Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(13): e2322955121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502696

RESUMO

In ecological contexts, it is conventionally expected that increased food availability would boost consumption, particularly when animals prioritize maximizing their food intake. This paper challenges this conventional wisdom by conducting an in-depth game-theoretic analysis of a basic foraging model, in which animals must choose between intensive food searching as producers or moderate searching while relying on group members as scroungers. Our study reveals that, under certain circumstances, increasing food availability can amplify the inclination to scrounge to such an extent that it leads to a reduction in animals' food consumption compared to scenarios with limited food availability. We further illustrate a similar phenomenon in a model capturing free-riding dynamics among workers in a company. We demonstrate that, under certain reward mechanisms, enhancing workers' production capacities can inadvertently trigger a surge in free-riding behavior, leading to both diminished group productivity and reduced individual payoffs. Our findings provide intriguing insights into the complex relationships between individual and group performances, as well as the intricate mechanisms underlying the emergence of free-riding behavior in competitive environments.


Assuntos
Comportamento Alimentar , Comportamento Social , Animais
2.
Proc Natl Acad Sci U S A ; 121(14): e2318521121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38551832

RESUMO

During foraging behavior, action values are persistently encoded in neural activity and updated depending on the history of choice outcomes. What is the neural mechanism for action value maintenance and updating? Here, we explore two contrasting network models: synaptic learning of action value versus neural integration. We show that both models can reproduce extant experimental data, but they yield distinct predictions about the underlying biological neural circuits. In particular, the neural integrator model but not the synaptic model requires that reward signals are mediated by neural pools selective for action alternatives and their projections are aligned with linear attractor axes in the valuation system. We demonstrate experimentally observable neural dynamical signatures and feasible perturbations to differentiate the two contrasting scenarios, suggesting that the synaptic model is a more robust candidate mechanism. Overall, this work provides a modeling framework to guide future experimental research on probabilistic foraging.


Assuntos
Comportamento de Escolha , Recompensa , Encéfalo , Aprendizagem , Plasticidade Neuronal , Tomada de Decisões
3.
Proc Natl Acad Sci U S A ; 121(15): e2317618121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557193

RESUMO

Throughout evolution, bacteria and other microorganisms have learned efficient foraging strategies that exploit characteristic properties of their unknown environment. While much research has been devoted to the exploration of statistical models describing the dynamics of foraging bacteria and other (micro-) organisms, little is known, regarding the question of how good the learned strategies actually are. This knowledge gap is largely caused by the absence of methods allowing to systematically develop alternative foraging strategies to compare with. In the present work, we use deep reinforcement learning to show that a smart run-and-tumble agent, which strives to find nutrients for its survival, learns motion patterns that are remarkably similar to the trajectories of chemotactic bacteria. Strikingly, despite this similarity, we also find interesting differences between the learned tumble rate distribution and the one that is commonly assumed for the run and tumble model. We find that these differences equip the agent with significant advantages regarding its foraging and survival capabilities. Our results uncover a generic route to use deep reinforcement learning for discovering search and collection strategies that exploit characteristic but initially unknown features of the environment. These results can be used, e.g., to program future microswimmers, nanorobots, and smart active particles for tasks like searching for cancer cells, micro-waste collection, or environmental remediation.


Assuntos
Aprendizagem , Reforço Psicológico , Modelos Estatísticos , Movimento (Física) , Bactérias
4.
J Neurosci ; 44(23)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38631914

RESUMO

Foraging decisions involve assessing potential risks and prioritizing food sources, which can be challenging when confronted with changing and conflicting circumstances. A crucial aspect of this decision-making process is the ability to actively overcome defensive reactions to threats and focus on achieving specific goals. The ventral pallidum (VP) and basolateral amygdala (BLA) are two brain regions that play key roles in regulating behavior motivated by either rewards or threats. However, it is unclear whether these regions are necessary in decision-making processes involving competing motivational drives during conflict. Our aim was to investigate the requirements of the VP and BLA for foraging choices in conflicts involving overcoming defensive responses. Here, we used a novel foraging task and pharmacological techniques to inactivate either the VP or BLA or to disconnect these brain regions before conducting a conflict test in male rats. Our findings showed that BLA is necessary for making risky choices during conflicts, whereas VP is necessary for invigorating the drive to obtain food, regardless of the presence of conflict. Importantly, our research revealed that the connection between VP and BLA is critical in controlling risky food-seeking choices during conflict situations. This study provides a new perspective on the collaborative function of VP and BLA in driving behavior, aimed at achieving goals in the face of dangers.


Assuntos
Tonsila do Cerebelo , Prosencéfalo Basal , Recompensa , Animais , Masculino , Ratos , Prosencéfalo Basal/fisiologia , Tonsila do Cerebelo/fisiologia , Conflito Psicológico , Complexo Nuclear Basolateral da Amígdala/fisiologia , Assunção de Riscos , Ratos Long-Evans , Comportamento Alimentar/fisiologia , Medo/fisiologia
5.
Ecol Lett ; 27(3): e14385, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480959

RESUMO

Nonrandom foraging can cause animals to aggregate in resource dense areas, increasing host density, contact rates and pathogen transmission, but when should nonrandom foraging and resource distributions also have density-independent effects? Here, we used a factorial experiment with constant resource and host densities to quantify host contact rates across seven resource distributions. We also used an agent-based model to compare pathogen transmission when host movement was based on random foraging, optimal foraging or something between those states. Nonrandom foraging strongly depressed contact rates and transmission relative to the classic random movement assumptions used in most epidemiological models. Given nonrandom foraging in the agent-based model and experiment, contact rates and transmission increased with resource aggregation and average distance to resource patches due to increased host movement in search of resources. Overall, we describe three density-independent mechanisms by which host behaviour and resource distributions alter contact rate functions and pathogen transmission.


Assuntos
Parasitos , Animais , Comportamento Alimentar , Movimento
6.
Am Nat ; 203(4): 513-527, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489781

RESUMO

AbstractThe survival of an animal depends on its success as a forager, and understanding the adaptations that result in successful foraging strategies is an enduring endeavour of behavioral ecology. Random walks are one of the primary mathematical descriptions of foraging behavior. Power law distributions are often used to model random walks, as they can characterize a wide range of behaviors, including Lévy walks. Empirical evidence indicates the prevalence and efficiency of Lévy walks as a foraging strategy, and theoretical work suggests an evolutionary origin. However, previous evolutionary models have assumed a priori that move lengths are drawn from a power law or other families of distributions. Here, we remove this restriction with a model that allows for the evolution of any distribution. Instead of Lévy walks, our model unfailingly results in the evolution of intermittent search, a random walk composed of two disjoint modes-frequent localized walks and infrequent extensive moves-that consistently outcompeted Lévy walks. We also demonstrate that foraging using intermittent search may resemble a Lévy walk because of interactions with the resources within an environment. These extrinsically generated Lévy-like walks belie an underlying behavior and may explain the prevalence of Lévy walks reported in the literature.


Assuntos
Ecologia , Modelos Biológicos , Animais
7.
Am Nat ; 203(1): 1-13, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38207143

RESUMO

AbstractAverage concentrations of biota in the ocean are low, presenting a critical problem for ocean consumers. High-resolution sampling, however, demonstrates that the ocean is peppered with narrow hot spots of organism activity. To determine whether these resource aggregations could provide a significant solution to the ocean's food paradox, a conceptual graphical model was developed that facilitates comparisons of the role of patchiness in predator-prey interactions across taxa, size scales, and ecosystems. The model predicts that predators are more reliant on aggregated resources for foraging success when the average concentrations of resources is low, the size discrepancy between predator and prey is great, the predator has a high metabolic rate, and/or the predator's foraging time is limited. Size structure differences between marine and terrestrial food webs and a vast disparity in the overall mean density of their resources lead to the conclusion that high-density aggregations of prey are much more important to the survival of oceanic predators than their terrestrial counterparts, shaping the foraging decisions that are available to an individual and setting the stage on which evolutionary pressures can act. Patches of plenty may be rare, but they play an outsized role in behavioral, ecological, and evolutionary processes, particularly in the sea.


Assuntos
Ecossistema , Comportamento Predatório , Animais , Cadeia Alimentar , Oceanos e Mares , Biota
8.
Am Nat ; 203(1): 109-123, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38207133

RESUMO

AbstractSampling, investing time or energy to learn about the environment, allows organisms to track changes in resource distribution and quality. The use of sampling is predicted to change as a function of energy expenditure, food availability, and starvation risk, all of which can vary both within and among individuals. We studied sampling behavior in a field study with black-capped chickadees (Poecile atricapillus) and show that individuals adjust their use of sampling as a function of ambient temperature (a proxy for energy expenditure), the presence of an alternative food source (yes or no, a proxy for risk of energy shortfall), and their interaction, as predicted by models of optimal sampling. We also observed repeatable differences in sampling. Some individuals consistently sampled more, and individuals that sampled more overall also had a higher annual survival. These results are consistent with among-individual differences in resource acquisition (e.g., food caches or dominance-related differences in priority access to feeders), shaping among-individual differences in both sampling and survival, with greater resource acquisition leading to both higher sampling and higher survival. Although this explanation requires explicit testing, it is in line with several recent studies suggesting that variation in resource acquisition is a key mechanism underlying animal personality.


Assuntos
Aves Canoras , Humanos , Animais , Aprendizagem
9.
Proc Biol Sci ; 291(2019): 20240040, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38531398

RESUMO

Interactions between environmental stressors may contribute to ongoing pollinator declines, but have not been extensively studied. Here, we examined the interaction between the agricultural fungicide Pristine (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) and high temperatures on critical honeybee behaviours. We have previously shown that consumption of field-realistic levels of this fungicide shortens worker lifespan in the field and impairs associative learning performance in a laboratory-based assay. We hypothesized that Pristine would also impair homing and foraging behaviours in the field, and that an interaction with hot weather would exacerbate this effect. Both field-relevant Pristine exposure and higher air temperatures reduced the probability of successful return on their own. Together, the two factors synergistically reduced the probability of return and increased the time required for bees to return to the hive. Pristine did not affect the masses of pollen or volumes of nectar or water brought back to the hive by foragers, and it did not affect the ratio of forager types in a colony. However, Pristine-fed bees brought more concentrated nectar back to the hive. As both agrochemical usage and heat waves increase, additive and synergistic negative effects may pose major threats to pollinators and sustainable agriculture.


Assuntos
Fungicidas Industriais , Abelhas , Animais , Néctar de Plantas , Comportamento de Retorno ao Território Vital , Temperatura , Condicionamento Clássico
10.
Proc Biol Sci ; 291(2023): 20240138, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38808448

RESUMO

A leading hypothesis for the evolution of large brains in humans and other species is that a feedback loop exists whereby intelligent animals forage more efficiently, which results in increased energy intake that fuels the growth and maintenance of large brains. We test this hypothesis for the first time with high-resolution tracking data from four sympatric, frugivorous rainforest mammal species (42 individuals) and drone-based maps of their predominant feeding trees. We found no evidence that larger-brained primates had more efficient foraging paths than smaller brained procyonids. This refutes a key assumption of the fruit-diet hypothesis for brain evolution, suggesting that other factors such as temporal cognition, extractive foraging or sociality have been more important for brain evolution.


Assuntos
Encéfalo , Dieta , Comportamento Alimentar , Animais , Encéfalo/fisiologia , Dieta/veterinária , Evolução Biológica , Frutas , Floresta Úmida , Primatas/fisiologia
11.
Proc Biol Sci ; 291(2014): 20232583, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38196361

RESUMO

Predator-induced changes in prey foraging can influence community dynamics by increasing the abundance of basal resources via a trait-mediated trophic cascade. The strength of these cascades may be altered by eco-evolutionary relationships between predators and prey, but the role of basal resources has received limited attention. We hypothesized that trait-mediated trophic cascade strength may be shaped by selection from trophic levels above and below prey. Field and laboratory experiments used snails (Nucella lapillus) from two regions in the Gulf of Maine (GoM) that vary in basal resource availability (e.g. mussels), seawater temperature, and contact history with the invasive green crab, Carcinus maenas. In field and laboratory experiments, Nucella from both regions foraged on mussels in the presence or absence of green crab risk cues. In the field, Nucella from the northern GoM, where mussels are scarce, were less responsive to risk cues and more responsive to seawater temperature than southern Nucella. In the lab, however, northern Nucella foraged and grew more than southern snails in the presence of risk, but foraging and growth were similar in the absence of risk. We suggest that adaptation to basal resource availability may shape geographical variation in the strength of trait-mediated trophic cascades.


Assuntos
Gastrópodes , Animais , Evolução Biológica , Sinais (Psicologia) , Geografia , Laboratórios
12.
Proc Biol Sci ; 291(2015): 20231936, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38228174

RESUMO

Novel behaviours are the raw material of cultural evolution, yet we do not have a clear picture of when they are likely to arise. I use a state-dependent model to examine how individual age and energy reserves interact with the abundance of known and novel prey to promote dietary innovation (incorporating a new food item into the diet). I measure innovativeness as persistence in attempting to capture novel prey. I find a trend towards greater persistence among younger individuals. Decreased abundance of known prey and increased abundance of novel prey also favour persistence. However, many exceptions to these trends occur. These exceptions are critical because they may explain inconsistencies among studies of animal innovation. Care must be taken in experiments to control for multiple factors relevant to an animal's energy budget and foraging opportunities. We may learn more about innovation in experimental contexts by (i) manipulating the abundance of novel and familiar food resources, (ii) directly measuring animal age and condition, and-where possible-(iii) fitting nonlinear models to innovative behaviour. Results indicate that selection for persistence may also favour neophilia.


Assuntos
Dieta , Comportamento Predatório , Humanos , Animais , Alimentos
13.
Proc Biol Sci ; 291(2018): 20232950, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38471559

RESUMO

Evolutionary biologists have long been interested in parsing out the roles of genetics, plasticity and their interaction on adaptive trait divergence. Since males and females often have different ecological and reproductive roles, separating how their traits are shaped by interactions between their genes and environment is necessary and important. Here, we disentangle the sex-specific effects of genetic divergence, developmental plasticity, social learning and contextual plasticity on foraging behaviour in Trinidadian guppies (Poecilia reticulata) adapted to high- or low-predation habitats. We reared second-generation siblings from both predation regimes with or without predator chemical cues, and with adult conspecifics from either high- or low-predation habitats. We then quantified their foraging behaviour in water with and without predator chemical cues. We found that high-predation guppies forage more efficiently than low-predation guppies, but this behavioural difference is context-dependent and shaped by different mechanisms in males and females. Higher foraging efficiency in high-predation females is largely genetically determined, and to a smaller extent socially learned from conspecifics. However, in high-predation males, higher foraging efficiency is plastically induced by predator cues during development. Our study demonstrates sex-specific differences in genetic versus plastic responses in foraging behaviour, a trait of significance in organismal fitness and ecosystem dynamics.


Assuntos
Poecilia , Aprendizado Social , Animais , Feminino , Masculino , Ecossistema , Poecilia/fisiologia , Comportamento Predatório , Evolução Biológica
14.
Proc Biol Sci ; 291(2017): 20222584, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38378153

RESUMO

All mobile organisms forage for resources, choosing how and when to search for new opportunities by comparing current returns with the average for the environment. In humans, nomadic lifestyles favouring exploration have been associated with genetic mutations implicated in attention deficit hyperactivity disorder (ADHD), inviting the hypothesis that this condition may impact foraging decisions in the general population. Here we tested this pre-registered hypothesis by examining how human participants collected resources in an online foraging task. On every trial, participants chose either to continue to collect rewards from a depleting patch of resources or to replenish the patch. Participants also completed a well-validated ADHD self-report screening assessment at the end of sessions. Participants departed resource patches sooner when travel times between patches were shorter than when they were longer, as predicted by optimal foraging theory. Participants whose scores on the ADHD scale crossed the threshold for a positive screen departed patches significantly sooner than participants who did not meet this criterion. Participants meeting this threshold for ADHD also achieved higher reward rates than individuals who did not. Our findings suggest that ADHD attributes may confer foraging advantages in some environments and invite the possibility that this condition may reflect an adaptation favouring exploration over exploitation.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Recompensa , Estilo de Vida , Autorrelato
15.
Proc Biol Sci ; 291(2027): 20241001, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39079662

RESUMO

Flight plays a crucial role in the fitness of insect pollinators, such as bumblebees. Despite their relatively large body size compared with their wings, bumblebees can fly under difficult ambient conditions, such as cooler temperatures. While their body size is often positively linked to their foraging range and flight ability, the influence of age remains less explored. Here, we studied the flight performance (distance, duration and speed) of ageing bumblebee workers using tethered flight mills. Additionally, we measured their intertegular distance and dry mass as proxies for their body size. We found that the flight distance and duration were predominantly influenced by age, challenging assumptions that age does not play a key role in foraging and task allocation. From the age of 7 to 14 days, flight distance and duration increased sixfold and fivefold, respectively. Conversely, the body size primarily impacted the maximum and average flight speed of workers. Our findings indicate that age substantially influences the flight distance and duration in bumblebee workers, affecting foraging performance and potentially altering task allocation strategies. This underscores the importance of considering individual age and physiological changes alongside body size/mass in experiments involving bumblebee workers.


Assuntos
Tamanho Corporal , Voo Animal , Animais , Abelhas/fisiologia , Fatores Etários
16.
Proc Biol Sci ; 291(2023): 20240424, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38807520

RESUMO

Many theoretical treatments of foraging use energy as currency, with carbohydrates and lipids considered interchangeable as energy sources. However, herbivores must often synthesize lipids from carbohydrates since they are in short supply in plants, theoretically increasing the cost of growth. We tested whether a generalist insect herbivore (Locusta migratoria) can improve its growth efficiency by consuming lipids, and whether these locusts have a preferred caloric intake ratio of carbohydrate to lipid (C : L). Locusts fed pairs of isocaloric, isoprotein diets differing in C and L consistently selected a 2C : 1L target. Locusts reared on isocaloric, isoprotein 3C : 0L diets attained similar final body masses and lipid contents to locusts fed the 2C : 1L diet, but they ate more and had a ~12% higher metabolic rate, indicating an energetic cost for lipogenesis. These results demonstrate that some animals can selectively regulate carbohydrate-to-lipid intake and that consumption of dietary lipids can improve growth efficiency.


Assuntos
Carboidratos da Dieta , Gafanhotos , Animais , Gafanhotos/fisiologia , Gafanhotos/crescimento & desenvolvimento , Gorduras na Dieta , Dieta/veterinária , Metabolismo Energético , Metabolismo dos Lipídeos , Ingestão de Energia , Herbivoria
17.
Mol Ecol ; 33(4): e17245, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38124452

RESUMO

Optimal Foraging Theory (OFT) predicts that a population's trophic niche expansion should occur in periods of food scarcity as individuals begin to opportunistically exploit sub-optimal food items. However, the Niche Variation Hypothesis (NVH) posits that niche widening may result from increased among-individual differentiation due to food partitioning to avoid competition. We tested these hypotheses through a DNA metabarcoding study of the Sardinian Warbler (Curruca melanocephala) diet over a year. We used null models and the decomposition of beta diversity on among-individual dietary differentiation to infer the mechanisms driving the population's niche variation. Warblers fed frequently on berries, with a peak in late summer and, to a lesser extent, in autumn. Their diet also included a wide range of arthropods, with their prevalence varying among seasons. Consistent with OFT, the population's niche width was narrower in spring/summer when the population was strongly specialized in berries. In winter, the population's niche expanded, possibly reflecting seasonal declines in food abundance. As predicted by NVH, among-individual differentiation tended to be higher in winter, but this was mainly due to increased differences in dietary richness rather than to the partitioning of resources. Overall, our results suggest that within-individual niche does not increase in lean periods, and instead, individuals adopt either a more opportunistic or more specialized foraging strategy. Increased competition in periods of scarcity may help explain such patterns, but instead of showing increased food partitioning as expected from NVH, it may reflect OFT mechanisms on individuals with differential competitive ability to access better food resources.


Assuntos
Aves Canoras , Humanos , Animais , Estações do Ano , Código de Barras de DNA Taxonômico , Dieta , Alimentos , Ecossistema
18.
Insect Mol Biol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115320

RESUMO

The molecular bases of animal behaviour are intricate due to the pleiotropic nature of behaviour-modulating genes, which are often expressed across multiple tissues. The foraging gene (for) encodes a cGMP-dependent protein kinase (PKG), pivotal in regulating downstream target proteins through phosphorylation. In insects, for has been implicated in various behavioural contexts and physiological processes regarding searching for food. Rhodnius prolixus, a hematophagous bug that transmits Trypanosoma cruzi, the causative agent of Chagas disease, exhibits specific activity patterns associated with its hematophagous behaviour. Our previous work demonstrated a correlation between locomotor activity profiles and the expression of Rpfor, suggesting its involvement in modulating triatomine locomotion. In this study, we investigated the impact of Rpfor knockdown on locomotory activity, host-seeking behaviour, feeding performance and lipid metabolism in R. prolixus nymphs. Using RNA interference, we achieved a significant reduction of Rpfor expression in both the brain and fat body of R. prolixus nymphs. Knocked-down nymphs exhibited diminished non-oriented locomotory activity compared with controls, without altering the characteristic bimodal pattern of activity. Additionally, they displayed an increased tendency to approach a host, suggesting a role for Rpfor in modulating host-seeking behaviour. Feeding performance and lipid metabolism remained unaffected by Rpfor knockdown. Our findings underscore the multifaceted role of Rpfor in modulating locomotor activity and host-seeking behaviour in R. prolixus nymphs, shedding light on the molecular mechanisms underlying their hematophagous behaviour and potential implications for disease transmission. Further research is necessary to elucidate the intricate interplay between Rpfor expression, behaviour and physiological processes in triatomine bugs.


As bases moleculares do comportamento animal são complexas devido à natureza pleiotrópica dos genes envolvidos na sua modulação, normalmente expressos em múltiplos tecidos. O gene foraging (for) codifica para uma proteína quinase dependente de cGMP, fundamental para a regulação de proteínas alvo via fosforilação. Em insetos, o gene for tem sido associado a vários contextos comportamentais e processos fisiológicos relacionados com forrageamento. Rhodnius prolixus, um inseto hematófago que transmite Trypanosoma cruzi, o agente causativo da doença de Chagas, exibe padrões de atividade específicos associados com o seu comportamento hematófago. Em um estudo anterior, demonstramos uma correlação entre os perfis de atividade locomotora e a expressão de Rpfor, sugerindo o seu envolvimento na modulação da locomoção de triatomíneos. No presente estudo, investigamos o impacto do silenciamento de Rpfor na atividade locomotora, no comportamento de busca por hospedeiro, na performance alimentar, e no metabolismo de lipídeos em ninfas de R. prolixus. Através da técnica de RNA de interferência, obtivemos uma redução significativa da expressão do gene Rpfor no cérebro e no corpo gorduroso de R. prolixus. Insetos silenciados exibiram uma redução da atividade locomotora não orientada em comparação com controles, sem alterações no padrão bimodal da atividade. Adicionalmente, os insetos apresentaram um aumento no comportamento de busca por hospedeiro, sugerindo um papel para o Rpfor na sua modulação. A performance alimentar e o metabolismo de lipídeos não foram alterados pelo silenciamento do gene. Nossas descobertas ressaltam o papel multifuncional do gene Rpfor na modulação da atividade locomotora e no comportamento de busca por hospedeiro em R. prolixus, ampliando o conhecimento sobre os mecanismos moleculares relacionados ao seu comportamento hematófago e potenciais implicações para a transmissão de doenças. Estudos adicionais são necessários para elucidar a intrincada interação entre expressão, comportamento e processos fisiológicos de Rpfor em insetos triatomíneos.

19.
Glob Chang Biol ; 30(1): e17063, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273536

RESUMO

Urbanization has significant impacts on wildlife and ecosystems and acts as an environmental filter excluding certain species from local ecological communities. Specifically, it may be challenging for some animals to find enough food in urban environments to achieve a positive energy balance. Because urban environments favor small-sized bats with low energy requirements, we hypothesized that common noctules (Nyctalus noctula) acquire food at a slower rate and rely less on conspecifics to find prey in urban than in rural environments due to a low food abundance and predictable distribution of insects in urban environments. To address this, we estimated prey sizes and measured prey capture rates, foraging efforts, and the presence of conspecifics during hunting of 22 common noctule bats equipped with sensor loggers in an urban and rural environment. Even though common noctule bats hunted similar-sized prey in both environments, urban bats captured prey at a lower rate (mean: 2.4 vs. 6.3 prey attacks/min), and a lower total amount of prey (mean: 179 vs. 377 prey attacks/foraging bout) than conspecifics from rural environments. Consequently, the energy expended to capture prey was higher for common noctules in urban than in rural environments. In line with our prediction, urban bats relied less on group hunting, likely because group hunting was unnecessary in an environment where the spatial distribution of prey insects is predictable, for example, in parks or around floodlights. While acknowledging the limitations of a small sample size and low number of spatial replicates, our study suggests that scarce food resources may make urban habitats unfavorable for large bat species with higher energy requirements compared to smaller bat species. In conclusion, a lower food intake may displace larger species from urban areas making habitats with high insect biomass production key for protecting large bat species in urban environments.


Assuntos
Quirópteros , Ecossistema , Animais , Animais Selvagens , Biomassa , Urbanização , Insetos , Comportamento Predatório
20.
Glob Chang Biol ; 30(3): e17186, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450925

RESUMO

The Arctic is a global warming 'hot-spot' that is experiencing rapid increases in air and ocean temperatures and concomitant decreases in sea ice cover. These environmental changes are having major consequences on Arctic ecosystems. All Arctic endemic marine mammals are highly dependent on ice-associated ecosystems for at least part of their life cycle and thus are sensitive to the changes occurring in their habitats. Understanding the biological consequences of changes in these environments is essential for ecosystem management and conservation. However, our ability to study climate change impacts on Arctic marine mammals is generally limited by the lack of sufficiently long data time series. In this study, we took advantage of a unique dataset on hooded seal (Cystophora cristata) movements (and serum samples) that spans more than 30 years in the Northwest Atlantic to (i) investigate foraging (distribution and habitat use) and dietary (trophic level of prey and location) habits over the last three decades and (ii) predict future locations of suitable habitat given a projected global warming scenario. We found that, despite a change in isotopic signatures that might suggest prey changes over the 30-year period, hooded seals from the Northwest Atlantic appeared to target similar oceanographic characteristics throughout the study period. However, over decades, they have moved northward to find food. Somewhat surprisingly, foraging habits differed between seals breeding in the Gulf of St Lawrence vs those breeding at the "Front" (off Newfoundland). Seals from the Gulf favoured colder waters while Front seals favoured warmer waters. We predict that foraging habitats for hooded seals will continue to shift northwards and that Front seals are likely to have the greatest resilience. This study shows how hooded seals are responding to rapid environmental change and provides an indication of future trends for the species-information essential for effective ecosystem management and conservation.


Assuntos
Caniformia , Focas Verdadeiras , Animais , Ecossistema , Aquecimento Global , Hábitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA