its biosynthesis induced conditioning and germination in unconditioned seeds, which was significantly enhanced by treatment with the SL analog rac-GR24. However, the inhibitory effect of ABA remarkably decreased during conditioning, confirming the loss of sensitivity towards ABA in later developmental stages. ABA measurement showed a substantial reduction of its content during the early conditioning stage and a significant increase upon rac-GR24-triggered germination. We observed this increase also in released seed exudates, which was further confirmed by using the Arabidopsis ABA-reporter GUS marker line. Seed exudates of germinated seeds, containing elevated levels of ABA, impaired the germination of surrounding Striga seeds in vitro and promoted root growth of a rice host towards germinated Striga seeds. Application of ABA as a positive control caused similar effects, indicating its function in Striga/Striga and Striga/host communications. In summary, we show that ABA is an essential player during seed dormancy and germination processes in Striga and acts as a rhizospheric signal likely to support host infestation.


Assuntos
Arabidopsis , Striga , Ácido Abscísico/farmacologia , Germinação , Striga/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Sementes
2.
Int J Mol Sci ; 23(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35328543

RESUMO

Haematococcus pluvialis has high economic value because of its high astaxanthin-producing ability. The mutation breeding of Haematococcus pluvialis is an important method to improve the yield of astaxanthin. Fluoridone, an inhibitor of phytoene dehydrogenase, can be used as a screening reagent for mutation breeding of Haematococcus pluvialis. This study describes the effect of fluridone on the biomass, chlorophyll, and astaxanthin content of Haematococcus pluvialis at different growth stages. Five fluridone concentrations (0.00 mg/L, 0.25 mg/L, 0.50 mg/L, 1.00 mg/L, and 2.00 mg/L) were set to treat Haematococcus pluvialis. It was found that fluridone significantly inhibited the growth and accumulation of astaxanthin in the red dormant stage. In addition, transcriptome sequencing was used to analyze the expression of genes related to four metabolic pathways in photosynthesis, carotenoid synthesis, fatty acid metabolism, and cellular antioxidant in algae after fluridone treatment. The results showed that six genes related to photosynthesis were downregulated. FPPS, lcyB genes related to carotenoid synthesis are downregulated, but carotenoid ß-cyclic hydroxylase gene (LUT5), which plays a role in the conversion of carotenoid to abscisic acid (ABA), was upregulated, while the expression of phytoene dehydrogenase gene did not change. Two genes related to cell antioxidant capacity were upregulated. In the fatty acid metabolism pathway, the acetyl-CoA carboxylase gene (ACACA) was downregulated in the green stage, but upregulated in the red stage, and the stearoyl-CoA desaturase gene (SAD) was upregulated. According to the transcriptome results, fluridone can affect the astaxanthin accumulation and growth of Haematococcus pluvialis by regulating the synthesis of carotenoids, chlorophyll, fatty acids, and so on. It is expected to be used as a screening agent for the breeding of Haematococcus pluvialis. This research also provides an experimental basis for research on the mechanism of astaxanthin metabolism in Haematococcus pluvialis.


Assuntos
Clorofíceas , Clorófitas , Antioxidantes/farmacologia , Carotenoides/metabolismo , Clorofíceas/genética , Clorofila/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Ácidos Graxos/metabolismo , Melhoramento Vegetal , Piridonas , Transcriptoma
3.
Planta ; 251(4): 86, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221719

RESUMO

MAIN CONCLUSION: ABA and GA metabolism during incubation rather than hormone contents in dry seeds is the key to understanding secondary dormancy and germination of Syngonanthus verticillatus seeds. The mechanism of seed dormancy cycle, although very important for preventing germination during unfavorable periods for seedling establishment, is poorly understood in tropical species. Here, we used a perennial tropical species of the Brazilian campo rupestre, Syngonanthus verticillatus (Eriocaulaceae), to investigate the involvement of ABA and GA in modulating secondary dormancy of seeds buried in situ over time and the dynamic of these hormones during the incubation of dormant and non-dormant seeds. Hormone analyses were carried out with freshly harvested seeds and on buried seeds exhumed after 3, 6 and 9 months. Dynamics of ABA and GAs in dormant and non-dormant seeds during incubation (0, 12, 24 and 36 h) under favorable conditions for germination (at 20 °C in the presence of light) were also investigated. In addition, the effects of GA4 and fluridone were evaluated for overcoming secondary dormancy. Our results showed that changes in the contents of both ABA and GA4 occurred after burial, suggesting they may be related to the modulation of secondary dormancy/germination of S. verticillatus seeds. The application of fluridone was more effective than GA4 at overcoming secondary dormancy. We conclude that during incubation, de novo ABA synthesis and its consequent maintenance at high contents regulate the inhibition of germination in dormant seeds, while GA4 synthesis and ABA catabolism modulate the germination of non-dormant seeds. ABA and GA metabolism during incubation of both dormant and non-dormant seeds rather than hormone contents of dry seeds in the field is thought to be the key to understanding secondary dormancy and germination.


Assuntos
Eriocaulaceae/fisiologia , Germinação/fisiologia , Dormência de Plantas/fisiologia , Sementes/metabolismo , Ácido Abscísico/metabolismo , Brasil , Giberelinas/metabolismo , Piridonas , Plântula/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-31642727

RESUMO

The herbicides glyphosate, imazamox and fluridone are herbicides, with low toxicity towards fish and invertebrates, which are applied to waterways to control invasive aquatic weeds. However, the effects of these herbicides on natural isolates of phytoplankton and cyanobacteria are unknown. Three species of microalgae found in the San Francisco Estuary (SFE)/Sacramento-San Joaquin River Delta (Delta) (Microcystis aeruginosa, Chlamydomonas debaryana, and Thalassiosira pseudonana) were exposed to the three herbicides at a range of concentrations in 96-well plates for 5-8 days. All three algal species were the most sensitive to fluridone, with IC50 of 46.9, 21, and 109 µg L-1 for M. aeruginosa, T. pseudonana and C. debaryana, respectively. Imazamox inhibited M. aeruginosa and T. pseudonana growth at 3.6 × 104 µg L-1 or higher, and inhibited C. debaryana growth at 1.0 × 105 µg L-1 or higher. Glyphosate inhibited growth in all species at ca. 7.0 × 104 µg L-1 or higher. Fluridone was the only herbicide that inhibited the microalgae at environmentally relevant concentrations in this study and susceptibility to the herbicide depended on the species. Thus, the application of fluridone may affect cyanobacteria and phytoplankton community composition in water bodies where it is applied.


Assuntos
Cianobactérias/efeitos dos fármacos , Estuários , Herbicidas/toxicidade , Fitoplâncton/efeitos dos fármacos , Rios/química , Poluentes Químicos da Água/toxicidade , Animais , California , Cianobactérias/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Fitoplâncton/crescimento & desenvolvimento , Especificidade da Espécie
5.
Plant J ; 93(5): 931-942, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29315972

RESUMO

Wound-induced suberin deposition involves the temporal and spatial coordination of phenolic and fatty acid metabolism. Phenolic metabolism leads to both soluble metabolites that accumulate as defense compounds as well as hydroxycinnamoyl derivatives that form the basis of the poly(phenolic) domain found in suberized tissue. Fatty acid metabolism involves the biosynthesis of very-long-chain fatty acids, 1-alkanols, ω-hydroxy fatty acids and α,ω-dioic acids that form a poly(aliphatic) domain, commonly referred to as suberin. Using the abscisic acid (ABA) biosynthesis inhibitor fluridone (FD), we reduced wound-induced de novo biosynthesis of ABA in potato tubers, and measured the impact on the expression of genes involved in phenolic metabolism (StPAL1, StC4H, StCCR, StTHT), aliphatic metabolism (StCYP86A33, StCYP86B12, StFAR3, StKCS6), metabolism linking phenolics and aliphatics (StFHT) or acyl chains and glycerol (StGPAT5, StGPAT6), and in the delivery of aliphatic monomers to the site of suberization (StABCG1). In FD-treated tissue, both aliphatic gene expression and accumulation of aliphatic suberin monomers were delayed. Exogenous ABA restored normal aliphatic suberin deposition in FD-treated tissue, and enhanced aliphatic gene expression and poly(aliphatic) domain deposition when applied alone. By contrast, phenolic metabolism genes were not affected by FD treatment, while FD + ABA and ABA treatments slightly enhanced the accumulation of polar metabolites. These data support a role for ABA in the differential induction of phenolic and aliphatic metabolism during wound-induced suberization in potato.


Assuntos
Lipídeos/biossíntese , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lipídeos/genética , Tubérculos/efeitos dos fármacos , Tubérculos/genética , Piridonas/farmacologia , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/genética
6.
Planta ; 249(5): 1551-1563, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30729290

RESUMO

MAIN CONCLUSION: A novel method for culturing ovules of Gossypium barbadense allowed in vitro comparisons with Gossypium hirsutum and revealed variable roles of microtubules in controlling cotton fiber cell expansion. Cotton fibers undergo extensive elongation and secondary wall thickening as they develop into our most important renewable textile material. These single cells elongate at the apex as well as elongating and expanding in diameter behind the apex. These multiple growth modes represent an interesting difference compared to classical tip-growing cells that needs to be explored further. In vitro ovule culture enables experimental analysis of the controls of cotton fiber development in commonly grown Gossypium hirsutum cotton, but, previously, there was no equivalent system for G. barbadense, which produces higher quality cotton fiber. Here, we describe: (a) how to culture the ovules of G. barbadense successfully, and (b) the results of an in vitro experiment comparing the role of microtubules in controlling cell expansion in different zones near the apex of three types of cotton fiber tips. Adding the common herbicide fluridone, 1-Methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4(1H)-pyridinone, to the medium supported G. barbadense ovule culture, with positive impacts on the number of useful ovules and fiber length. The effect is potentially mediated through inhibited synthesis of abscisic acid, which antagonized the positive effects of fluridone. Fiber development was perturbed by adding colchicine, a microtubule antagonist, to ovules of G. barbadense and G. hirsutum cultured 2 days after flowering. The results supported the zonal control of cell expansion in one type of G. hirsutum fiber tip and highlighted differences in the role of microtubules in modulating cell expansion between three types of cotton fiber tips.


Assuntos
Gossypium/citologia , Gossypium/metabolismo , Microtúbulos/metabolismo , Fibra de Algodão , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Gossypium/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Piridonas/farmacologia
7.
Mar Drugs ; 17(3)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909380

RESUMO

Carotenoids are lipophilic pigments found in plants and algae, as well as some bacteria, archaea, and fungi that serve two functions-(1) as light harvesting molecules-primary carotenoids, and (2) as antioxidants, acting against reactive oxygen species⁻secondary carotenoids. Because of their strong antioxidant properties, they are also valuable for the development of anti-aging and photo-protective cosmetic applications. Of particular interest is the carotenoid phytoene, for its colorless and UV absorption characteristics. In this study, we targeted a reduction of phytoene desaturase (PDS) activity with the pigment-inhibiting herbicide 1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]pyridin-4-one (fluridone), which leads to the over-accumulation of phytoene in the recently characterized microalgal strain Chlorococcum sp. (UTEX B 3056). After post-incubation with fluridone, phytoene levels were measured at ~33 ug/mg cell tissue, as opposed to non-detectable levels in control cultures. Hence, the novel microalga Chlorococcum sp. is a viable candidate for the production of the high-value carotenoid phytoene and subsequent applications in cosmeceuticals, as well as more obvious nutraceutical and pharmaceutical applications.


Assuntos
Carotenoides/metabolismo , Clorofíceas/efeitos dos fármacos , Clorofíceas/metabolismo , Piridonas/farmacologia , Carotenoides/biossíntese , Ácidos Graxos/metabolismo , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo
8.
BMC Plant Biol ; 18(1): 116, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29890940

RESUMO

BACKGROUND: Notopterygium incisum is an important Chinese medicinal plant. Its mature seeds have underdeveloped embryos and are physiological dormant. We found the seeds with full developed embryos can germinate after treated by fluridone (FL), an inhibitor of abscisic acid (ABA). In order to understand the molecular mechanisms underlying seed dormancy release by FL, we compared the transcriptomic changes in dormancy release induced by two different methods, FL and cold stratification (CS) in N. incisum. We further analyzed the gene expression patterns involved in seed germination and dormancy using quantitative reverse-transcription PCR. RESULTS: RNA-sequence analysis revealed more dramatic changes in the transcriptomes of FL than those in CS, particularly for genes involved in the biosynthesis and regulation of gibberellins (GAs) and ABA. The down-regulation of ABA biosynthesis genes and the dramatic up-regulation of NiCYP707As, an ABA catabolic gene, contributed to the reduced ABA levels in FL. The increased GA3 levels in CS-treated seeds were due to the up-regulation of NiGA3OX. Both NiABI5 (a positive ABA regulator) and NiGAI (a negative regulator of GA) were down-regulated in FL and CS. The upregulation of strigolactones (SLs; the metabolites with the same precursor as ABA) biosynthesis and regulatory genes in both FL- and CS-treated seeds indicates that SLs contribute positively to seed dormancy release in N. incisum. CONCLUSIONS: Our results indicated that FL- and CS-seed dormancy release possibly depends on two totally different mechanisms: alleviation of the effects of ABA and potentiation of the effects of GA, respectively. However, NiABI5 and NiGAI probably function as common factors integrating the effects of ABA and GA on seed dormancy release.


Assuntos
Apiaceae/efeitos dos fármacos , Dormência de Plantas/efeitos dos fármacos , Plantas Medicinais/efeitos dos fármacos , Piridonas/farmacologia , Ácido Abscísico/antagonistas & inibidores , Apiaceae/fisiologia , Temperatura Baixa , Genes de Plantas/efeitos dos fármacos , Genes de Plantas/fisiologia , Germinação/efeitos dos fármacos , Germinação/fisiologia , Giberelinas/metabolismo , Medicina Tradicional Chinesa , Dormência de Plantas/fisiologia , Reguladores de Crescimento de Plantas/antagonistas & inibidores , Plantas Medicinais/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/efeitos dos fármacos , Sementes/fisiologia , Análise de Sequência de DNA , Transcriptoma/efeitos dos fármacos
9.
Zhongguo Zhong Yao Za Zhi ; 41(14): 2625-2632, 2016 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-28905597

RESUMO

We introduced Epimedium wushanense seed which has been stratified for 90 days at 10/20 ℃ as experimental materials, with which we studied the effects of fluridone, gibberellin acid and temperature on E. wushanense germination. The results were suggested as shown below. ①Temperature, fluridone and gibberellin acid can both solely or jointly affect germination energy, germination rate significantly. Among those factors, fluridone affect germination rate and germination energy the most, followed by gibberellin acid and temperature. The highest germination rate under 4 ℃ and 10/20 ℃ stratification are 79.3%, 72.0% respectively, which resulted from treatment of F10GA300 and F20GA200 respectively. The highest germination energy under 4 ℃ and 10/20 ℃ stratification are 52.7%, 52.0%, respectively, which both resulted from F20GA200. ②Compared with 4 ℃ germination, seed could not germinate at 10/20 ℃ germination. Nontheless, application of fluridone can lead E. wushanense seeds to germinating.③The effects of gibberellin acid and interaction between gibberellin acid and fluridone significantly affect seed rotten rate during germination. In addition, soaking is another remarkable factor which increased seed rotten rate. As a result, it is feasible to promote E. wushanense dormancy releasing with gibberellin acid and fluridone associating with a proper germination temperature. Further, it is necessary taking actions to avoid seed rotten rate for saving E. wushanense nurseries'cost.


Assuntos
Epimedium/fisiologia , Germinação , Giberelinas/farmacologia , Dormência de Plantas/efeitos dos fármacos , Piridonas/farmacologia , Temperatura , Sementes/fisiologia
10.
Ann Bot ; 115(2): 293-301, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25471097

RESUMO

BACKGROUND AND AIMS: Dormancy in Lolium rigidum (annual ryegrass) seeds can be alleviated by warm stratification in the dark or by application of fluridone, an inhibitor of plant abscisic acid (ABA) biosynthesis via phytoene desaturase. However, germination and absolute ABA concentration are not particularly strongly correlated. The aim of this study was to determine if cytokinins of both plant and bacterial origin are involved in mediating dormancy status and in the response to fluridone. METHODS: Seeds with normal or greatly decreased (by dry heat pre-treatment) bacterial populations were stratified in the light or dark and in the presence or absence of fluridone in order to modify their dormancy status. Germination was assessed and seed cytokinin concentration and composition were measured in embryo-containing or embryo-free seed portions. KEY RESULTS: Seeds lacking bacteria were no longer able to lose dormancy in the dark unless supplied with exogenous gibberellin or fluridone. Although these seeds showed a dramatic switch from active cytokinin free bases to O-glucosylated storage forms, the concentrations of individual cytokinin species were only weakly correlated to dormancy status. However, cytokinins of apparently bacterial origin were affected by fluridone and light treatment of the seeds. CONCLUSIONS: It is probable that resident microflora contribute to dormancy status in L. rigidum seeds via a complex interaction between hormones of both plant and bacterial origin. This interaction needs to be taken into account in studies on endogenous seed hormones or the response of seeds to plant growth regulators.


Assuntos
Luz , Lolium , Microbiota/fisiologia , Dormência de Plantas , Piridonas/farmacologia , Sementes , Ácido Abscísico/antagonistas & inibidores , Citocininas/metabolismo , Herbicidas/farmacologia , Lolium/efeitos dos fármacos , Lolium/microbiologia , Lolium/fisiologia , Naproxeno/farmacologia , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Sementes/efeitos dos fármacos , Sementes/microbiologia , Sementes/fisiologia
11.
Plants (Basel) ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475494

RESUMO

Rhodotypos scandens (Thunb.) Makino is known to have a seed dispersal that is thick and stony (endocarp + seeds) and has potential as a landscaping tree seed. In several Rosaceae species, seeds are covered with a hard endocarp, making the internal seeds water-impermeable and germination difficult. Here, we analyzed the morphoanatomical traits and germination properties of R. scandens seeds. To identify ideal seed propagation conditions, we immersed R. scandens seeds in sulfuric acid for varying durations and subjected them to phytohormone (gibberellic acid A3 and fluridone) and a cold stratification (CS) (5 °C) treatment after endocarp removal (ER). The R. scandens stony seeds did not increase in mass by ≥25.0%. Following ER, the seed mass increased by ≥50.0% with water absorption when compared to the initial dry mass. Seed surfaces showed damage and cracks through scarification after 1 h of immersion in sulfuric acid, failing to germinate. A combination of ER, phytohormone treatment, and CS improved seed germination compared to ER alone (26.0 ± 5.3%). Overall, R. scandens seeds showed a dispersal with a hard endocarp from the parent plant, and a pre-treatment with ER, phytohormones, and CS was required for effective seed propagation.

12.
Sci Total Environ ; 867: 161535, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638995

RESUMO

Fluridone is a systemic herbicide used to control a range of invasive aquatic plants in irrigation systems, lake, and reservoirs. Since aquatic herbicides are more likely to have a hazardous impact on ecosystems than terrestrially applied herbicides, a risk assessment is needed to determine whether to expand or limit their use. The aim of this study was to investigate the developmental toxicity of fluridone using zebrafish. Diverse toxicological results were observed for the sub-lethal endpoints, including lack of hatching, reduced heartbeat and disturbed blood circulation through dysmorphic heart, and edema formation. Abnormal apoptosis was observed in the brain and yolk sac of fluridone-exposed larvae. A computational analysis was used to predict chemical properties in non-target organisms and revealed that fluridone was highly relevant in the cardiovascular system. Double transgenic zebrafish (fli1a:EGFP;cmlc2:dsRed) were used to evaluate the effects of fluridone on the cardiovascular system during embryonic development. Ectopic growth of sub-intestinal vessels and sprouting angiogenesis in the hindbrain region were highly inhibited. Additionally, essential genes involved in the VEGF signaling and heart development were differentially expressed in dose-dependent manner. Collectively, our toxicological findings in fluridone exposure highlight defects in the cardiovascular development causing embryonic lethality that could damage aquatic communities and natural ecosystems.


Assuntos
Sistema Cardiovascular , Herbicidas , Poluentes Químicos da Água , Animais , Peixe-Zebra , Herbicidas/toxicidade , Ecossistema , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade , Larva
13.
Plants (Basel) ; 11(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35448751

RESUMO

The phytohormone abscisic acid (ABA) inhibits seed germination and seedling growth and is required for the inception of dormancy. Xanthoxal (also known as xanthoxin) is the first specific biosynthetic precursor of ABA. In this study, a modified method to produce xanthoxal is described. I tested the ability of either xanthoxal or ABA to reinstate dormancy in dormant red rice seeds whose dormancy was broken by fluridone (an inhibitor of the synthesis of carotenoids and, subsequently, ABA). Xanthoxal was shown to have a stronger inhibitory effect on germination than ABA when exogenously provided. Although this could indicate an additional effect of xanthoxal above that expected if xanthoxal were simply converted to ABA in the seed, alternative hypotheses cannot be excluded. One alternative is that exogenous xanthoxal may be trapped inside the cells to a greater extent than exogenous ABA, resulting in an intracellular level of ABA higher than that reached with a direct application of ABA. As a further alternative, exogenous xanthoxal may interfere with ABA action in the apoplast. In this study, following germination, early seedling growth was delayed only if ABA was applied. This suggests that inhibition of early seedling growth, but not of germination, requires extracellular ABA.

14.
Aquat Toxicol ; 244: 106098, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35121564

RESUMO

Invasive aquatic plants are a widespread problem in United States' waterways, and aquatic herbicide treatments are a common tool used in their management. Fluridone is an active ingredient in aquatic herbicides used globally to control aquatic plants. In order to be effective, fluridone requires a long contact time with plants resulting in extended exposure to non-target organisms. While there has been limited studies exploring the effects of fluridone on non-target aquatic organisms, the effects of subchronic commercial fluridone exposure at concentrations representative of operational use rates for plant management on fish are poorly understood. Therefore, we conducted a series of three exposure experiments using environmentally relevant concentrations on different life stages of the fathead minnow (Pimephales promelas). We exposed fathead minnows to a commercial fluridone formulation, Spritflo®, at environmentally relevant concentrations of 0.00, 3.00, 12.00, 25.00, and 100.00 µg/L. Exposure times included subchronic periods up to 35 days and a trans-generation exposure of 65 days, which is a likely residence time of fluridone when applied for plant management. Following 30 days of fluridone exposure, adult male fish had an increased presence of nuptial tubercules, an indicator of endocrine disruption, and an enlarged liver compared to the control. Additionally, we conducted larval fish behavior experiments and found fluridone exposure negatively affected prey capture ability, locomotion, and position preference. Our findings suggest fluridone treatment concentrations used in aquatic plant management do not directly cause mortality in fathead minnows, though sub-lethal effects observed could cause a decline in biological fitness and pose potential ecological implications.


Assuntos
Cyprinidae , Herbicidas , Poluentes Químicos da Água , Animais , Herbicidas/toxicidade , Masculino , Piridonas , Poluentes Químicos da Água/toxicidade
15.
Environ Pollut ; 265(Pt A): 114750, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32454379

RESUMO

Fluridone is widely used in ambient water bodies to control the spread of invasive aquatic plants. While the ability of fluridone to control aquatic weeds such as water hyacinth is well reported, an improved understanding of fluridone persistence in water and sediment is still needed to determine potential residues of fluridone in the water column and bed sediment of ambient water bodies. In this study, experiments were conducted over a three-month period to examine the degradation of fluridone in saturated sediment and water under various levels of UV-light (0-1000 µW/cm2), and temperature (4-40 °C). Results showed a large decrease in the half-life of fluridone in water with increasing UV light intensity, but in saturated sediment the impact of UV light exposure on fluridone degradation was minimal. At low temperature (4 °C), the degradation of fluridone in both water and sediment was minimal. At elevated temperature (20-40 °C), fluridone degradation was increased in water and sediment. Additionally, the persistence of fluridone in sediment was reduced by increasing sand content in the sediment matrix. Possible fluridone transport through the subsurface was estimated over a range of initial concentrations, groundwater velocities, fluridone half-lives, and fluridone sorption coefficients which may be seen in a field environment. A form of the Ogata-Banks equation which accounts for 1st order decay was used for describing the dispersion of fluridone, while a related equation from Bear, 1979 was utilized to quantify advection. In all tested scenarios, maximum transport was less than 10 m over one month of observation. Results of this study will improve our existing understanding of fluridone persistence and in water and sediment.


Assuntos
Água Subterrânea , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Piridonas , Temperatura , Raios Ultravioleta , Água/análise
16.
Front Plant Sci ; 11: 858, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636865

RESUMO

Moss paraphyllia, the trichome-like or foliose structures on moss stem surfaces, are usually treated as epidermal outgrowths. However, in some taxa of the moss families Leskeaceae, Neckeraceae, and Amblystegiaceae their distribution along the stem is consistently correlated with parts of the stem surface near branch primordia. In other moss families, Climaciaceae, Hylocomiaceae, and Pseudoleskeaceae the specific paraphyllia-generating epidermal layer produces paraphyllia evenly all along the stem. These results suggest that there are at least two different types of regulation of paraphyllia development; however, both of them may be involved in the morphogenesis of paraphyllia in some families, for example in the Thuidiaceae. Exogenous abscisic acid treatment consistently increases the number of paraphyllia of the Leskea-type, and it also induces the development of proximal branch leaves that normally do not develop a lamina above the stem surface. This fact supports conclusions regarding the homology of the Leskea-type of paraphyllia with leaves.

17.
Genes (Basel) ; 11(12)2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276690

RESUMO

In angiosperms, meiotic failure coupled with the formation of genetically unreduced gametophytes in ovules (apomeiosis) constitute major components of gametophytic apomixis. These aberrant developmental events are generally thought to be caused by mutation. However, efforts to locate the responsible mutations have failed. Herein, we tested a fundamentally different hypothesis: apomeiosis is a polyphenism of meiosis, with meiosis and apomeiosis being maintained by different states of metabolic homeostasis. Microarray analyses of ovules and pistils were used to differentiate meiotic from apomeiotic processes in Boechera (Brassicaceae). Genes associated with translation, cell division, epigenetic silencing, flowering, and meiosis characterized sexual Boechera (meiotic). In contrast, genes associated with stress responses, abscisic acid signaling, reactive oxygen species production, and stress attenuation mechanisms characterized apomictic Boechera (apomeiotic). We next tested whether these metabolic differences regulate reproductive mode. Apomeiosis switched to meiosis when premeiotic ovules of apomicts were cultured on media that increased oxidative stress. These treatments included drought, starvation, and H2O2 applications. In contrast, meiosis switched to apomeiosis when premeiotic pistils of sexual plants were cultured on media that relieved oxidative stress. These treatments included antioxidants, glucose, abscisic acid, fluridone, and 5-azacytidine. High-frequency apomeiosis was initiated in all sexual species tested: Brassicaceae, Boechera stricta, Boechera exilis, and Arabidopsis thaliana; Fabaceae, Vigna unguiculata; Asteraceae, Antennaria dioica. Unreduced gametophytes formed from ameiotic female and male sporocytes, first division restitution dyads, and nucellar cells. These results are consistent with modes of reproduction and types of apomixis, in natural apomicts, being regulated metabolically.


Assuntos
Genes de Plantas/genética , Células Germinativas Vegetais/fisiologia , Magnoliopsida/genética , Apomixia/genética , Brassicaceae/genética , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Meiose/genética , Óvulo Vegetal/genética , Estresse Oxidativo/genética , Reprodução/genética
18.
Vet Parasitol ; 265: 19-23, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30638516

RESUMO

Pharmacological options to treat canine babesiosis caused by Babesia gibsoni, are limited. To address this challenge, screening for novel drug candidates and drug targets against B. gibsoni is urgently needed. In this study, we explored the inhibitory effects of two phytohormone inhibitors, fluridone (FLU) and inabenfide (INA), against B. gibsoni in vitro. The half-maximal inhibitory concentration (IC50) values of FLU and INA against B. gibsoni were 60.6 ± 3.4 and 4.3 ± 0.3 µM, respectively. Parasitemia and viability at 24, 48, and 72 h after FLU and INA treatments were significantly lower than those in the control group. The cytotoxicity of FLU and INA was evaluated using the dog-derived Madin-Darby canine kidney (MDCK) cell line; both FLU and INA were less toxic to the MDCK cells than to the control cells. The selectivity index of FLU and INA were higher than 16.5 and 232.6, respectively. In summary, the present study demonstrated that FLU and INA were effective against B. gibsoni infection in vitro and that these compounds might have potential as candidate drugs for the treatment of B. gibsoni.


Assuntos
Antiprotozoários/farmacologia , Babesia/efeitos dos fármacos , Ácidos Isonicotínicos/farmacologia , Piridonas/farmacologia , Animais , Antiprotozoários/química , Ácidos Isonicotínicos/química , Piridonas/química
19.
AMB Express ; 9(1): 90, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227931

RESUMO

Fluridone is widely used as a herbicide for controlling invasive aquatic plants such as hydrilla in surface water bodies. When applied on surface waters fluridone can attach to bed sediment, requiring rigorous extraction methods prior to analysis. Currently, very limited information exists in terms of fluridone residue detection in delta sediment. In this study, we researched fluridone detection in both water and sediment. To extract fluridone from sediment, here we have tested two extraction methods: (1) a rotavapor method (RM); and (2) a quick, easy, cheap, effective, rugged and safe (QuEChERS) method (QM). The extraction results of RM were compared with those of QM. To quantify fluridone concentrations in extracts, a high-performance liquid chromatography (HPLC)-UV detector was used. HPLC separation was achieved using an Allure C18 5 µm 150 × 4.6 mm column with a mobile phase composed of acetonitrile and water (60:40, v/v). The UV detector was operated at 237 nm. The method was tested and validated using a series of water and sediment samples taken from Sacramento-San Joaquin Delta in California. The average recovery of fluridone was 73% and 78% using RM and QM respectively. The proposed method can be used for testing fluridone in water and sediment samples.

20.
Insects ; 10(2)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791475

RESUMO

Fluridone (FLU) was a pyrrolidone herbicide that was used for selective weeding in wheat, rice, corn and pasture and was also a biosynthesis inhibitor of abscisic acid (ABA), a significant plant hormone. ABA-promoted callose deposition facilitates rice resistance to pests but whether FLU had the opposite influence was unknown. The effects of FLU on the feeding behavior of the brown planthopper (Nilaparvata lugens Stål; BPH), after feeding with rice plants treated with FLU, were studied, using an electrical penetration graph (EPG). For susceptible rice cultivar (TN1), the duration for which BPH sucked phloem sap (N4 wave duration) after 15 µmol/L of FLU treatment was longer than that of the control but decreased after 30 and 60 µmol/L FLU treatments. Fecundity of BPH treated with 15 µmol/L FLU had no significant change, while the deposition area of callose was significantly decreased. For moderately-resistant rice cultivar (IR42), no differences in BPH feeding behavior and fecundity were observed but the deposition area of callose declined after treated with 15 µmol/L of FLU. These findings suggested that a low concentration of FLU (15 µmol/L) promoted BPH feeding behavior in TN1 but not in IR42 and the response in IR42 appeared to be more complicated, which provided supplementary evidence that ABA promoted plant resistance to BPH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA