Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(24): e2122808119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35666864

RESUMO

Deploying toxins in complex mixtures is thought to be advantageous and is observed during antagonistic interactions in nature. Toxin mixtures are widely utilized in medicine and pest control, as they are thought to slow the evolution of detoxification counterresponses in the targeted organisms. Here we show that caterpillars rearrange key constituents of two distinct plant defense pathways to postingestively disable the defensive properties of both pathways. Specifically, phenolic esters of quinic acid, chlorogenic acids (CAs), potent herbivore and ultraviolet (UV) defenses, are reesterified to decorate particular sugars of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) and prevent their respective anti­herbivore defense functions. This was discovered through the employment of comparative metabolomics of the leaves of Nicotiana attenuata and the frass of this native tobacco's specialist herbivore, Manduca sexta larvae. Feeding caterpillars on leaves of transgenic plants abrogated in each of the two pathways, separately and together, revealed that one of the fully characterized frass conjugates, caffeoylated HGL-DTG, originated from ingested CA and HGL-DTGs and that both had negative effects on the defensive function of the other compound class, as revealed by rates of larval mass gain. This negative defensive synergy was further explored in 183 N. attenuata natural accessions, which revealed a strong negative covariance between the two defense pathways. Further mapping analyses in a biparental recombinant inbred line (RIL) population imputed quantitative trait loci (QTLs) for the two pathways at distinct genomic locations. The postingestive repurposing of defense metabolism constituents reveals a downside of deploying toxins in mixtures, a downside which plants in nature have evolved to counter.


Assuntos
Manduca , Animais , Herbivoria , Insetos/metabolismo , Larva/metabolismo , Manduca/metabolismo , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
2.
Glob Chang Biol ; 30(3): e17241, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38525809

RESUMO

Recent work has shown the decline of insect abundance, diversity and biomass, with potential implications for ecosystem services. These declines are especially pronounced in regions with high human activity, and urbanization is emerging as a significant contributing factor. However, the scale of these declines and the traits that determine variation in species-specific responses remain less well understood, especially in subtropical and tropical regions, where insect diversity is high and urban footprints are rapidly expanding. Here, we surveyed moths across an entire year in protected forested sites across an urbanization gradient to test how caterpillar and adult life stages of subtropical moths (Lepidoptera) are impacted by urbanization. Specifically, we assess how urban development affects the total biomass of caterpillars, abundance of adult moths and quantify how richness and phylogenetic diversity of macro-moths are impacted by urban development. Additionally, we explore how life-history traits condition species' responses to urban development. At the community level, we find that urban development decreases caterpillar biomass and adult moth abundance. We also find sharp declines of adult macro-moths in response to urban development across the phylogeny, leading to a decrease in species richness and phylogenetic diversity in more urban sites. Finally, our study found that smaller macro-moths are less impacted by urban development than larger macro-moths in subtropical environments, perhaps highlighting the tradeoffs of metabolic costs of urban heat favoring smaller moths over the relative benefits of dispersal for larger moths. In summary, our research underscores the far-reaching consequences of urbanization on moths and provides compelling evidence that urban forests alone may not be sufficient to safeguard biodiversity in cities.


Assuntos
Ecossistema , Mariposas , Animais , Humanos , Urbanização , Larva , Filogenia , Biodiversidade , Insetos
3.
Biopolymers ; : e23616, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031485

RESUMO

Polymer composites are known for its light weight and specific mechanical characteristics. This study examines sodium hydroxide (NaOH)-treated coir fiber, an agro-leftover, stuffed in a polyester matrix with termite frass powder, a bio-leftover for possible use in light-weight structural applications. Composite samples were made using compression molding and NaOH-treated coir fiber reinforced hybrid polymer composite (TCRHPC) with 40 wt% treated coir fiber and 1, 2, 3, and 4 wt% termite frass powder. TCRHPC samples mechanical, water captivation, tribological, and thermal properties were affected by termite frass powder wt%. The TCRHPC sample with 3 wt% termite frass powder has excellent mechanical properties, which improved by tensile (41.6%), flexural (28.57%), impact (43.7%), and hardness (18.84%) properties. With perfect water captivation and low weight increases in normal water (0.017 g), seawater (0.015 g), and NaOH solution (0.010 g), the identical composite sample with thermal stability up to 238°C also reduced wear mass by 5.27%. Conversely, filler agglomeration and heterogeneous dispersion in composite sample impair thermo-mechanical characteristics of TCRHPC containing 4 wt% termite frass powder. The bonding among polyester, treated coir fiber, and termite frass powder in composites were appraised with the aid of fractographic images of TCRHPC samples. The results show that TCRHPC material suits well for support structures requiring lesser weight.

4.
J Environ Manage ; 367: 121997, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39111002

RESUMO

Using Hermetia illucens, or Black Soldier Fly (BSF) frass as an organic fertilizer is becoming increasingly popular in many countries. As a byproduct derived from BSF larvae that feed on organic waste, BSF frass has tremendous potential for preserving the environment and promoting the circular economy. Since it has diverse biochemical properties influenced by various production and environmental factors, further research is needed to evaluate its potential for extensive use in crop production and agriculture. Our review summarizes recent findings in BSF frass research by describing its composition and biochemical properties derived from various studies, including nutrient contents, biostimulant compounds, and microbial profiles. We also discuss BSF frass fertilizers' effectiveness on plant growth and contribution to environmental sustainability. Great compositions of BSF frass increase the quality of plants/crops by establishing healthy soil and improving the plants' immune systems. Special emphasis is given to potentially replacing conventional fertilizer to create a more sustainable cropping system via organic farming. Besides, we discuss the capability of BSF bioconversion to reduce greenhouse gas emissions and improve the socioeconomic aspect. The prospects of BSF frass in promoting a healthy environment by reducing greenhouse gas emissions and improving the socioeconomic aspects of communities have also been highlighted. Overall, BSF frass offers an alternative approach that can be integrated with conventional fertilizers to optimize the cropping system. Further studies are needed to fully explore its potential in establishing sustainable system that can enhance socioeconomic benefits in the future.


Assuntos
Fertilizantes , Animais , Solo/química , Simuliidae/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos
5.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37991229

RESUMO

Two strains (NYNU 218101 and NYNU 218104) of an asexual yeast species were isolated from insect frass collected in insect tunnels of red leaf plum trees in the Henan Province, central China. Molecular phylogenetic analysis of the D1/D2 domain of the large subunit rRNA gene and the internal transcribed spacer (ITS) region showed that these two strains belonged to the genus Danielozyma, with Danielozyma litseae as the closest known species. They differed from the type strain of D. litseae by 0.6 % substitutions (three substitutions and one gap) in the D1/D2 domain and by 5.1 % substitutions (19 substitutions and six gaps) in the ITS region, respectively. When compared with the partial ACT1, TEF1 and RPB1 gene sequences, they differed by 3 % (26 substitutions), 2.7 % (25 substitutions) and 9 %(54 substitutions) from D. litseae NRRL YB-3246T in these regions. Physiologically, they also differed from its closest known species D. litseae based on the ability to assimilate inulin and galactitol, as well as to grow in 0.1 % cycloheximide and its inability to ferment maltose and raffinose. In order to classify the two new isolates based on morphological and molecular evidence, we proposed the description of a novel species Danielozyma pruni sp. nov. with strain JCM 35735T as holotype (Mycobank MB 849101).


Assuntos
Ácidos Graxos , Saccharomycetales , Animais , Filogenia , DNA Espaçador Ribossômico/genética , DNA Fúngico/genética , Análise de Sequência de DNA , Técnicas de Tipagem Micológica , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Insetos
6.
Trop Anim Health Prod ; 55(6): 422, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38012359

RESUMO

This study aimed to evaluate the potential use of bioconverted cacao pod (BCP) as a substitute for forage in the total mixed ration (TMR) for a small ruminant. In the in vitro experiment, the control TMR (30% forage and 70% concentrate) was substituted with two different levels of BCP (15% and 30%) and two different types of BCP ( BCP-pc and BCP-tv). Based on the in vitro evaluation, the best ration was then chosen for the in vivo experiment, in which male goats were fed a control TMR, the TMR containing 15% BCP-pc (RC), and TMR containing 15% bioconverted palm kernel meal (RP). The results showed that TMRs with 15% BCP-pc and BCP-tv substitution had significantly lower gas production and digestibility than the control ration. However, the TMR with 15% or 30% BCP substitution showed no significant difference in rumen fermentation characteristics, methane production, and total protozoa. In the in vivo experiment, the RC showed no significant difference in all nutrient intakes, the average daily gain of animals, feed conversion ratio value, and crude fiber digestibility but reduced dry and organic matter digestibility. In comparison, the RP resulted in reduced parameters. Therefore, the study concluded that BCP-pc at a level of 15% could be used as a substitute for forage in TMR for male goats without compromising the fermentability of rumen, nutrient intakes, and their average daily gain and feed conversion ratio. Overall, this study suggests the potential of BCP-pc as an alternative feed ingredient.


Assuntos
Cacau , Dieta , Masculino , Animais , Dieta/veterinária , Digestão , Ração Animal/análise , Cabras , Rúmen/metabolismo , Fermentação , Silagem/análise
7.
Trop Anim Health Prod ; 55(2): 106, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36881277

RESUMO

Frass is the main component of worm by-product which exhibit anti-microbial and anti-pathogenic properties. In the present study, we assessed the possibility of mealworm frass in sheep feeding regime and evaluated its effect on health and growth performance of sheep. A total of 09 experimental sheep (18-24 months of age) were grouped into three categories (T1, T3, and T3); each group comprised 3 animals including 2 males and 1 female. Group T1 was considered control, group T2 contains 75% commercial feed and 25 mealworm frass, and T3 was 50:50 of commercial feed and mealworm frass. The sheep in group T2 showed average weight gain of 2.9 kg; however, when the dietary inclusion increased up to 50% of mealworm frass or decreased up to 50% of concentrate feed, the average weight gain decreased up to 2.01 kg (group T3). Moreover, the sheep fed with 25% mealworm frass exhibited the lowest feed refusal percentage (6.33%) in total duration of the dietary period (6 weeks). The highest volume of RBC was found in blood collected from sheep fed within group T2 (10.22 1012/L ± 0.34), followed by sheep fed in group T3 (8.96 × 1012/L ± 0.99) (P < 0.05). Significantly (P < 0.05) highest MCV volume in fL (femtoliter) was found in group T2 (32.83 ± 0.44) followed by group T3 (31.23 ± 0.23). The animals in group T3 showed significantly (P < 0.05) highest MCHC volume (40.47 g/dL ± 0.62) followed by group T2 (38.77 ± 0.97). Similar trend was found in MPV (fL); significantly (P < 0.05) highest MPV volume was found in group T3 (12.63 ± 0.09) followed by group T2 (12.53 ± 0.33). Significantly (P < 0.05) high serum phosphorous (P) (6.00 ± 0.29), TG (60.03 ± 3.11), and TP (7.63 g/dL ± 0.23) levels were found in group T3, followed by animals in group T2. We can conclude that inclusion of mealworm frass to replace 25% commercial concentrate feed improved the growth rate and overall health status of the sheep. The present study laid a foundation for the utilization of the mealworm frass (waste product) in ruminant feeding.


Assuntos
Hematologia , Tenebrio , Feminino , Masculino , Ovinos , Animais , Dieta/veterinária , Fósforo , Aumento de Peso
8.
Waste Manag Res ; 41(9): 1435-1444, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36951008

RESUMO

Black soldier fly larvae (BSFL) hold great promise for sustainable management of meat and bone meal (MBM), a kind of organic waste. Harvested BSFL frass can be used as soil amendment or organic fertilizer. This study evaluated the quality and microbial profile in the frass of BSFL, fed with fish MBM containing 0% (CK), 1% (T1), 2% (T2) and 3% (T3) of rice straw. Results suggested straw addition into fish MBM had no significant impacts on BSFL weight; however, straw addition remarkably affected waste reduction and conversion efficiency, as well as physicochemical properties including electric conductivity, organic matter (OM) and total phosphorus contents in frass. Fourier transform infrared analysis indicated that increasing levels of cellulose and lignin might not be fully degraded or transformed by BSFL when more straw was introduced into substrates. Straw addition had hardly significant influences on microbial richness or evenness in BSFL frass, only T3 treatment remarkably elevated the phylogenetic diversity value more than the control. Bacteroidetes, Proteobacteria, Actinobacteria and Firmicutes were the most dominant phyla. Genera Myroides, Acinetobacter and Paenochrobactrum maintained high abundances in all frass samples. Elements including OM, pH and Na were key factors in shaping the microbiological characteristics of BSFL frass. Our findings helped to understand the effects of fish MBM waste manipulation on BSFL frass qualities and contributed to the further application of BSFL frass.


Assuntos
Dípteros , Animais , Larva , Filogenia , Carne
9.
Artigo em Inglês | MEDLINE | ID: mdl-35037847

RESUMO

Seven yeast strains, representing a single novel anamorphic species, were isolated in Thailand. They consisted of five strains (DMKU-MRY16T, DMKU-SK18, DMKU-SK25, DMKU-SK30 and DMKU-SK32) obtained from five different mushrooms, and two strains (ST-224 and 11-14.2) derived from insect frass and soil, respectively. The pairwise sequence analysis indicated that all seven strains had identical sequences in the D1/D2 domains of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region. Metahyphopichia silvanorum was the most closely related species, but with 11.9-12.4% nucleotide substitutions in the D1/D2 domains of the LSU rRNA gene and 13.1-13.3% nucleotide substitutions in the ITS region. The phylogenetic analyses based on the concatenated sequences of the ITS region and the D1/D2 domains of the LSU rRNA gene showed that the seven strains form a well-separated subclade in a clade containing M. silvanorum and Metahyphopichia laotica with high bootstrap support. A phylogenetic analysis of a multilocus dataset including the small subunit (SSU) rRNA gene, the ITS region, the D1/D2 domains of the LSU rRNA gene, translation elongation factor 1-alpha gene, actin gene and the RNA polymerase II subunit 2 gene, confirmed the presence of the monophyletic clade that also includes M. silvanorum and M. laotica, and strongly supported the phylogenetic isolation of the seven strains from its neighbouring species. Therefore, the seven strains were assigned as a single novel species of the genus Metahyphopichia, according to their phylogenetic relationships. The name Metahyphopichia suwanaadthiae sp. nov. is proposed to accommodate the seven strains. The holotype is DMKU-MRY16T (TBRC 11775T=NBRC 114386T=PYCC 8655T). The MycoBank number of the novel species is MB 841280. In addition, Candida silvanorum is reassigned to the genus Metahyphopichia. The MycoBank number of M. silvanorum comb. nov. is MB 841279.


Assuntos
Candida/classificação , Filogenia , Saccharomycetales , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Técnicas de Tipagem Micológica , RNA Ribossômico 16S/genética , Saccharomycetales/classificação , Saccharomycetales/isolamento & purificação , Análise de Sequência de DNA , Tailândia
10.
J Environ Manage ; 307: 114579, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078063

RESUMO

Meat and bone meal (MBM) is a kind of animal waste with high nutritive values. Bioconversion of MBM by black soldier fly larvae (BSFL) has great potential to obtain high-quality organic fertilizers. However, limited information is available on MBM waste manipulation to enhance BSFL frass quality. In the present study, BSFL were fed with chicken MBM containing increasing levels of rice straw (CK (0%), T1 (1%), T2 (1%), and T3 (3%)). The effects of straw addition into MBM on the quality and microbial profile of BSFL frass were evaluated. Results showed that MBM amended with straw did not significantly affect the body weight of BSFL and most of the nutrients (e.g. pH, EC, TN, TP and Na) in larval frass. Compared to other treatments, T1 sample had the highest organic matter (OM) value, implying proper straw addition could increase OM contents in frass. Fourier transform infrared (FTIR) analysis showed that straw addition might enhance the decomposition of aliphatic carbons and polysaccharides during MBM digestion process. Moreover, T1 sample had the highest microbial richness and Shannon diversity indices. It was supposed that proper straw addition in MBM helped build a more balanced diet and contributed to the BSFL gut health, consequently stimulating the gut microbe-mediated substances transformation or decomposition and promoting the microbial diversity in frass. Compared to CK, straw addition had significant influence on the abundances of Firmicutes, Bacteroidetes and Fusobacteria in frass. Elements including OM, TK and Na played important roles in shaping the microbial profile of BSFL frass.


Assuntos
Galinhas , Dípteros , Animais , Produtos Biológicos , Larva , Carne , Minerais
11.
Int J Trop Insect Sci ; 42(5): 3357-3362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755798

RESUMO

A 10-day trial was conducted to compare the production and fatty acid composition of black soldier fly (Hermetia illucens) larvae (BSFL) when grown without or with cardboard supplementation at 2.2% on a dry weight basis. The final biomass of BSFL or waste reduction was not significantly impacted by cardboard. The fatty acids of C10 and C22:6n-3 were significantly higher in BSFL in the cardboard treatment, but crude lipid significantly reduced. The leftover BSFL frass had significantly higher sulfur, zinc, manganese and boron at the expense of lower nitrogen (91.2% versus 8.73% in control versus cardboard, respectively). These preliminary results appear to indicate that the growth and nutritional value of BSFL were not adversely compromised while the frass can be enhanced by adding relatively small amounts (2.2%) of cardboard. Further studies could be conducted to investigate the implications of higher inclusion levels.

12.
Bull Entomol Res ; 111(2): 153-159, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32744195

RESUMO

Primary pests such as Rhyzoperta dominica may increase the contents of dockage, dust, and frass in grain mass. Although it has been suggested that frass can affect the population growth of stored product pests and ecological interactions among primary and secondary pests in stored grain, this has not been validated experimentally. Therefore, this work experimentally tested the hypothesis that R. dominica wheat frass may support population increases in secondary pests such as Tribolium confusum, T. castaneum, and Oryzaephilus surinamensis for the first time. The effect of frass on secondary pest performance was compared with the effects of various physical qualities of wheat grain (i.e., intact grain kernels, grain fragments, flour, grain + frass) and an artificially enriched control diet (milled wheat kernels, oat flakes, and yeast). The results showed that the clean intact grain kernels did not support the population growth of any tested species, and the nutrient-rich control diet provided the best support. Frass was a significantly better food medium for O. surinamensis and T. castaneum than flour or cracked grain, while T. confusum performed equally well on flour and frass. Our results showed that in terms of food quality and suitability for the tested species, frass occupied an intermediate position between the optimized breeding diet and simple uniform cereal diets such as cracked grain or flour. The results suggest that (i) the wheat frass of primary pest R. dominica is a riskier food source for the development of the tested secondary pests than intact or cracked wheat grain or flour; (ii) frass has the potential to positively influence interspecific interactions between R. dominica and the tested secondary pests; and (iii) wheat grain should be cleaned if increases in R. dominica populations and/or accumulated frass are detected.


Assuntos
Besouros/fisiologia , Grão Comestível , Armazenamento de Alimentos/métodos , Animais , Comportamento Alimentar , Controle de Pragas/métodos
13.
Environ Monit Assess ; 193(8): 480, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34240260

RESUMO

The study evaluates Hermetia illucens larvae's ability to decrease direct methane emissions and nutrients from cattle and swine manure. Hermetia illucens larvae were put into fresh cattle and swine manure, and the same conditions, without larvae, for the control treatment were established. The methane emissions were measured until the first prepupae appeared. The methane emissions from the bioconversion of animal manure by Hermetia illucens larvae were up to 86% lower than in the control treatments (conventional storage). The cumulative methane emissions from cattle and swine manure bioconversion were 41.4 ± 10.5 mg CH4 kg-1 and 134.2 ± 17.3 mg CH4 kg-1, respectively. Moreover, Hermetia illucens larvae could reduce 32% of dry matter, 53% nitrogen, 14% phosphorus, and 42% carbon in swine manure. Meanwhile, in cattle manure, reductions of 17% of dry matter, 5% of nitrogen, 11% of phosphorus, and 15% of carbon and pH reductions in both swine and cattle manure were found. Thus, the production of larvae was higher in swine manure than cattle manure. Furthermore, the larvae frass from swine manure was appropriate for agricultural use, unlike the larvae frass from cattle manure requiring further processing. These results reveal the ability of Hermetia illucens larvae to mitigate methane emissions from animal manure and show it to be a promising technology for manure treatment, with great potential to promote a circular economy in the livestock sector.


Assuntos
Dípteros , Esterco , Animais , Bovinos , Monitoramento Ambiental , Larva , Metano , Suínos
14.
J Chem Ecol ; 46(1): 76-83, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31845135

RESUMO

Multiple species of phytophagous insects may co-occur on a plant and while plants can defend themselves from insect herbivory, plant responses to damage by different species and feeding guilds of insects may be asymmetric. Plants can trigger specific responses to elicitors/effectors in insect secretions altering herbivore performance. Recently, maize chitinases present in fall armyworm (FAW, Spodoptera frugiperda) frass were shown to act as effectors suppressing caterpillar-induced defenses in maize while increasing caterpillar performance. We investigated the effect of frass chitinase-mediated suppression of herbivore defenses in maize on the performance and preference of a subsequent insect herbivore from a different feeding guild, corn leaf aphid (Rhopalosiphum maidis). Aphid performance was highest on plants with FAW damage without frass chitinases compared to damaged plants with frass chitinases or undamaged plants. Plant exposure to frass chitinases post FAW damage also altered the production of herbivore-induced volatile compounds compared to damaged, buffer-treated plants. However, aphid preference to damaged, frass chitinase-treated plants was not different from damaged, buffer-treated plants or undamaged plants. This study suggests that frass effector-mediated alteration of plant defenses affects insect herbivores asymmetrically; while it enhances the performance of caterpillars, it suppresses the performance of subsequent herbivores from a different feeding guild.


Assuntos
Afídeos/fisiologia , Herbivoria/fisiologia , Zea mays/química , Animais , Afídeos/crescimento & desenvolvimento , Quitinases/metabolismo , Quitinases/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Larva/fisiologia , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Spodoptera/fisiologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Zea mays/metabolismo
15.
J Insect Sci ; 20(5)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32960967

RESUMO

To meet the growing demand for an alternative animal protein source, the Black Soldier Fly (BSF) (Hermetia illucens) industry is expanding. Thus, the valuation of its byproducts, foremost BSF frass, is getting more economic and ecological weight. Three different residues, BSF frass, larval skins, and dead adult flies, were compared with a mineral and an organic commercial fertilizer in a pot trial with maize (Zea mays L., [Poales: Poaceae]). byproducts were applied in three nutrient-based application rates (180; 215 kg N/ha; 75 kg P2O5/ha), and plant nutrients, physiological and yield parameters were measured at harvest date. Ground flies had the highest N-fertilizing effect of all byproducts, similar to commercial mineral and organic fertilizers used as controls, whereas its proportion of the BSF production systems' output is low. Frass as the abundant byproduct showed comparably low N-fertilization effects. Its low N availability was attributed to volatilization losses, mainly driven by high pH and ammonium contents. BSF frass as the main byproduct output is more suited as a basic fertilizer or potting substrate amendment than as a short-term organic fertilizer. Postprocessing of frass seems reasonable. For a profound assessment of frass as fertilizer, several aspects (e.g., the overall impact of postprocessing, plant strengthening and plant protection potential, effects on microbial processes) must be clarified.


Assuntos
Dípteros/fisiologia , Fertilizantes , Larva/crescimento & desenvolvimento , Nitrogênio/metabolismo , Fósforo/metabolismo , Zea mays/efeitos dos fármacos , Animais , Dípteros/crescimento & desenvolvimento , Larva/fisiologia , Zea mays/crescimento & desenvolvimento
16.
J Insect Sci ; 20(3)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32593171

RESUMO

Large-scale insect rearing for food and feed production can be improved by understanding diet digestion and host-microbe interactions. To examine these processes in black soldier fly (Hermetia illucens L.; Diptera: Stratiomyidae) larvae, two protocols were developed. Protocol 1 describes a method to produce viable, sterile black soldier fly larvae and a gentle method for diet sterilization. Sterile black soldier fly larvae can be used to study the diverse role of microbes in larval development. Nutrient requirements of sterile black soldier fly larvae are met only through diet. Viable sterile black soldier fly larvae were consistently generated using a four-step treatment with alternating immersions of eggs for 2 min each in ethanol (70%) and sodium hypochlorite (0.6%), over two cycles. A nonthermal method of diet sterilization, namely high-energy electron beam (HEEB) treatment, was introduced. Subsequently, growth of sterile black soldier fly larvae was observed on the HEEB-treated diets (40, 60, and 40% of replicates with poultry feed, liver pie, and an artificial diet, respectively) but not on autoclaved diets. In Protocol 2, we propose a novel method to collect frass from individual larvae. We then measured the metabolites in frass, using high-pressure liquid chromatography. Results on metabolites confirmed the influence of digestion. For instance, succinate increased from 1 to 2 and 7 µmol/g sample from diet to gut homogenate and frass, respectively. The collection method is a promising tool to estimate the diet and nutrient requirements of black soldier fly larvae, thus increasing the performance and reliability of black soldier fly larvae rearing. We discuss in detail the possible applications and limitations of our methods in black soldier fly larvae research.


Assuntos
Digestão , Dípteros/fisiologia , Entomologia/métodos , Interações entre Hospedeiro e Microrganismos , Animais , Dieta , Dípteros/crescimento & desenvolvimento , Dípteros/microbiologia , Entomologia/instrumentação , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/fisiologia , Reprodutibilidade dos Testes
17.
J Sci Food Agric ; 100(12): 4618-4626, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32419145

RESUMO

BACKGROUND: Insect biomass is a sustainable alternative to traditional animal feeds, particularly when insects are produced on low-value high-volume agricultural by-products. Seven samples of almond by-product (hulls and shells) were obtained from processors in California and investigated for larvae production. Experiments were completed with and without larvae and spent substrate samples were assessed for their potential as soil amendments based on standard compost quality indicators. RESULTS: On average, specific larvae growth and average larval harvest weight were 158% and 109% higher, respectively, when larvae were reared on Monterey and pollinator hulls compared to nonpareil hulls and mixed shells. Larvae methionine and cystine contents were highest when larvae were reared on Monterey hulls and mixed shells, respectively. Available phytonutrients in spent substrate were affected by feedstock sample and larvae rearing. Spent nonpareil substrate without larvae had the highest NH4 -N levels and spent pollinator substrate incubated without larvae had the highest PO4 -P levels. Spent mixed shell substrate had the lowest availability of phytonutrients. CONCLUSION: The findings demonstrate that by-product composition has a significant impact on larvae growth and the properties of the spent substrate, and that spent substrate from larvae rearing requires further stabilization before application as a soil amendment. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ração Animal/análise , Dípteros/metabolismo , Prunus dulcis/química , Prunus dulcis/metabolismo , Resíduos/análise , Animais , Dípteros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/metabolismo , Sementes/química , Sementes/metabolismo , Solo/química
18.
Ecol Appl ; 28(5): 1143-1156, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29679462

RESUMO

Urbanization can have marked effects on plant and animal populations' phenology, population size, predator-prey, interactions and reproductive success. These aspects are rarely studied simultaneously in a single system, and some are rarely investigated, e.g., how insect phenology responds to urban development. Here, we study a tri-trophic system of trees, phytophagous insects (caterpillars), and insectivorous birds (Great Tits) to assess how urbanization influences (1) the phenology of each component of this system, (2) insect abundance, and (3) avian reproductive success. We use data from two urban and two forest sites in Hungary, central Europe, collected over four consecutive years. Despite a trend of earlier leaf emergence in urban sites, there is no evidence for an earlier peak in caterpillar abundance. Thus, contrary to the frequently stated prediction in the literature, the earlier breeding of urban bird populations is not associated with an earlier peak in caterpillar availability. Despite this the seasonal dynamics of caterpillar biomass exhibited striking differences between habitat types with a single clear peak in forests, and several much smaller peaks in urban sites. Caterpillar biomass was higher in forests than urban areas across the entire sampling period, and between 8.5 and 24 times higher during the first brood's chick-rearing period. This higher biomass was not associated with taller trees in forest sites, or with tree species identity, and occurred despite most of our focal trees being native to the study area. Urban Great Tits laid smaller clutches, experienced more frequent nestling mortality from starvation, reared fewer offspring to fledging age, and their fledglings had lower body mass. Our study strongly indicates that food limitation is responsible for lower avian reproductive success in cities, which is driven by reduced availability of the preferred nestling diet, i.e., caterpillars, rather than phenological shifts in the timing of peak food availability.


Assuntos
Cadeia Alimentar , Mariposas/fisiologia , Reprodução , Aves Canoras/fisiologia , Urbanização , Animais , Hungria , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Densidade Demográfica , Dinâmica Populacional , Estações do Ano
19.
J Appl Microbiol ; 123(4): 944-955, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28736890

RESUMO

AIM: Insect frass samples were collected from Drosophila melanogaster, Plodia interpunctella, Rhyzopertha dominica, Sitophilus granarius, Sitophilus oryzae, Sitophilus zeamais, Tribolium confusum and Tribolium castaneum to elucidate if they can be the origin of Type I sourdough micro-organisms (Lactobacillus sanfranciscensis and Candida milleri). METHODS AND RESULTS: Selective enrichments were carried out to isolate lactic acid bacteria (LBA) and yeast. A metagenetic analysis, targeted on bacterial 16S rRNA gene and fungal ITS region, was performed by using Illumina MiSeq protocol. In cultivation conditions, Lactococcus garvieae and Rhodotorula mucilaginosa were the most frequently species among LAB and yeasts respectively. The Next Generation Sequencing approach revealed that Enterobacteriaceae, Pseudomonadacae and Bacillaceae were the dominating taxa, accounting for 61% of the bacterial community. Lactobacillus genus showed a relative abundance of only 0·36%, but L. sanfranciscensis proved to be the species most frequent between lactobacilli and predominant in faecal samples of T. castaneum and T. confusum larvae. The core fungal microbiota was constituted by Saccharomycetales, Pleosporaceae and Nectriaceae that attained the 51% of recognized OTUs. While the most abundant yeast genus was Candida (17·1%), sequences belonging to C. milleri were not found. CONCLUSIONS: Frass released by the insects of stored cereal products can be the natural reservoir of L. sanfranciscensis. SIGNIFICANCE AND IMPACT OF THE STUDY: Insect dejections are potential sources of novel strains for controlled bakery productions.


Assuntos
Pão/microbiologia , Insetos/microbiologia , Lactobacillus/isolamento & purificação , Animais , Candida/genética , Candida/isolamento & purificação , Ecossistema , Grão Comestível/microbiologia , Fermentação , Sequenciamento de Nucleotídeos em Larga Escala , Lactobacillales/genética , Lactobacillales/isolamento & purificação , Lactobacillus/genética , RNA Ribossômico 16S/genética , Saccharomyces cerevisiae/genética
20.
J Chem Ecol ; 42(11): 1130-1141, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27704315

RESUMO

Plant defenses to insect herbivores have been studied in response to several insect behaviors on plants such as feeding, crawling, and oviposition. However, we have only scratched the surface about how insect feces induce plant defenses. In this study, we measured frass-induced plant defenses in maize, rice, cabbage, and tomato by chewing herbivores such as European corn borer (ECB), fall armyworm (FAW), cabbage looper (CL), and tomato fruit worm (TFW). We observed that caterpillar frass induced plant defenses are specific to each host-herbivore system, and they may induce herbivore or pathogen defense responses in the host plant depending on the composition of the frass deposited on the plant, the plant organ where it is deposited, and the species of insect. This study adds another layer of complexity in plant-insect interactions where analysis of frass-induced defenses has been neglected even in host-herbivore systems where naturally frass accumulates in enclosed feeding sites over extended periods of time.


Assuntos
Magnoliopsida/fisiologia , Spodoptera/fisiologia , Animais , Brassica/química , Brassica/microbiologia , Brassica/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Frutas/química , Herbivoria , Larva/efeitos dos fármacos , Solanum lycopersicum/química , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Magnoliopsida/química , Magnoliopsida/microbiologia , Oryza/química , Oryza/microbiologia , Oryza/fisiologia , Folhas de Planta/química , Spodoptera/efeitos dos fármacos , Zea mays/química , Zea mays/microbiologia , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA