Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(13): e2313334121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498717

RESUMO

Multiple facets of global change affect the earth system interactively, with complex consequences for ecosystem functioning and stability. Simultaneous climate and biodiversity change are of particular concern, because biodiversity may contribute to ecosystem resistance and resilience and may mitigate climate change impacts. Yet, the extent and generality of how climate and biodiversity change interact remain insufficiently understood, especially for the decomposition of organic matter, a major determinant of the biosphere-atmosphere carbon feedbacks. With an inter-biome field experiment using large rainfall exclusion facilities, we tested how drought, a common prediction of climate change models for many parts of the world, and biodiversity in the decomposer system drive decomposition in forest ecosystems interactively. Decomposing leaf litter lost less carbon (C) and especially nitrogen (N) in five different forest biomes following partial rainfall exclusion compared to conditions without rainfall exclusion. An increasing complexity of the decomposer community alleviated drought effects, with full compensation when large-bodied invertebrates were present. Leaf litter mixing increased diversity effects, with increasing litter species richness, which contributed to counteracting drought effects on C and N loss, although to a much smaller degree than decomposer community complexity. Our results show at a relevant spatial scale covering distinct climate zones that both, the diversity of decomposer communities and plant litter in forest floors have a strong potential to mitigate drought effects on C and N dynamics during decomposition. Preserving biodiversity at multiple trophic levels contributes to ecosystem resistance and appears critical to maintain ecosystem processes under ongoing climate change.


Assuntos
Secas , Ecossistema , Biodiversidade , Florestas , Folhas de Planta , Carbono
2.
Glob Chang Biol ; 30(4): e17259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38655624

RESUMO

Nature-based climate solutions (NCS) are championed as a primary tool to mitigate climate change, especially in forested regions capable of storing and sequestering vast amounts of carbon. New England is one of the most heavily forested regions in the United States (>75% forested by land area), and forest carbon is a significant component of climate mitigation policies. Large infrequent disturbances, such as hurricanes, are a major source of uncertainty and risk for policies relying on forest carbon for climate mitigation, especially as climate change is projected to alter the intensity and extent of hurricanes. To date, most research into disturbance impacts on forest carbon stocks has focused on fire. Here, we show that a single hurricane in the region can down between 121 and 250 MMTCO2e or 4.6%-9.4% of the total aboveground forest carbon, much greater than the carbon sequestered annually by New England's forests (16 MMTCO2e year-1). However, emissions from hurricanes are not instantaneous; it takes approximately 19 years for downed carbon to become a net emission and 100 years for 90% of the downed carbon to be emitted. Reconstructing hurricanes with the HURRECON and EXPOS models across a range of historical and projected wind speeds, we find that an 8% and 16% increase in hurricane wind speeds leads to a 10.7- and 24.8-fold increase in the extent of high-severity damaged areas (widespread tree mortality). Increased wind speed also leads to unprecedented geographical shifts in damage, both inland and northward, into heavily forested regions traditionally less affected by hurricanes. Given that a single hurricane can emit the equivalent of 10+ years of carbon sequestered by forests in New England, the status of these forests as a durable carbon sink is uncertain. Understanding the risks to forest carbon stocks from disturbances is necessary for decision-makers relying on forests as a NCS.


Assuntos
Mudança Climática , Tempestades Ciclônicas , Florestas , New England , Carbono/análise , Sequestro de Carbono , Modelos Teóricos
3.
Ecol Appl ; : e3020, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155464

RESUMO

Defoliation by eastern spruce budworm is one of the most important natural disturbances in Canadian boreal and hemi-boreal forests with annual area affected surpassing that of fire and harvest combined, and its impacts are projected to increase in frequency, severity, and range under future climate scenarios. Deciding on an active management strategy to control outbreaks and minimize broader economic, ecological, and social impacts is becoming increasingly important. These strategies differ in the degree to which defoliation is suppressed, but little is known about the downstream consequences of defoliation and, thus, the implications of management. Given the disproportionate role of headwater streams and their microbiomes on net riverine productivity across forested landscapes, we investigated the effects of defoliation by spruce budworm on headwater stream habitat and microbiome structure and function to inform management decisions. We experimentally manipulated a gradient of defoliation among 12 watersheds during a spruce budworm outbreak in the Gaspésie Peninsula, Québec, Canada. From May through October of 2019-2021, stream habitat (flow rates, dissolved organic matter [DOM], water chemistry, and nutrients), algal biomass, and water temperatures were assessed. Bacterial and fungal biofilm communities were examined by incubating six leaf packs for five weeks (mid-August to late September) in one stream reach per watershed. Microbiome community structure was determined using metabarcoding of 16S and ITS rRNA genes, and community functions were examined using extracellular enzyme assays, leaf litter decomposition rates, and taxonomic functional assignments. We found that cumulative defoliation was correlated with increased streamflow rates and temperatures, and more aromatic DOM (measured as specific ultraviolet absorbance at 254 nm), but was not correlated to nutrient concentrations. Cumulative defoliation was also associated with altered microbial community composition, an increase in carbohydrate biosynthesis, and a reduction in aromatic compound degradation, suggesting that microbes are shifting to the preferential use of simple carbohydrates rather than more complex aromatic compounds. These results demonstrate that high levels of defoliation can affect headwater stream microbiomes to the point of altering stream ecosystem productivity and carbon cycling potential, highlighting the importance of incorporating broader ecological processes into spruce budworm management decisions.

4.
J Environ Manage ; 352: 119921, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38219661

RESUMO

Tropical rainforests of Latin America (LATAM) are one of the world's largest carbon sinks, with substantial future carbon sequestration potential and contributing a major proportion of the global supply of forest carbon credits. LATAM is poised to contribute predominantly towards high-quality forest carbon offset projects designed to reduce emissions from deforestation and forest degradation, halt biodiversity loss, and provide equitable conservation benefits to people. Thus, carbon markets, including compliance carbon markets and voluntary carbon markets continue to expand in LATAM. However, the extent of the growth and status of forest carbon markets, pricing initiatives, stakeholders, amongst others, are yet to be explored and extensively reviewed for the entire LATAM region. Against this backdrop, we reviewed a total of 299 articles, including peer-reviewed and non-scientific gray literature sources, from January 2010 to March 2023. Herein, based on the extensive literature review, we present the results and provide perspectives classified into five categories: (i) the status and recent trends of forest carbon markets (ii) the interested parties and their role in the forest carbon markets, (iii) the measurement, reporting and verification (MRV) approaches and role of remote sensing, (iv) the challenges, and (v) the benefits, opportunities, future directions and recommendations to enhance forest carbon markets in LATAM. Despite the substantial challenges, better governance structures for forest carbon markets can increase the number, quality and integrity of projects and support the carbon sequestration capacity of the rainforests of LATAM. Due to the complex and extensive nature of forest carbon projects in LATAM, emerging technologies like remote sensing can enable scale and reduce technical barriers to MRV, if properly benchmarked. The future directions and recommendations provided are intended to improve upon the existing infrastructure and governance mechanisms, and encourage further participation from the public and private sectors in forest carbon markets in LATAM.


Assuntos
Carbono , Ecossistema , Humanos , Carbono/metabolismo , América Latina , Conservação dos Recursos Naturais/métodos , Florestas , Sequestro de Carbono
5.
Glob Chang Biol ; 29(3): 747-762, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36285645

RESUMO

During the last two decades, inventory data show that droughts have reduced biomass carbon sink of the Amazon forest by causing mortality to exceed growth. However, process-based models have struggled to include drought-induced responses of growth and mortality and have not been evaluated against plot data. A process-based model, ORCHIDEE-CAN-NHA, including forest demography with tree cohorts, plant hydraulic architecture and drought-induced tree mortality, was applied over Amazonia rainforests forced by gridded climate fields and rising CO2 from 1901 to 2019. The model reproduced the decelerating signal of net carbon sink and drought sensitivity of aboveground biomass (AGB) growth and mortality observed at forest plots across selected Amazon intact forests for 2005 and 2010. We predicted a larger mortality rate and a more negative sensitivity of the net carbon sink during the 2015/16 El Niño compared with the former droughts. 2015/16 was indeed the most severe drought since 1901 regarding both AGB loss and area experiencing a severe carbon loss. We found that even if climate change did increase mortality, elevated CO2 contributed to balance the biomass mortality, since CO2 -induced stomatal closure reduces transpiration, thus, offsets increased transpiration from CO2 -induced higher foliage area.


Assuntos
Carbono , Secas , Biomassa , Floresta Úmida , Dióxido de Carbono
6.
Glob Chang Biol ; 29(21): 6040-6065, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37605971

RESUMO

Insect and disease outbreaks in forests are biotic disturbances that can profoundly alter ecosystem dynamics. In many parts of the world, these disturbance regimes are intensifying as the climate changes and shifts the distribution of species and biomes. As a result, key forest ecosystem services, such as carbon sequestration, regulation of water flows, wood production, protection of soils, and the conservation of biodiversity, could be increasingly compromised. Despite the relevance of these detrimental effects, there are currently no spatially detailed databases that record insect and disease disturbances on forests at the pan-European scale. Here, we present the new Database of European Forest Insect and Disease Disturbances (DEFID2). It comprises over 650,000 harmonized georeferenced records, mapped as polygons or points, of insects and disease disturbances that occurred between 1963 and 2021 in European forests. The records currently span eight different countries and were acquired through diverse methods (e.g., ground surveys, remote sensing techniques). The records in DEFID2 are described by a set of qualitative attributes, including severity and patterns of damage symptoms, agents, host tree species, climate-driven trigger factors, silvicultural practices, and eventual sanitary interventions. They are further complemented with a satellite-based quantitative characterization of the affected forest areas based on Landsat Normalized Burn Ratio time series, and damage metrics derived from them using the LandTrendr spectral-temporal segmentation algorithm (including onset, duration, magnitude, and rate of the disturbance), and possible interactions with windthrow and wildfire events. The DEFID2 database is a novel resource for many large-scale applications dealing with biotic disturbances. It offers a unique contribution to design networks of experiments, improve our understanding of ecological processes underlying biotic forest disturbances, monitor their dynamics, and enhance their representation in land-climate models. Further data sharing is encouraged to extend and improve the DEFID2 database continuously. The database is freely available at https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/FOREST/DISTURBANCES/DEFID2/.

7.
Ecol Appl ; 33(3): e2817, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36756686

RESUMO

In the California compliance cap-and-trade carbon market, improved forest management (IFM) projects generate carbon credits in the initial reporting period if their initial carbon stocks are greater than a baseline. This baseline is informed by a "common practice" stocking value, which represents the average carbon stocks of surveyed privately owned forests that are classified into the same general forest type by the California Air Resources Board. Recent work has called attention to the need for more ecologically informed common practice carbon stocking values for IFM projects, particularly those in areas with sharp ecological gradients. Current methods for estimating common practice produce biases in baseline carbon values that lead to a clustering of IFM projects in geographical areas and ecosystem types that in fact support much greater forest carbon stocks than reflected in the common practice. This phenomenon compromises additionality, or the increases in carbon sequestration or decreases in carbon emissions that would not have occurred in the absence of carbon crediting. This study seeks to expand upon recent work on this topic and establish unbiased common practice estimates along sharp ecological gradients using methods that do not rely upon discrete forest classification. We generated common practice values for credited IFM projects in the Southern Cascades using a principal components analysis on species composition over an extensive forest inventory to determine the ecological similarity between inventoried forests and IFM project sites. Our findings strengthen the results of recent research suggesting common practice bias and adverse selection. At several sites, even after controlling for private ownership, 100% of the initial carbon stocks could be explained by ecological variables. This result means that improved management did not preserve or increase carbon stocks above what was typical, suggesting that no carbon offsets should have been issued for these sites. This result reveals greater bias than that been found at project sites in this region by research that has used discrete forest categorization.


Assuntos
Ecossistema , Florestas , Sequestro de Carbono , Propriedade , Inquéritos e Questionários
8.
Oecologia ; 201(1): 241-257, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36525137

RESUMO

In deciduous forests, spring leaf development and fall leaf senescence regulate the timing and duration of photosynthesis and transpiration. Being able to model these dates is therefore critical to accurately representing ecosystem processes in biogeochemical models. Despite this, there has been relatively little effort to improve internal phenology predictions in widely used biogeochemical models. Here, we optimized the phenology algorithms in a regionally developed biogeochemical model (PnET-CN) using phenology data from eight mid-latitude PhenoCam sites in eastern North America. We then performed a sensitivity analysis to determine how the optimization affected future predictions of carbon, water, and nitrogen cycling at Bartlett Experimental Forest, New Hampshire. Compared to the original PnET-CN phenology models, our new spring and fall models resulted in shorter season lengths and more abrupt transitions that were more representative of observations. The new phenology models affected daily estimates and interannual variability of modeled carbon exchange, but they did not have a large influence on the magnitude or long-term trends of annual totals. Under future climate projections, our new phenology models predict larger shifts in season length in the fall (1.1-3.2 days decade-1) compared to the spring (0.9-1.5 days decade-1). However, for every day the season was longer, spring had twice the effect on annual carbon and water exchange totals compared to the fall. These findings highlight the importance of accurately modeling season length for future projections of carbon and water cycling.


Assuntos
Ecossistema , Tumores Neuroectodérmicos Primitivos , Estações do Ano , Árvores , Carbono , Florestas , Folhas de Planta/fisiologia , Mudança Climática
9.
Proc Natl Acad Sci U S A ; 117(6): 3015-3025, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31988116

RESUMO

Maintaining the abundance of carbon stored aboveground in Amazon forests is central to any comprehensive climate stabilization strategy. Growing evidence points to indigenous peoples and local communities (IPLCs) as buffers against large-scale carbon emissions across a nine-nation network of indigenous territories (ITs) and protected natural areas (PNAs). Previous studies have demonstrated a link between indigenous land management and avoided deforestation, yet few have accounted for forest degradation and natural disturbances-processes that occur without forest clearing but are increasingly important drivers of biomass loss. Here we provide a comprehensive accounting of aboveground carbon dynamics inside and outside Amazon protected lands. Using published data on changes in aboveground carbon density and forest cover, we track gains and losses in carbon density from forest conversion and degradation/disturbance. We find that ITs and PNAs stored more than one-half (58%; 41,991 MtC) of the region's carbon in 2016 but were responsible for just 10% (-130 MtC) of the net change (-1,290 MtC). Nevertheless, nearly one-half billion tons of carbon were lost from both ITs and PNAs (-434 MtC and -423 MtC, respectively), with degradation/disturbance accounting for >75% of the losses in 7 countries. With deforestation increasing, and degradation/disturbance a neglected but significant source of region-wide emissions (47%), our results suggest that sustained support for IPLC stewardship of Amazon forests is critical. IPLCs provide a global environmental service that merits increased political protection and financial support, particularly if Amazon Basin countries are to achieve their commitments under the Paris Climate Agreement.


Assuntos
Carbono , Mudança Climática , Conservação dos Recursos Naturais , Floresta Úmida , Biomassa , Carbono/análise , Carbono/química , Carbono/metabolismo , Ciclo do Carbono , Rios
10.
J Environ Manage ; 348: 119401, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37931435

RESUMO

Afforestation and reforestation are pivotal in mitigating land degradation and bolstering the carbon sink capacity of terrestrial ecosystems. However, the potential economic ramifications of afforestation and reforestation in the context of climate change remain largely unexplored. In this study, we employed an interdisciplinary methodology to establish a framework for assessing future forest potential and carbon sequestration in the Eastern Loess Plateau region of China. Our findings indicate that an estimated 17,392.99 km2 of land suitable for afforestation still existed within the region, exhibiting a propensity to aggregate around existing forests rather than being dispersed randomly. Notably, 4385.36 km2 was prioritized for afforestation initiatives. Projections suggest a significant enhancement of the forest carbon sink within the study area by 2050, ranging from 36.93 Mt to 105.38 Mt. The corresponding economic value for this enhancement is estimated to vary between US$3.25 billion and US$17.68 billion. Of significance is the observed polarization of the region's carbon sink capacity over time, with half of the total carbon sinks concentrated within 10% of the districts. Additionally, approximately 26% of the counties are expected to transition from carbon sinks to carbon sources. These findings underscore the substantial impact of climate change on forest distribution and suggest a targeted approach to combat forest degradation by circumventing ineffective afforestation activities.


Assuntos
Sequestro de Carbono , Ecossistema , Florestas , China , Carbono/análise , Árvores/metabolismo
11.
Ecol Lett ; 25(5): 1126-1138, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35128774

RESUMO

Tree mortality is a major control over tropical forest carbon stocks globally but the strength of associations between abiotic drivers and tree mortality within forested landscapes is poorly understood. Here, we used repeat drone photogrammetry across 1500 ha of forest in Central Panama over 5 years to quantify spatial variation in canopy disturbance rates and its predictors. We identified 11,153 canopy disturbances greater than 25 m2 in area, including treefalls, large branchfalls and standing dead trees, affecting 1.9% of area per year. Soil type, forest age and topography explained up to 46%-67% of disturbance rate variation at spatial grains of 58-64 ha, with higher rates in older forests, steeper slopes and local depressions. Furthermore, disturbance rates predicted the proportion of low canopy area across the landscape, and mean canopy height in old growth forests. Thus abiotic factors drive variation in disturbance rates and thereby forest structure at landscape scales.


Assuntos
Florestas , Solo , Carbono , Panamá , Árvores , Clima Tropical
12.
Glob Chang Biol ; 28(3): 899-917, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34699094

RESUMO

Human activities have drastically increased nitrogen (N) deposition onto forests globally. This may have alleviated N limitation and thus stimulated productivity and carbon (C) sequestration in aboveground woody biomass (AGWB), a stable C pool with long turnover times. This 'carbon bonus' of human N use partly offsets the climate impact of human-induced N2 O emissions, but its magnitude and spatial variation are uncertain. Here we used a meta-regression approach to identify sources of heterogeneity in tree biomass C-N response (additional C stored per unit of N) based on data from fertilization experiments in global forests. We identified important drivers of spatial variation in forest biomass C-N response related to climate (potential evapotranspiration), soil fertility (N content) and tree characteristics (stand age), and used these relationships to quantify global spatial variation in N-induced forest biomass C sequestration. Results show that N deposition enhances biomass C sequestration in only one-third of global forests, mainly in the boreal region, while N reduces C sequestration in 5% of forests, mainly in the tropics. In the remaining 59% of global forests, N addition has no impact on biomass C sequestration. Average C-N responses were 11 (4-21) kg C per kg N for boreal forests, 4 (0-8) kg C per kg N for temperate forests and 0 (-4 to 5) kg C per kg N for tropical forests. Our global estimate of the N-induced forest biomass C sink of 41 (-53 to 159) Tg C yr-1 is substantially lower than previous estimates, mainly due to the absence of any response in most tropical forests (accounting for 58% of the global forest area). Overall, the N-induced C sink in AGWB only offsets ~5% of the climate impact of N2 O emissions (in terms of 100-year global warming potential), and contributes ~1% to the gross forest C sink.


Assuntos
Sequestro de Carbono , Nitrogênio , Biomassa , Carbono , Florestas , Humanos , Taiga , Árvores
13.
Ecol Appl ; 32(8): e2704, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35801514

RESUMO

A changing climate is altering ecosystem carbon dynamics with consequences for natural systems and human economies, but there are few tools available for land managers to meaningfully incorporate carbon trajectories into planning efforts. To address uncertainties wrought by rapidly changing conditions, many practitioners adopt resistance and resilience as ecosystem management goals, but these concepts have proven difficult to monitor across landscapes. Here, we address the growing need to understand and plan for ecosystem carbon with concepts of resistance and resilience. Using time series of carbon fixation (n = 103), we evaluate forest management treatments and their relative impacts on resistance and resilience in the context of an expansive and severe natural disturbance. Using subalpine spruce-fir forest with a known management history as a study system, we match metrics of ecosystem productivity (net primary production, g C m-2 year-1 ) with site-level forest structural measurements to evaluate (1) whether past management efforts impacted forest resistance and resilience during a spruce beetle (Dendroctonus rufipennis) outbreak, and (2) how forest structure and physiography contribute to anomalies in carbon trajectories. Our analyses have several important implications. First, we show that the framework we applied was robust for detecting forest treatment impacts on carbon trajectories, closely tracked changes in site-level biomass, and was supported by multiple evaluation methods converging on similar management effects on resistance and resilience. Second, we found that stand species composition, site productivity, and elevation predicted resistance, but resilience was only related to elevation and aspect. Our analyses demonstrate application of a practical approach for comparing forest treatments and isolating specific site and physiographic factors associated with resistance and resilience to biotic disturbance in a forest system, which can be used by managers to monitor and plan for both outcomes. More broadly, the approach we take here can be applied to many scenarios, which can facilitate integrated management and monitoring efforts.


Assuntos
Ecossistema , Picea , Humanos , Carbono , Florestas , Ciclo do Carbono
14.
Ecol Appl ; 32(4): e2539, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35048473

RESUMO

Successional processes ultimately determine and define carbon accumulations in forested ecosystems. Although primary succession on wholly new substrate occurs across the globe, secondary succession, often following storm events or anthropogenic disturbance, is more common and is capable of globally significant accumulations of carbon (C) at a time when offsets to anthropogenic carbon dioxide (CO2 ) emissions are critically needed. In Hawai'i, prior studies have investigated ecosystem development during primary succession on lava flows, including estimates of C mass accumulation. Yet relatively little is known regarding secondary succession of Hawaii's native forests, particularly regarding C mass accumulation. Here we documented aboveground C mass accumulation by native- and nonnative-dominated second-growth forests following deforestation of mature native lowland rainforests in the Puna District of Hawai'i Island. We characterized species composition and stand structure of three distinct successional forest stand types: those dominated by the native tree, Metrosideros polymorpha ('Ohi'a), and those dominated by invasive nonnative trees, Falcataria moluccana (albizia) and Psidium cattleianum (strawberry guava). We compared M. polymorpha-dominated and F. moluccana-dominated second-growth forests to adjacent mature M. polymorpha-dominated forests as well as young M. polymorpha-dominated forests undergoing initial stages of primary succession on 36-years-old lava fields. Aboveground carbon density (ACD) values of mature primary forest stands (171 Mg/ha) were comparable to those of mature continental tropical forests. M. polymorpha-dominated second-growth stands attained nearly 50% of ACD values of mature primary forests after less than 30 years of post-disturbance succession and exhibited aboveground carbon accumulation rates of ~3 Mg C·ha-1 ·year-1 . Such rates were comparable to those of second-growth forests in continental tropics. Rates of ACD accumulation by second-growth forests dominated by nonnative F. moluccana stands were similar, or slightly greater than, those of M. polymorpha-dominated stands. However, M. polymorpha individuals were virtually absent from stands dominated by either P. cattleianum or F. moluccana. Taken together, results demonstrated that re-establishment and rapid accumulation of C mass by M. polymorpha stands during secondary succession is certainly possible, but only where populations of nonnative species have not already colonized areas during early stages of secondary succession.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Adulto , Florestas , Havaí , Humanos , Árvores
15.
Proc Natl Acad Sci U S A ; 116(49): 24662-24667, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740604

RESUMO

Forests play a major role in the global carbon cycle. Previous studies on the capacity of forests to sequester atmospheric CO2 have mostly focused on carbon uptake, but the roles of carbon turnover time and its spatiotemporal changes remain poorly understood. Here, we used long-term inventory data (1955 to 2018) from 695 mature forest plots to quantify temporal trends in living vegetation carbon turnover time across tropical, temperate, and cold climate zones, and compared plot data to 8 Earth system models (ESMs). Long-term plots consistently showed decreases in living vegetation carbon turnover time, likely driven by increased tree mortality across all major climate zones. Changes in living vegetation carbon turnover time were negatively correlated with CO2 enrichment in both forest plot data and ESM simulations. However, plot-based correlations between living vegetation carbon turnover time and climate drivers such as precipitation and temperature diverged from those of ESM simulations. Our analyses suggest that forest carbon sinks are likely to be constrained by a decrease in living vegetation carbon turnover time, and accurate projections of forest carbon sink dynamics will require an improved representation of tree mortality processes and their sensitivity to climate in ESMs.


Assuntos
Sequestro de Carbono/fisiologia , Ecologia/métodos , Florestas , Modelos Teóricos , Árvores/fisiologia , Atmosfera/análise , Dióxido de Carbono/análise , Mudança Climática , Ecologia/estatística & dados numéricos , Monitoramento Ambiental/estatística & dados numéricos , Análise Espaço-Temporal , Temperatura , Incerteza
16.
Glob Chang Biol ; 27(12): 2991-3000, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33792118

RESUMO

Previous research has indicated that a potentially large portion of root-respired CO2 can move internally through tree xylem, but these reports are relatively scarce and have generally been limited to short observations. Our main objective was to provide a continuous estimate of the quantity and variability of root-respired CO2 that moves either internally through the xylem (FT ) or externally through the soil to the atmosphere (FS ) over most of a growing season. Nine trees were measured in a Populus deltoides stand for 129 days from early June to mid-October. We calculated FT as the product of sap flow and dissolved [CO2 ] in the xylem (i.e., [CO2 *]) and calculated FS using the [CO2 ] gradient method. During the study, stem and soil CO2 concentrations, temperature, and sap flow were measured continuously. We determined that FT accounted for 33% of daily total belowground CO2 flux (i.e., FS  + FT ; FB ) during our observation period that spanned most of a growing season. Cumulative daily FT was lower than FS 74% of the time, equivalent to FS 26% of the time, and never exceeded FS . One-third of the total CO2 released by belowground respiration over most of the growing season in this forest stand followed the FT pathway rather than diffusing into the soil. The magnitude of FT indicates that measurements of FS alone substantially underestimate total belowground respiration in some forest ecosystems by systematically underestimating belowground autotrophic respiration. The variability in FT observed during the growing season demonstrated the importance of making long-term, high-frequency measurements of different flux pathways to better understand physiological and ecological processes and their implications to global change.


Assuntos
Dióxido de Carbono , Ecossistema , Respiração , Estações do Ano , Solo , Árvores , Xilema
17.
Ecol Appl ; 31(5): e02327, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33742488

RESUMO

The forest sector can play a significant role in climate change mitigation. We evaluated forest sector carbon trends and potential mitigation scenarios in Vermont using a systems-based modeling framework that accounts for net emissions from all forest sector components. These components comprise (1) the forest ecosystem, including land-use change, (2) harvested wood products (HWP), and (3) substitution effects associated with using renewable wood-based products and fuels in place of more emission-intensive materials and fossil fuel-based energy. We assessed baseline carbon trends from 1995 through 2050 using a business as usual (BAU) scenario. Emission reductions associated with different forest management and HWP scenarios were evaluated relative to the BAU scenario from 2020 to 2050. We estimated uncertainty for each forest sector component and used a Monte Carlo approach to estimate the distribution of cumulative total mitigation for each scenario relative to baseline. Our analysis indicates that the strength of the forest sector carbon sink in Vermont has been declining and will continue to decline over coming decades under the BAU scenario. However, several scenarios evaluated here could be effective in reducing emissions and enhancing carbon uptake. Shifting HWP to longer-lived commodities resulted in a 14% reduction in net cumulative emissions by 2050, the largest reduction of all scenarios. A scenario that combined extending harvest rotations, utilizing additional harvest residues for bioenergy, and increasing forest productivity resulted in a 12% reduction in net cumulative emissions. Shifting commodities from pulp and paper to bioenergy showed a 7.3% reduction in emissions. In contrast, shortening rotations to increase harvests for bioenergy use resulted in a 5.5% increase in emissions. In summary, model simulations suggest that net emissions could be reduced by up to 14% relative to BAU, depending on the management and HWP-use scenario. Combining multiple scenarios could further enhance reductions. However, realizing the full climate mitigation potential of these forests may be challenging due to socioeconomic barriers to implementation, as well as alternative management objectives that must be considered along with carbon sequestration.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biomassa , Mudança Climática , Florestas
18.
Glob Chang Biol ; 26(2): 901-918, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31529736

RESUMO

Climate extremes such as heat waves and droughts are projected to occur more frequently with increasing temperature and an intensified hydrological cycle. It is important to understand and quantify how forest carbon fluxes respond to heat and drought stress. In this study, we developed a series of daily indices of sensitivity to heat and drought stress as indicated by air temperature (Ta ) and evaporative fraction (EF). Using normalized daily carbon fluxes from the FLUXNET Network for 34 forest sites in North America, the seasonal pattern of sensitivities of net ecosystem productivity (NEP), gross ecosystem productivity (GEP) and ecosystem respiration (RE) in response to Ta and EF anomalies were compared for different forest types. The results showed that warm temperatures in spring had a positive effect on NEP in conifer forests but a negative impact in deciduous forests. GEP in conifer forests increased with higher temperature anomalies in spring but decreased in summer. The drought-induced decrease in NEP, which mostly occurred in the deciduous forests, was mostly driven by the reduction in GEP. In conifer forests, drought had a similar dampening effect on both GEP and RE, therefore leading to a neutral NEP response. The NEP sensitivity to Ta anomalies increased with increasing mean annual temperature. Drier sites were less sensitive to drought stress in summer. Natural forests with older stand age tended to be more resilient to the climate stresses compared to managed younger forests. The results of the Classification and Regression Tree analysis showed that seasons and ecosystem productivity were the most powerful variables in explaining the variation of forest sensitivity to heat and drought stress. Our results implied that the magnitude and direction of carbon flux changes in response to climate extremes are highly dependent on the seasonal dynamics of forests and the timing of the climate extremes.


Assuntos
Secas , Ecossistema , Carbono , Ciclo do Carbono , Mudança Climática , Florestas , Temperatura Alta , América do Norte , Estações do Ano
19.
J Environ Manage ; 269: 110763, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32425168

RESUMO

Countries in the Asia-Pacific region are pioneers in the implementation of climate change mitigation initiatives. They have implemented readiness activities to fulfil the requirements for results-based payments from the forestry sector (termed REDD+). Using content analysis, a questionnaire, and a series of workshops with key stakeholders, we mapped the REDD + readiness of 11 Asia-Pacific countries with respect to UNFCCC's resolutions on REDD+. Their status was mapped against the Nationally Determined Contribution (NDC), which constitutes the five design elements of the Warsaw REDD + Framework and the Forest Carbon Partnership Facility (FCPF) requirements. While the overall achievements vary across the studied countries, our results demonstrate that Vietnam, Nepal, and Indonesia are in an advanced stage of REDD + readiness. A significant number of conditional NDCs and timely and adequate technical and financial support are imperative for the studied countries to achieve a high level of readiness. However, lack of trust and coordination among the state and non-state actors, limited national participation of Civil Society Organizations and Indigenous Peoples in REDD + related committees, and conflicts among regulatory frameworks related to forestry and other land uses remain common challenges for these countries. These challenges risk disrupting the essence of REDD + as a multi-level, multi-stage and multi-stakeholder governance system. Stakeholders in these countries are optimistic about a better performance of REDD + regarding emission reduction, enhanced livelihoods, improved forest governance and improvement in biodiversity. However, any optimism is challenged by stakeholder's own suspicion of the effectiveness of REDD + projects to achieve permanency and control leakage/displacement. Building political will and the development of context-specific benefit-sharing plans and their effective implementation could be important keys to maintaining optimism of stakeholders about REDD + initiatives.


Assuntos
Conservação dos Recursos Naturais , Ásia , Indonésia , Nepal , Vietnã
20.
Environ Monit Assess ; 192(9): 571, 2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32772191

RESUMO

Forests hold significant potential for carbon sequestration and climate change mitigation. Forest biomass estimation is vital for sustainable forest management, providing critical input data for implementing the United Nations Reducing Emissions from Deforestation and forest Degradation-plus (REDD+) mechanism. This study investigates the total carbon pools-aboveground biomass (AGB), belowground biomass (BGB), forest floor biomass, and soil carbon-using field-based information in the muyong forest management system, which is native to Ifugao in the Philippines. This study reveals that a difference may be observed between the total carbon stock of the private woodlots (muyong) and that of the communal forest (bilid). The results indicate that the bilid forest has trees with a small diameter at breast height (DBH) and high tree density in contrast to the muyong, which has trees with high DBH and low tree density. The average carbon stock per unit area is higher in muyong (150.8 tC/ha) than in bilid (126.1 tC/ha). These findings are valuable in determining whether Ifugao's muyong forest system should be included under the REDD+ framework. Human mediation and management helps forests to sequester a greater amount of carbon than they would without human intervention. Implementation of REDD+ should promote Ifugao's ecosystem and biodiversity conservation and agroforestry practices in addition to protecting traditional agricultural practices and livelihoods in relation to rice terraces.


Assuntos
Carbono/análise , Ecossistema , Conservação dos Recursos Naturais , Monitoramento Ambiental , Florestas , Filipinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA