RESUMO
Due to the urgent need for a transition to sustainable, zero-waste green technology, the extraction of bioactives from food and agricultural by-products and waste has garnered increasing interest. Traditional extraction techniques often involve using organic solvents, which are associated with environmental and health risks. Natural deep eutectic solvents (NADESs) have emerged as a promising green alternative, offering advantages such as low toxicity, biodegradability, and the ability to dissolve a wide range of biomolecules. This review provides a comprehensive overview of recent trends in the application of NADESs for extracting bioactive compounds from sustainable sources. The review explains the composition and principles of preparation and highlights various applications of NADESs in extracting different classes of bioactive compounds, emphasizing their potential to revolutionize extraction processes. By summarizing the latest advancements and trends, this review aims to support research and industrial applications of NADESs, promoting more sustainable and efficient extraction methods in the food and agricultural sectors.
Assuntos
Agricultura , Solventes Eutéticos Profundos , Agricultura/métodos , Solventes Eutéticos Profundos/química , Resíduos/análise , Química Verde/métodos , Alimentos , Solventes/química , Produtos Biológicos/químicaRESUMO
Food waste and byproducts (FWBP) are a global issue impacting economies, resources, and health. Recycling and utilizing these wastes, due to processing and economic constraints, face various challenges. However, valuable components in food waste inspire efficient solutions like active intelligent packaging. Though research on this is booming, its material selectivity, effectiveness, and commercial viability require further analysis. This paper categorizes FWBP and explores their potential for producing packaging from both animal and plant perspectives. In addition, the preparation/fabrication methods of these films/coatings have also been summarized comprehensively, focusing on the advantages and disadvantages of these methods and their commercial adaptability. Finally, the functions of these films/coatings and their ultimate performance in protecting food (meat, dairy products, fruits, and vegetables) are also reviewed systematically. FWBP provide a variety of methods for the application of edible films, including being made into coatings, films, and fibers for food preservation, or extracting active substances directly or indirectly from them (in the form of encapsulation) and adding them to packaging to endow them with functions such as barrier, antibacterial, antioxidant, and pH response. In addition, the casting method is the most commonly used method for producing edible films, but more film production methods (extrusion, electrospinning, 3D printing) need to be tried to make up for the shortcomings of the current methods. Finally, researchers need to conduct more in-depth research on various active compounds from FWBP to achieve better application effects and commercial adaptability.