Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Hum Mol Genet ; 33(2): 110-121, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37769355

RESUMO

The c.453delC (p.Thr152Profs*14) frameshift mutation in KCNH2 is associated with an elevated risk of Long QT syndrome (LQTS) and fatal arrhythmia. Nevertheless, the loss-of-function mechanism underlying this mutation remains unexplored and necessitates an understanding of electrophysiology. To gain insight into the mechanism of the LQT phenotype, we conducted whole-cell patch-clamp and immunoblot assays, utilizing both a heterologous expression system and patient-derived induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) with 453delC-KCNH2. We also explored the site of translational reinitiation by employing LC/MS mass spectrometry. Contrary to the previous assumption of early termination of translation, the findings of this study indicate that the 453delC-KCNH2 leads to an N-terminally truncated hERG channel, a potential from a non-canonical start codon, with diminished expression and reduced current (IhERG). The co-expression with wildtype KCNH2 produced heteromeric hERG channel with mild dominant-negative effect. Additionally, the heterozygote patient-derived iPSC-CMs exhibited prolonged action potential duration and reduced IhERG, which was ameliorated with the use of a hERG activator, PD-118057. The results of our study offer novel insights into the mechanisms involved in congenital LQTS associated with the 453delC mutation of KCNH2. The mutant results in the formation of less functional N-terminal-truncated channels with reduced amount of membrane expression. A hERG activator is capable of correcting abnormalities in both the heterologous expression system and patient-derived iPSC-CMs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Humanos , Miócitos Cardíacos/metabolismo , Mutação da Fase de Leitura , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Heterozigoto , Mutação , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo
2.
J Med Genet ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103207

RESUMO

BACKGROUND: It has long been observed that there are families in which non-medullary thyroid cancer (NMTC) occurs, but few syndromes and genes have been described to date. Proteins in the shelterin complex have been implied in cancer. Here, we have studied shelterin genes in families affected by NMTC (FNMTC). METHODS: We performed whole-exome sequencing (WES) in 10 affected individuals from four families with at least three affected members. Polymerase chain reaction (PCR) and Sanger sequencing were performed to search for variants in the TINF2 gene in 40 FNMTC families. TINF2 transcripts and loss of heterozygosity (LOH) were studied in several affected patients of one family. RESULTS: We found the c.507G>T variant in heterozygosis in the TINF2 gene in one family, co-segregating in all five affected members. This variant affects the normal splicing. LOH was not observed. CONCLUSIONS: Our results reinforce the TINF2 gene as a susceptibility cause of FNMTC suggesting the importance of location of frameshift variants in TINF2. According to our data and previous literature, TINF2 pathogenic variants appear to be a significant risk factor for the development of NMTC and/or melanoma.

3.
Hum Genomics ; 17(1): 42, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37189200

RESUMO

BACKGROUND: Hearing loss is a rare hereditary deficit that is rather common among consanguineous populations. Autosomal recessive non-syndromic hearing loss is the predominant form of hearing loss worldwide. Although prevalent, hearing loss is extremely heterogeneous and poses a pitfall in terms of diagnosis and screening. Using next-generation sequencing has enabled a rapid increase in the identification rate of genes and variants in heterogeneous conditions, including hearing loss. We aimed to identify the causative variants in two consanguineous Yemeni families affected with hearing loss using targeted next-generation sequencing (clinical exome sequencing). The proband of each family was presented with sensorineural hearing loss as indicated by pure-tone audiometry results. RESULTS: We explored variants obtained from both families, and our analyses collectively revealed the presence and segregation of two novel loss-of-function variants: a frameshift variant, c.6347delA in MYO15A in Family I, and a splice site variant, c.5292-2A > C, in OTOF in Family II. Sanger sequencing and PCR-RFLP of DNA samples from 130 deaf and 50 control individuals confirmed that neither variant was present in our in-house database. In silico analyses predicted that each variant has a pathogenic effect on the corresponding protein. CONCLUSIONS: We describe two novel loss-of-function variants in MYO15A and OTOF that cause autosomal recessive non-syndromic hearing loss in Yemeni families. Our findings are consistent with previously reported pathogenic variants in the MYO15A and OTOF genes in Middle Eastern individuals and suggest their implication in hearing loss.


Assuntos
Surdez , Proteínas de Membrana , Miosinas , Surdez/genética , Mutação com Perda de Função , Proteínas de Membrana/genética , Miosinas/genética , Linhagem , Iêmen , Humanos
4.
Am J Med Genet A ; 194(5): e63504, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38153133

RESUMO

Congenital cataracts are the leading cause of irreversible visual disability in children, and genetic factors play an important role in their development. In this study, targeted exome sequencing revealed a novel single-base deletional mutation of MIP (c.301delG; p.Ala101Profs*16) segregated with congenital punctate cataract in a Chinese family. The hydrophobic properties, and secondary and tertiary structures for truncated MIP were predicted to affect the function of protein by bioinformatics analysis. When MIP-WT and MIP-Ala101fs expression constructs were singly transfected into HeLa cells, it was found that the mRNA level showed no significant difference, while the protein level of the mutant was remarkably reduced compared to that of the wild-type MIP. Immunofluorescence images showed that the MIP-WT was principally localized to the plasma membrane, whereas the MIP-Ala101fs protein was aberrantly trapped in the cytoplasm. Furthermore, the cell-to-cell adhesion capability and the cell-to-cell communication property were both significantly reduced for MIP-Ala101fs compared to the MIP-WT (all *p < 0.05). This is the first report of the c.301delG mutation in the MIP gene associated with autosomal dominant congenital cataracts. We propose that the cataract is caused by the decreased protein expression and reduced cell-to-cell adhesion by the mutant MIP. The impaired trafficking or instability of the mutant protein, as well as compromised intercellular communication is probably a concurrent result of the mutation. The results expand the genetic and phenotypic spectra of MIP and help to better understand the molecular basis of congenital cataracts.


Assuntos
Catarata , Proteínas do Olho , Criança , Humanos , Catarata/genética , Catarata/congênito , Adesão Celular/genética , China , Proteínas do Olho/genética , Células HeLa , Mutação
5.
Thromb J ; 22(1): 19, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347553

RESUMO

BACKGROUND: Antithrombin (AT) is an important anticoagulant in hemostasis. We describe here the characterization of a novel AT mutation associated with clinically relevant thrombosis. A pair of sisters with confirmed type I AT protein deficiency was genetically analyzed on suspicion of an inherited SERPINC1 mutation. A frameshift mutation, c.1247dupC, was identified and the effect of this mutation was examined on the cellular and molecular level. METHODS: Plasmids for the expression of wild-type (WT) and mutated SERPINC1 coding sequence (CDS) fused to green fluorescent protein (GFP) or hemagglutinin (HA) tag were transfected into HEK293T cells. Subcellular localization and secretion of the respective fusion proteins were analyzed by confocal laser scanning microscopy and Western blot. RESULTS: The c.1247dupC mutation results in a frameshift in the CDS of the SERPINC1 gene and a subsequently altered amino acid sequence (p.Ser417LysfsTer48). This alteration affects the C-terminus of the AT antigen and results in impaired secretion as confirmed by GFP- and HA-tagged mutant AT analyzed in HEK293T cells. CONCLUSION: The p.Ser417LysfsTer48 mutation leads to impaired secretion, thus resulting in a quantitative AT deficiency. This is in line with the type I AT deficiency observed in the patients.

6.
J Med Genet ; 60(2): 174-182, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35361685

RESUMO

BACKGROUND: Familial exudative vitreoretinopathy (FEVR) is an inheritable blinding disorder with clinical and genetic heterogeneity. Heterozygous variants in the CTNNB1 gene have been reported to cause FEVR. However, the pathogenic basis of CTNNB1-associated FEVR has not been fully explored. METHODS: Whole-exome sequencing was performed on the genomic DNA of probands. Dual-luciferase reporter assay, western blotting and co-immunoprecipitation were used to characterise the impacts of variants. Quantitative real-time PCR, EdU (5-ethynyl-2'-deoxyuridine) incorporation assay and immunocytochemistry were performed on the primary human retinal microvascular endothelial cells (HRECs) to investigate the effect of CTNNB1 depletion on the downstream genes involved in Norrin/ß-catenin signalling, cell proliferation and junctional integrity, respectively. Transendothelial electrical resistance assay was applied to measure endothelial permeability. Heterozygous endothelial-specific Ctnnb1-knockout mouse mice were generated to verify FEVR-like phenotypes in the retina. RESULTS: We identified two novel heterozygous variants (p.Leu103Ter and p.Val199LeufsTer11) and one previously reported heterozygous variant (p.His369ThrfsTer2) in the CTNNB1 gene. These variants caused truncation and degradation of ß-catenin that reduced Norrin/ß-catenin signalling activity. Additionally, knockdown (KD) of CTNNB1 in HRECs led to diminished mRNA levels of Norrin/ß-catenin targeted genes, reduced cell proliferation and compromised junctional integrity. The Cre-mediated heterozygous deletion of Ctnnb1 in mouse endothelial cells (ECs) resulted in FEVR-like phenotypes. Moreover, LiCl treatment partially rescued the defects in CTNNB1-KD HRECs and EC-specific Ctnnb1 heterozygous knockout mice. CONCLUSION: Our findings reinforced the current pathogenesis of Norrin/ß-catenin for FEVR and expanded the causative variant spectrum of CTNNB1 for the prenatal diagnosis and genetic counselling of FEVR.


Assuntos
Doenças Retinianas , beta Catenina , Humanos , Animais , Camundongos , Vitreorretinopatias Exsudativas Familiares/genética , beta Catenina/genética , Células Endoteliais , Retina , Fenótipo , Mutação , Linhagem , Análise Mutacional de DNA , Doenças Retinianas/genética
7.
J Med Genet ; 60(6): 615-619, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36535754

RESUMO

BACKGROUND: Up to 7% of patients with Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) remain genetically undiagnosed after routine genetic testing. These patients are thought to carry deep intronic variants, structural variants or splicing alterations not detected through multiplex ligation-dependent probe amplification or exome sequencing. METHODS: RNA was extracted from seven muscle biopsy samples of patients with genetically undiagnosed DMD/BMD after routine genetic diagnosis. RT-PCR of the DMD gene was performed to detect the presence of alternative transcripts. Droplet digital PCR and whole-genome sequencing were also performed in some patients. RESULTS: We identified an alteration in the mRNA level in all the patients. We detected three pseudoexons in DMD caused by deep intronic variants, two of them not previously reported. We also identified a chromosomal rearrangement between Xp21.2 and 8p22. Furthermore, we detected three exon skipping events with unclear pathogenicity. CONCLUSION: These findings indicate that mRNA analysis of the DMD gene is a valuable tool to reach a precise genetic diagnosis in patients with a clinical and anatomopathological suspicion of dystrophinopathy that remain genetically undiagnosed after routine genetic testing.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofina/genética , RNA Mensageiro/genética , Mutação , Reação em Cadeia da Polimerase Multiplex
8.
Eur Arch Otorhinolaryngol ; 281(1): 237-243, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37603052

RESUMO

PURPOSE: Hereditary hemorrhagic telangiectasia (HHT) is a dominantly inherited disorder that involves epistaxis, mucocutaneous telangiectases, and visceral arteriovenous malformations (AVMs). This study aims to investigate the genetic causes in a Chinese family with HHT. METHODS: HHT was confirmed according to Curaçao's diagnostic criteria. Three patients diagnosed with HHT and healthy members were recruited. Whole-exome sequencing (WES) and sanger sequencing were performed to define the patient's genetically pathogenic factor. RESULTS: The proband presented with recurrent epistaxis, hepatopulmonary arteriovenous malformation, and adenocarcinoma. A novel frameshift mutation (c.1376_1377delAC, p.H459Lfs*41) of the ENG gene was revealed in affected individuals by WES. There was no report of this variant and predicted to be highly damaging by causing truncation of the ENG protein. CONCLUSION: We report a novel variant in the ENG gene in Chinese that extends the mutational and phenotypic spectra of the ENG gene, and also demonstrates the feasibility of WES in the application of genetic diagnosis of HHT.


Assuntos
Mutação da Fase de Leitura , Telangiectasia Hemorrágica Hereditária , Humanos , Endoglina/genética , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/genética , Epistaxe , Mutação , China
9.
Hemoglobin ; 48(2): 113-115, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38565194

RESUMO

Newborn screening identified a Chinese-Canadian infant who was positive for possible ß-thalassemia (ß-thal). Detailed family studies demonstrated that the proband was a compound heterozygote for the Chinese Gγ(Aγδß)0-thal deletion and a novel frameshift mutation within exon 3 (HBB:c.336dup), and heterozygous for the Southeast Asian α-thal deletion (--SEA/αα). This case illustrates the importance of follow-up molecular testing of positive newborn screening results to confirm the diagnosis and define risks for future pregnancies.


Assuntos
Genótipo , Triagem Neonatal , Globinas beta , Talassemia beta , Feminino , Humanos , Recém-Nascido , Masculino , Globinas beta/genética , Talassemia beta/genética , Talassemia beta/diagnóstico , Mutação da Fase de Leitura , Heterozigoto , Mutação , Linhagem
10.
Hemoglobin ; : 1-4, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103314

RESUMO

We reported a rare ß-thalassemia patient, a 41-year-old Chinese male with small cell hypopigmentation anemia, jaundice and splenomegaly as the main clinical symptoms. By using Next-Generation Sequencing (NGS), we identified a novel de novo HBB mutation(c.358_365dup, p.Phe123Alafs*39) which resulted in an abnormally prolonged ß-globin chain comprising 159 amino acid residues. The secondary and three-dimensional structures of the ß-globin predicted that the novel prolonged ß-globin chain has a considerable risk of instability in the hemoglobin, and leads to clinical phenotype. This study contributes to the enrichment of the genetic pathogenic mutation database for thalassemia and underscores the significance of NGS in the screening of mutations for thalassemia families.

11.
Hemoglobin ; : 1-3, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653553

RESUMO

Here, we report a novel frameshift mutation caused by a single base deletion in exon 3 of the HBA2 gene (HBA2:c.337delC) detected by next-generation sequencing. The proband was a 26-year-old Chinese pregnant woman who originates from Hunan Province. Her mean corpuscular volume(MCV) and mean corpuscular hemoglobin (MCH) had a mild decrease. Capillary electrophoresis (CE) showed that both Hb A (97.8%) and Hb F (0.0%) values were within normal range, while the Hb A2 (2.2%) value was below normal. Sequence analysis of the α and ß-globin genes revealed a novel single base deletion at codon 112 (HBA2:c.337delC) in the heterozygous state, which resulted in a mild phenotype of α-thalassemia.

13.
Cerebellum ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848700

RESUMO

Spinocerebellar ataxia type 11 (SCA11) is a rare disease and the tau tubulin kinase 2 (TTBK2) gene was the causative gene. To date, only six SCA11 families have been reported. Here, we reported a Chinese SCA11 pedigree with cerebellar ataxia. Both patients in the family demonstrated typical clinical features of cerebellar ataxia and cerebellar atrophy on brain MRI. A novel heterozygous duplication mutation (c.1211_1217dupAGGAGAA) of the TTBK2 gene was identified in the proband using whole-exome sequencing (WES), which resulted in a frameshift mutation and formed a premature stop codon (p. N406Kfs*47). The mutation was detected in the proband's affected brother, and his unaffected mother, who with a lower percentage of the mutation and considered as an asymptomatic mutation carrier. Our study delineated the genotypic spectrum of SCA11.

14.
Hemoglobin ; 47(2): 97-101, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37194736

RESUMO

We identified a novel abnormal hemoglobin variant caused by a frameshift mutation at nucleotide position 396 in exon 3 of the ß-globin gene (HBB): NM_000518:c.396delG. This variant causes an emergence of alternative amino acid sequence starting at codon 133 and a new stop codon formed in the 3' untranslated region (3'UTR) of the HBB gene at amino acid position 158. This ß-globin gene variant was identified in a woman with a long history of hemolytic anemia. We named this variant Hb Ryazan after the proband's city of origin.


Assuntos
Anemia Hemolítica , Hemoglobinas Anormais , Feminino , Humanos , Anemia Hemolítica/genética , Globinas beta/genética , Globinas beta/química , Códon de Terminação , Éxons , Mutação da Fase de Leitura , Hemoglobinas Anormais/genética , Hemoglobinas Anormais/química , Mutação
15.
J Integr Plant Biol ; 65(11): 2469-2489, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37635359

RESUMO

The resultant DNA from loss-of-function mutation can be recruited in biological evolution and development. Here, we present such a rare and potential case of "to gain by loss" as a neomorphic mutation during soybean domestication for increasing seed weight. Using a population derived from a chromosome segment substitution line of Glycine max (SN14) and Glycine soja (ZYD06), a quantitative trait locus (QTL) of 100-seed weight (qHSW) was mapped on chromosome 11, corresponding to a truncated ß-1, 3-glucosidase (ßGlu) gene. The novel gene hsw results from a 14-bp deletion, causing a frameshift mutation and a premature stop codon in the ßGlu. In contrast to HSW, the hsw completely lost ßGlu activity and function but acquired a novel function to promote cell expansion, thus increasing seed weight. Overexpressing hsw instead of HSW produced large soybean seeds, and surprisingly, truncating hsw via gene editing further increased the seed size. We further found that the core 21-aa peptide of hsw and its variants acted as a promoter of seed size. Transcriptomic variation in these transgenic soybean lines substantiated the integration hsw into cell and seed size control. Moreover, the hsw allele underwent selection and expansion during soybean domestication and improvement. Our work cloned a likely domesticated QTL controlling soybean seed weight, revealed a novel genetic variation and mechanism in soybean domestication, and provided new insight into crop domestication and breeding, and plant evolution.


Assuntos
Domesticação , Glycine max , Glycine max/metabolismo , Alelos , Melhoramento Vegetal , Sementes/metabolismo , Hidrolases/genética , Hidrolases/metabolismo
16.
Yi Chuan ; 45(10): 904-921, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37872113

RESUMO

Combined mutagenesis is widely applied for the breeding of robust Yarrowia lipolytica used in the production of erythritol. However, the changes of genome after mutagenesis remains unclear. This study aimed to unravel the mechanism involved in the improved erythritol synthesis of CA20 and the evolutionary relationship between different Y. lipolytica by comparative genomics analysis. The results showed that the genome size of Y. lipolytica CA20 was 20,420,510 bp, with a GC content of 48.97%. There were 6330 CDS and 649 ncRNA (non-coding RNA) in CA20 genome. Average nucleotide identity (ANI) analysis showed that CA20 genome possessed high similarity (ANI > 99.50%) with other Y. lipolytica strains, while phylogenetic analysis displayed that CA20 was classified together with Y. lipolytica IBT 446 and Y. lipolytica H222. CA20 shared 5342 core orthologous genes with the 8 strains while harbored 65 specific genes that mainly participated in the substrate and protein transport processes. CA20 contained 166 genes coding for carbohydrate-active enzymes (CAZymes), which was more than that found in other strains (108-137). Notably, 4, 2, and 13 different enzymes belonging to glycoside hydrolases (GHs), glycosyltransferases (GTs), and carbohydrate esterases (CEs), respectively, were only found in CA20. The enzymes involved in the metabolic pathway of erythritol were highly conserved in Y. lipolytica, except for transaldolase (TAL1). In addition, the titer and productivity of erythritol by CA20 were 190.97 g/L and 1.33 g/L/h, respectively, which were significantly higher than that of WT5 wherein 128.61 g/L and 0.92 g/L/h were obtained (P< 0.001). Five frameshift mutation genes and 15 genes harboring nonsynonymous mutation were found in CA20 compared with that of WT5. Most of these genes were involved in the cell division, cell wall synthesis, protein synthesis, and protein homeostasis maintenance. These findings suggested that the genome of Y. lipolytica is conserved during evolution, and the variance of living environment is one important factor leading to genome divergence. The varied number of CAZymes existed in Y. lipolytica is one factor that contributes to the performance difference. The increased synthesis of erythritol by Y. lipolytica CA20 is correlated with the improvement of the stability of cell structure and internal environment. The results of this study provide a basis for the directional breeding of robust strains used in erythritol production.


Assuntos
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Eritritol/metabolismo , Filogenia , Glicerol/metabolismo , Melhoramento Vegetal , Genômica
17.
Metab Brain Dis ; 37(1): 243-252, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719772

RESUMO

BACKGROUND: L-2-hydroxyglutaric aciduria (L2HGA) is a rare neurometabolic disorder that occurs due to accumulation of L-2-hydroxyglutaric acid in the cerebrospinal fluid (CSF), plasma and urine. The clinical manifestation of L2HGA includes intellectual disability, cerebellar ataxia, epilepsy, speech problems and macrocephaly. METHODS: In the present study, we ascertained a multigenerational consanguineous Pakistani family with 5 affected individuals. Clinical studies were performed through biochemical tests and brain CT scan. Locus mapping was carried out through genome-wide SNP genotyping, whole exome sequencing and Sanger sequencing. For in silico studies protein structural modeling and docking was done using I-TASSER, Cluspro and AutoDock VINA tools. RESULTS: Affected individuals presented with cognitive impairment, gait disturbance, speech difficulties and psychomotor delay. Radiologic analysis of a male patient revealed leukoaraiosis with hypoattenuation of cerebral white matter, suggestive of hypomyelination. Homozygosity mapping in this family revealed a linkage region on chromosome 14 between markers rs2039791 and rs781354. Subsequent whole exome analysis identified a novel frameshift mutation NM_024884.3:c.180delG, p.(Ala62Profs*24) in the second exon of L2HGDH. Sanger sequencing confirmed segregation of this mutation with the disease phenotype. The identification of the most N-terminal loss of function mutation published thus far further expands the mutational spectrum of L2HGDH.


Assuntos
Oxirredutases do Álcool , Oxirredutases do Álcool/genética , Encefalopatias Metabólicas Congênitas , Consanguinidade , Humanos , Masculino , Mutação/genética , Paquistão
18.
Allergol Immunopathol (Madr) ; 50(6): 32-46, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36335443

RESUMO

INTRODUCTION AND OBJECTIVES: Omenn syndrome (OS) is a very rare type of severe combined immunodeficiencies manifested with erythroderma, eosinophilia, hepatosplenomegaly, lymph-adenopathy, and elevated level of serum IgE. OS is inherited with an autosomal recessive mode of inheritance. Germline mutations in the human RAG1 gene cause OS. MATERIALS AND METHODS: In this study, we investigated a 2-month-old boy with cough, mild anaemia, pneumonia, immunodeficiency, repeated infection, feeding difficulties, hepatomegaly, growth retardation, and heart failure. Parents of the proband were phenotypically normal. RESULTS: Karyotype analysis and chromosomal microarray analysis found no chromosomal structural abnormalities (46, XY) and no pathogenic copy number variations (CNVs) in the proband. Whole-exome sequencing identified a novel homozygous single nucleotide deletion (c.2662delC) in exon 2 of the RAG1 gene in the proband. Sanger sequencing confirmed that both the proband parents were carrying this variant in a heterozygous state. This variant was not identified in two elder sisters and one elder brother of the proband and in the 100 ethnically matched normal healthy individuals. This novel homozygous deletion (c.2662delC) leads to the frameshift, which finally results in the formation of the truncated protein (p.Leu888Phefs*3) V(D)J recombination-activating protein 1 with 890 amino acids compared with the wildtype V(D)J recombination-activating protein 1 of 1043 amino acids. Hence, it is a loss-of-function variant. CONCLUSIONS: Our present study expands the mutational spectrum of the RAG1 gene associated with OS. We also strongly suggested the importance of whole-exome sequencing for the genetic screening of patients with OS.


Assuntos
Imunodeficiência Combinada Severa , Masculino , Criança , Humanos , Idoso , Lactente , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/patologia , Homozigoto , Sequenciamento do Exoma , Variações do Número de Cópias de DNA , Proteínas de Homeodomínio/genética , Deleção de Sequência , Mutação/genética , Aminoácidos/genética
19.
J Assist Reprod Genet ; 39(3): 757-764, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35166991

RESUMO

PURPOSE: To evaluate the unknown genetic causes of teratozoospermia, and determine the pathogenicity of candidate variants. METHODS: A primary infertile patient and his family members were recruited in the West China Second University Hospital of Sichuan University. Whole-exome sequencing was performed to identify causative genes in a man with teratozoospermia. Immunofluorescence staining and western blotting were applied to assess the pathogenicity of the identified variant. Intracytoplasmic sperm injection (ICSI) was used to assist fertilization for the patient with teratozoospermia. RESULTS: We performed whole-exome sequencing (WES) and detected a novel homozygous frameshift mutation of c.335_336del [p.E112Vfs*3] in DNAJB13 on a primary infertile male patient. Intriguingly, we identified abnormal sperm morphology in this patient, with recurrent respiratory infections and chronic cough. Furthermore, we confirmed that this mutation resulted in negative effects on DNAJB13 expression in the spermatozoa of the affected individual, causing ultrastructural defects in his sperm. Remarkably, our staining revealed that DNAJB13 was expressed in the cytoplasm of primary germ cells and in the flagella of spermatids during spermiogenesis in humans and mice. Finally, we are the first group to report a favorable prognosis using ICSI for a patient carrying this DNAJB13 mutation. CONCLUSION: Our study revealed a novel homozygous frameshift mutation of c.335_336del [p.E112Vfs*3] in DNAJB13 involved in teratozoospermia phenotype. Our study greatly expands the spectrum of limited DNAJB13 mutations, and is expected to provide a better understanding of genetic counseling diagnoses and subsequent treatment of male infertility.


Assuntos
Infertilidade Masculina , Teratozoospermia , Animais , Proteínas Reguladoras de Apoptose/genética , Axonema/genética , Humanos , Infertilidade Masculina/terapia , Masculino , Camundongos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Espermatozoides/metabolismo , Teratozoospermia/genética , Teratozoospermia/metabolismo
20.
Int J Neurosci ; : 1-11, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36282036

RESUMO

Background: Hereditary sensory and autonomic neuropathies (HSANs) are rare heterogeneous group of neurological disorders caused by peripheral nerve deterioration. The HSANs sub-clinical classes have clinical and genetic overlap which often lead to misdiagnosis. In the present study a Pakistani family with five affected members suffering from severe neuropathy were genetically analyzed to identify the disease causative element in the family.Methods: Genome wide high-density single nucleotide polymorphism (SNP) microarray analysis was carried out followed by whole exome sequencing of the affected proband and another affected sibling. Shared homozygous regions in all severely affected members were identified through homozygosity mapping approach.Results: The largest homozygous region of 14.1 Mb shared by the five severely affected members of the family was identified on chromosome 2. Subsequent exome sequencing identified a novel single nucleotide deletion c.2658del; p.(Ser887Profs*64) in KIF1A. Segregation analysis revealed that this mutation was homozygous in all five affected individuals of the family with severe clinical manifestation, while members of the family that were heterozygous carriers shared abnormal skin features (scaly skin) only with the homozygous affected members.Conclusions: A novel frameshift mutation p.(Ser887Profs*64) in KIF1A is the potential cause of severe HSANIIC in a Pakistani family along with incomplete penetrance in mutation carriers. We demonstrate that using a combination of different techniques not only strengthens the gene finding approach but also helps in proper sub-clinical characterization along with identification of mutated alleles exhibiting incomplete penetrance leading to intrafamilial clinical variability in HSAN group of inherited diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA