Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 862
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38976973

RESUMO

Joint attention is an indispensable tool for daily communication. Abnormalities in joint attention may be a key reason underlying social impairment in schizophrenia spectrum disorders. In this study, we aimed to explore the attentional orientation mechanism related to schizotypal traits in a social situation. Here, we employed a Posner cueing paradigm with social attentional cues. Subjects needed to detect the location of a target that is cued by gaze and head orientation. The power in the theta frequency band was used to examine the attentional process in the schizophrenia spectrum. There were four main findings. First, a significant association was found between schizotypal traits and attention orientation in response to invalid gaze cues. Second, individuals with schizotypal traits exhibited significant activation of neural oscillations and synchrony in the theta band, which correlated with their schizotypal tendencies. Third, neural oscillations and synchrony demonstrated a synergistic effect during social tasks, particularly when processing gaze cues. Finally, the relationship between schizotypal traits and attention orientation was mediated by neural oscillations and synchrony in the theta frequency band. These findings deepen our understanding of the impact of theta activity in schizotypal traits on joint attention and offer new insights for future intervention strategies.


Assuntos
Atenção , Sinais (Psicologia) , Esquizofrenia , Ritmo Teta , Humanos , Masculino , Feminino , Ritmo Teta/fisiologia , Atenção/fisiologia , Adulto Jovem , Esquizofrenia/fisiopatologia , Adulto , Eletroencefalografia , Transtorno da Personalidade Esquizotípica/fisiopatologia , Psicologia do Esquizofrênico
2.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39152674

RESUMO

Autism spectrum disorder stands as a multifaceted and heterogeneous neurodevelopmental condition. The utilization of functional magnetic resonance imaging to construct functional brain networks proves instrumental in comprehending the intricate interplay between brain activity and autism spectrum disorder, thereby elucidating the underlying pathogenesis at the cerebral level. Traditional functional brain networks, however, typically confine their examination to connectivity effects within a specific frequency band, disregarding potential connections among brain areas that span different frequency bands. To harness the full potential of interregional connections across diverse frequency bands within the brain, our study endeavors to develop a novel multi-frequency analysis method for constructing a comprehensive functional brain networks that incorporates multiple frequencies. Specifically, our approach involves the initial decomposition of functional magnetic resonance imaging into distinct frequency bands through wavelet transform. Subsequently, Pearson correlation is employed to generate corresponding functional brain networks and kernel for each frequency band. Finally, the classification was performed by a multi-kernel support vector machine, to preserve the connectivity effects within each band and the connectivity patterns shared among the different bands. Our proposed multi-frequency functional brain networks method yielded notable results, achieving an accuracy of 89.1%, a sensitivity of 86.67%, and an area under the curve of 0.942 in a publicly available autism spectrum disorder dataset.


Assuntos
Transtorno do Espectro Autista , Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Humanos , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/diagnóstico por imagem , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Masculino , Máquina de Vetores de Suporte , Feminino , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Adulto Jovem , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Análise de Ondaletas , Adulto , Adolescente
3.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38342691

RESUMO

Third-party punishment occurs in interpersonal interactions to sustain social norms, and is strongly influenced by the characteristics of the interacting individuals. During social interactions, height is the striking physical appearance features first observed, height disadvantage may critically influence men's behavior and mental health. Herein, we explored the influence of height disadvantage on third-party punishment through time-frequency analysis and electroencephalography hyperscanning. Two participants were randomly designated as the recipient and third party after height comparison and instructed to complete third-party punishment task. Compared with when the third party's height is higher than the recipient's height, when the third party's height is lower, the punishment rate and transfer amount were significantly higher. Only for highly unfair offers, the theta power was significantly greater when the third party's height was lower. The inter-brain synchronization between the recipient and the third party was significantly stronger when the third party's height was lower. Compared with the fair and medium unfair offers, the inter-brain synchronization was strongest for highly unfair offers. Our findings indicate that the height disadvantage-induced anger and reputation concern promote third-party punishment and inter-brain synchronization. This study enriches research perspective and expands the application of the theory of Napoleon complex.


Assuntos
Eletroencefalografia , Punição , Masculino , Humanos , Punição/psicologia , Relações Interpessoais , Interação Social , Encéfalo
4.
Neuroimage ; 289: 120546, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387743

RESUMO

The neuronal signatures of sensory and cognitive load provide access to brain activities related to complex listening situations. Sensory and cognitive loads are typically reflected in measures like response time (RT) and event-related potentials (ERPs) components. It's, however, strenuous to distinguish the underlying brain processes solely from these measures. In this study, along with RT- and ERP-analysis, we performed time-frequency analysis and source localization of oscillatory activity in participants performing two different auditory tasks with varying degrees of complexity and related them to sensory and cognitive load. We studied neuronal oscillatory activity in both periods before the behavioral response (pre-response) and after it (post-response). Robust oscillatory activities were found in both periods and were differentially affected by sensory and cognitive load. Oscillatory activity under sensory load was characterized by decrease in pre-response (early) theta activity and increased alpha activity. Oscillatory activity under cognitive load was characterized by increased theta activity, mainly in post-response (late) time. Furthermore, source localization revealed specific brain regions responsible for processing these loads, such as temporal and frontal lobe, cingulate cortex and precuneus. The results provide evidence that in complex listening situations, the brain processes sensory and cognitive loads differently. These neural processes have specific oscillatory signatures and are long lasting, extending beyond the behavioral response.


Assuntos
Eletroencefalografia , Potenciais Evocados , Humanos , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Encéfalo/fisiologia , Lobo Frontal , Cognição/fisiologia
5.
Neuroimage ; 285: 120487, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072339

RESUMO

Visuospatial perspective-taking (VPT) is the ability to imagine a scene from a position different from the one used in self-perspective judgments (SPJ). We typically use VPT to understand how others see the environment. VPT requires overcoming the self-perspective, and impairments in this process are implicated in various brain disorders, such as schizophrenia and autism. However, the underlying brain areas of VPT are not well distinguished from SPJ-related ones and from domain-general responses to both perspectives. In addition, hierarchical processing theory suggests that domain-specific processes emerge over time from domain-general ones. It mainly focuses on the sensory system, but outside of it, support for this hypothesis is lacking. Therefore, we aimed to spatiotemporally distinguish brain responses domain-specific to VPT from the specific ones to self-perspective, and domain-general responses to both perspectives. In particular, we intended to test whether VPT- and SPJ specific responses begin later than the general ones. We recorded intracranial EEG data from 30 patients with epilepsy who performed a task requiring laterality judgments during VPT and SPJ, and analyzed the spatiotemporal features of responses in the broad gamma band (50-150 Hz). We found VPT-specific processing in a more extensive brain network than SPJ-specific processing. Their dynamics were similar, but both differed from the general responses, which began earlier and lasted longer. Our results anatomically distinguish VPT-specific from SPJ-specific processing. Furthermore, we temporally differentiate between domain-specific and domain-general processes both inside and outside the sensory system, which serves as a novel example of hierarchical processing.


Assuntos
Eletrocorticografia , Esquizofrenia , Humanos , Encéfalo/fisiologia , Julgamento/fisiologia
6.
J Inherit Metab Dis ; 47(4): 690-702, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38600724

RESUMO

Classical galactosaemia (CG) is a hereditary disease in galactose metabolism that despite dietary treatment is characterized by a wide range of cognitive deficits, among which is language production. CG brain functioning has been studied with several neuroimaging techniques, which revealed both structural and functional atypicalities. In the present study, for the first time, we compared the oscillatory dynamics, especially the power spectrum and time-frequency representations (TFR), in the electroencephalography (EEG) of CG patients and healthy controls while they were performing a language production task. Twenty-one CG patients and 19 healthy controls described animated scenes, either in full sentences or in words, indicating two levels of complexity in syntactic planning. Based on previous work on the P300 event related potential (ERP) and its relation with theta frequency, we hypothesized that the oscillatory activity of patients and controls would differ in theta power and TFR. With regard to behavior, reaction times showed that patients are slower, reflecting the language deficit. In the power spectrum, we observed significant higher power in patients in delta (1-3 Hz), theta (4-7 Hz), beta (15-30 Hz) and gamma (30-70 Hz) frequencies, but not in alpha (8-12 Hz), suggesting an atypical oscillatory profile. The time-frequency analysis revealed significantly weaker event-related theta synchronization (ERS) and alpha desynchronization (ERD) in patients in the sentence condition. The data support the hypothesis that CG language difficulties relate to theta-alpha brain oscillations.


Assuntos
Eletroencefalografia , Galactosemias , Humanos , Feminino , Masculino , Adulto , Adulto Jovem , Galactosemias/fisiopatologia , Encéfalo/fisiopatologia , Encéfalo/metabolismo , Estudos de Casos e Controles , Idioma , Tempo de Reação , Adolescente , Potenciais Evocados P300/fisiologia
7.
Biol Cybern ; 118(1-2): 21-37, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472417

RESUMO

Motor imagery electroencephalogram (EEG) is widely employed in brain-computer interface (BCI) systems. As a time-frequency analysis method for nonlinear and non-stationary signals, multivariate empirical mode decomposition (MEMD) and its noise-assisted version (NA-MEMD) has been widely used in the preprocessing step of BCI systems for separating EEG rhythms corresponding to specific brain activities. However, when applied to multichannel EEG signals, MEMD or NA-MEMD often demonstrate low robustness to noise and high computational complexity. To address these issues, we have explored the advantages of our recently proposed fast multivariate empirical mode decomposition (FMEMD) and its noise-assisted version (NA-FMEMD) for analyzing motor imagery data. We emphasize that FMEMD enables a more accurate estimation of EEG frequency information and exhibits a more noise-robust decomposition performance with improved computational efficiency. Comparative analysis with MEMD on simulation data and real-world EEG validates the above assertions. The joint average frequency measure is employed to automatically select intrinsic mode functions that correspond to specific frequency bands. Thus, FMEMD-based classification architecture is proposed. Using FMEMD as a preprocessing algorithm instead of MEMD can improve the classification accuracy by 2.3% on the BCI Competition IV dataset. On the Physiobank Motor/Mental Imagery dataset and BCI Competition IV Dataset 2a, FMEMD-based architecture also attained a comparable performance to complex algorithms. The results indicate that FMEMD proficiently extracts feature information from small benchmark datasets while mitigating dimensionality constraints resulting from computational complexity. Hence, FMEMD or NA-FMEMD can be a powerful time-frequency preprocessing method for BCI.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Imaginação , Humanos , Eletroencefalografia/métodos , Imaginação/fisiologia , Algoritmos , Processamento de Sinais Assistido por Computador , Análise Multivariada , Encéfalo/fisiologia , Simulação por Computador
8.
Cereb Cortex ; 33(13): 8110-8121, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-36997156

RESUMO

Empirical evidence on error processing comes from the comparison between errors and correct responses in general, but essential differences may exist between different error types. Typically, cognitive control tasks elicit errors without conflicts (congruent errors) and with conflicts (incongruent errors), which may employ different monitoring and adjustment mechanisms. However, the neural indicators that distinguish between both error types remain unclear. To solve this issue, behavioral and electrophysiological data were measured while subjects performed the flanker task. Results showed that a significant post-error improvement in accuracy on incongruent errors, but not on congruent errors. Theta and beta power were comparable between both error types. Importantly, the basic error-related alpha suppression (ERAS) effect was observed on both errors, whereas ERAS evoked by incongruent errors was greater than congruent errors, indicating that post-error attentional adjustments are both source-general and source-specific. And the brain activity in alpha band, but not theta or beta band, successfully decoded congruent and incongruent errors. Furthermore, improved post-incongruent error accuracy was predicted by a measure of post-error attentional adjustments, the alpha power. Together, these findings demonstrate that ERAS is a reliable neural indicator for identifying error types, and directly conduces to the improvement of post-error behavior.


Assuntos
Atenção , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Atenção/fisiologia , Tempo de Reação/fisiologia
9.
Sensors (Basel) ; 24(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39001060

RESUMO

This paper proposes a novel method to estimate rainfall intensity by analyzing the sound of raindrops. An innovative device for collecting acoustic data was designed, capable of blocking ambient noise in rainy environments. The device was deployed in real rainfall conditions during both the monsoon season and non-monsoon season to record raindrop sounds. The collected raindrop sounds were divided into 1 s, 10 s, and 1 min intervals, and the performance of rainfall intensity estimation for each segment length was compared. First, the rainfall occurrence was determined based on four extracted frequency domain features (average of dB, frequency-weighted average of dB, standard deviation of dB, and highest frequency), followed by a quantitative estimation of the rainfall intensity for the periods in which rainfall occurred. The results indicated that the best estimation performance was achieved when using 10 s segments, corresponding to the following metrics: accuracy: 0.909, false alarm ratio: 0.099, critical success index: 0.753, precision: 0.901, recall: 0.821, and F1 score: 0.859 for rainfall occurrence classification; and root mean square error: 1.675 mm/h, R2: 0.798, and mean absolute error: 0.493 mm/h for quantitative rainfall intensity estimation. The proposed small and lightweight device is convenient to install and manage and is remarkably cost-effective compared with traditional rainfall observation equipment. Additionally, this compact rainfall acoustic collection device can facilitate the collection of detailed rainfall information over vast areas.

10.
Sensors (Basel) ; 24(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38676148

RESUMO

The prevalence of Low Probability of Interception (LPI) and Low Probability of Exploitation (LPE) radars in contemporary Electronic Warfare (EW) presents an ongoing challenge to defense mechanisms, compelling constant advances in protective strategies. Noise radars are examples of LPI and LPE systems that gained substantial prominence in the past decade despite exhibiting a common drawback of limited Doppler tolerance. The Advanced Pulse Compression Noise (APCN) waveform is a stochastic radar signal proposed to amalgamate the LPI and LPE attributes of a random waveform with the Doppler tolerance feature inherent to a linear frequency modulation. In the present work, we derive closed-form expressions describing the APCN signal's ambiguity function and spectral containment that allow for a proper analysis of its detection performance and ability to remove range ambiguities as a function of its stochastic parameters. This paper also presents a more detailed address of the LPI/LPE characteristic of APCN signals claimed in previous works. We show that sophisticated Electronic Intelligence (ELINT) systems that employ Time Frequency Analysis (TFA) and image processing methods may intercept APCN and estimate important parameters of APCN waveforms, such as bandwidth, operating frequency, time duration, and pulse repetition interval. We also present a method designed to intercept and exploit the unique characteristics of the APCN waveform. Its performance is evaluated based on the probability of such an ELINT system detecting an APCN radar signal as a function of the Signal-to-Noise Ratio (SNR) in the ELINT system. We evaluated the accuracy and precision of the random variables characterizing the proposed estimators as a function of the SNR. Results indicate a probability of detection close to 1 and show good performance, even for scenarios with a SNR slightly less than -10 dB. The contributions in this work offer enhancements to noise radar capabilities while facilitating improvements in ESM systems.

11.
Sensors (Basel) ; 24(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39065992

RESUMO

Accurate detection of implant loosening is crucial for early intervention in total hip replacements, but current imaging methods lack sensitivity and specificity. Vibration methods, already successful in dentistry, represent a promising approach. In order to detect loosening of the total hip replacement, excitation and measurement should be performed intracorporeally to minimize the influence of soft tissue on damping of the signals. However, only implants with a single sensor intracorporeally integrated into the implant for detecting vibrations have been presented in the literature. Considering different mode shapes, the sensor's position on the implant is assumed to influence the signals. In the work at hand, the influence of the position of the sensor on the recording of the vibrations on the implant was investigated. For this purpose, a simplified test setup was created with a titanium rod implanted in a cylinder of artificial cancellous bone. Mechanical stimulation via an exciter attached to the rod was recorded by three accelerometers at varying positions along the titanium rod. Three states of peri-implant loosening within the bone stock were simulated by extracting the bone material around the titanium rod, and different markers were analyzed to distinguish between these states of loosening. In addition, a modal analysis was performed using the finite element method to analyze the mode shapes. Distinct differences in the signals recorded by the acceleration sensors within defects highlight the influence of sensor position on mode detection and natural frequencies. Thus, using multiple sensors could be advantageous in accurately detecting all modes and determining the implant loosening state more precisely.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Vibração , Falha de Prótese , Titânio/química , Análise de Elementos Finitos
12.
Sensors (Basel) ; 24(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931805

RESUMO

Health assessment and preventive maintenance of structures are mandatory to predict injuries and to schedule required interventions, especially in seismic areas. Structural health monitoring aims to provide a robust and effective approach to obtaining valuable information on structural conditions of buildings and civil infrastructures, in conjunction with methodologies for the identification and, sometimes, localization of potential risks. In this paper a low-cost solution for structural health monitoring is proposed, exploiting a customized embedded system for the acquisition and storing of measurement signals. Experimental surveys for the assessment of the sensing node have also been performed. The obtained results confirmed the expected performances, especially in terms of resolution in acceleration and tilt measurement, which are 0.55 mg and 0.020°, respectively. Moreover, we used a dedicated algorithm for the classification of recorded signals in the following three classes: noise floor (being mainly related to intrinsic noise of the sensing system), exogenous sources (not correlated to the dynamic behavior of the structure), and structural responses (the response of the structure to external stimuli, such as seismic events, artificially forced and/or environmental solicitations). The latter is of main interest for the investigation of structures' health, while other signals need to be recognized and filtered out. The algorithm, which has been tested against real data, demonstrates relevant features in performing the above-mentioned classification task.

13.
Sensors (Basel) ; 24(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38676121

RESUMO

Synchrosqueezed transform (SST) is a time-frequency analysis method that can improve energy aggregation and reconstruct signals, which has been applied in the fields of medical treatment, fault diagnosis, and seismic wave processing. However, when dealing with time-varying signals, SST suffers from poor time-frequency resolution and is unable to deal with long signals. In order to accurately extract the characteristic frequency of variable speed rolling bearing faults, this paper proposes a synchrosqueezed transform method based on fast kurtogram and demodulation and piecewise aggregate approximation (PAA). The method firstly filters and demodulates the original signal using fast kurtogram and Hilbert transform to reduce the influence of background noise and improve the time-frequency resolution. Then, it compresses the signal by using piecewise aggregate approximation, so that the SST can deal with long signals and, thus, extract the fault characteristic frequency. The experimental data verification results indicate that the method can effectively identify the fault characteristic frequency of variable-speed rolling bearings.

14.
Sensors (Basel) ; 24(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38339555

RESUMO

The zero-velocity update (ZUPT) algorithm is a pivotal advancement in pedestrian navigation accuracy, utilizing foot-mounted inertial sensors. Its key issue hinges on accurately identifying periods of zero-velocity during human movement. This paper introduces an innovative adaptive sliding window technique, leveraging the Fourier Transform to precisely isolate the pedestrian's gait frequency from spectral data. Building on this, the algorithm adaptively adjusts the zero-velocity detection threshold in accordance with the identified gait frequency. This adaptation significantly refines the accuracy in detecting zero-velocity intervals. Experimental evaluations reveal that this method outperforms traditional fixed-threshold approaches by enhancing precision and minimizing false positives. Experiments on single-step estimation show the adaptability of the algorithm to motion states such as slow, fast, and running. Additionally, the paper demonstrates pedestrian trajectory localization experiments under a variety of walking conditions. These tests confirm that the proposed method substantially improves the performance of the ZUPT algorithm, highlighting its potential for pedestrian navigation systems.

15.
Sensors (Basel) ; 24(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475105

RESUMO

Distributed optical fiber acoustic sensing (DAS) is promising for long-distance intrusion-anomaly detection tasks. However, realistic settings suffer from high-intensity interference noise, compromising the detection performance of DAS systems. To address this issue, we propose STNet, an intrusion detection network based on the Stockwell transform (S-transform), for DAS systems, considering the advantages of the S-transform in terms of noise resistance and ability to detect disturbances. Specifically, the signal detected by a DAS system is divided into space-time data matrices using a sliding window. Subsequently, the S-transform extracts the time-frequency features channel by channel. The extracted features are combined into a multi-channel time-frequency feature matrix and presented to STNet. Finally, a non-maximum suppression algorithm (NMS), suitable for locating intrusions, is used for the post-processing of the detection results. To evaluate the effectiveness of the proposed method, experiments were conducted using a realistic high-speed railway environment with high-intensity noise. The experimental results validated the satisfactory performance of the proposed method. Thus, the proposed method offers an effective solution for achieving high intrusion detection rates and low false alarm rates in complex environments.

16.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39001122

RESUMO

Human Activity Recognition (HAR), alongside Ambient Assisted Living (AAL), are integral components of smart homes, sports, surveillance, and investigation activities. To recognize daily activities, researchers are focusing on lightweight, cost-effective, wearable sensor-based technologies as traditional vision-based technologies lack elderly privacy, a fundamental right of every human. However, it is challenging to extract potential features from 1D multi-sensor data. Thus, this research focuses on extracting distinguishable patterns and deep features from spectral images by time-frequency-domain analysis of 1D multi-sensor data. Wearable sensor data, particularly accelerator and gyroscope data, act as input signals of different daily activities, and provide potential information using time-frequency analysis. This potential time series information is mapped into spectral images through a process called use of 'scalograms', derived from the continuous wavelet transform. The deep activity features are extracted from the activity image using deep learning models such as CNN, MobileNetV3, ResNet, and GoogleNet and subsequently classified using a conventional classifier. To validate the proposed model, SisFall and PAMAP2 benchmark datasets are used. Based on the experimental results, this proposed model shows the optimal performance for activity recognition obtaining an accuracy of 98.4% for SisFall and 98.1% for PAMAP2, using Morlet as the mother wavelet with ResNet-101 and a softmax classifier, and outperforms state-of-the-art algorithms.


Assuntos
Atividades Humanas , Análise de Ondaletas , Humanos , Atividades Humanas/classificação , Algoritmos , Aprendizado Profundo , Dispositivos Eletrônicos Vestíveis , Atividades Cotidianas , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
17.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475233

RESUMO

Among unmanned surface vehicle (USV) components, underwater thrusters are pivotal in their mission execution integrity. Yet, these thrusters directly interact with marine environments, making them perpetually susceptible to malfunctions. To diagnose thruster faults, a non-invasive and cost-effective vibration-based methodology that does not require altering existing systems is employed. However, the vibration data collected within the hull is influenced by propeller-fluid interactions, hull damping, and structural resonant frequencies, resulting in noise and unpredictability. Furthermore, to differentiate faults not only at fixed rotational speeds but also over the entire range of a thruster's rotational speeds, traditional frequency analysis based on the Fourier transform cannot be utilized. Hence, Continuous Wavelet Transform (CWT), known for attributions encapsulating physical characteristics in both time-frequency domain nuances, was applied to address these complications and transform vibration data into a scalogram. CWT results are diagnosed using a Vision Transformer (ViT) classifier known for its global context awareness in image processing. The effectiveness of this diagnosis approach was verified through experiments using a USV designed for field experiments. Seven cases with different fault types and severity were diagnosed and yielded average accuracy of 0.9855 and 0.9908 at different vibration points, respectively.

18.
Entropy (Basel) ; 26(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38920473

RESUMO

Bridges may undergo structural vibration responses when exposed to seismic waves. An analysis of structural vibration characteristics is essential for evaluating the safety and stability of a bridge. In this paper, a signal time-frequency feature extraction method (NTFT-ESVD) integrating standard time-frequency transformation, singular value decomposition, and information entropy is proposed to analyze the vibration characteristics of structures under seismic excitation. First, the experiment simulates the response signal of the structure when exposed to seismic waves. The results of the time-frequency analysis indicate a maximum relative error of only 1% in frequency detection, and the maximum relative errors in amplitude and time parameters are 5.9% and 6%, respectively. These simulation results demonstrate the reliability of the NTFT-ESVD method in extracting the time-frequency characteristics of the signal and its suitability for analyzing the seismic response of the structure. Then, a real seismic wave event of the Su-Tong Yangtze River Bridge during the Hengchun earthquake in Taiwan (2006) is analyzed. The results show that the seismic waves only have a short-term impact on the bridge, with the maximum amplitude of the vibration response no greater than 1 cm, and the maximum vibration frequency no greater than 0.2 Hz in the three-dimensional direction, indicating that the earthquake in Hengchun will not have any serious impact on the stability and security of the Su-Tong Yangtze River Bridge. Additionally, the reliability of determining the arrival time of seismic waves by extracting the time-frequency information from structural vibration response signals is validated by comparing it with results from seismic stations (SSE/WHN/QZN) at similar epicenter distances published by the USGS. The results of the case study show that the combination of dynamic GNSS monitoring technology and time-frequency analysis can be used to analyze the impact of seismic waves on the bridge, which is of great help to the manager in assessing structural seismic damage.

19.
J Neurophysiol ; 130(2): 364-379, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37403598

RESUMO

Unsupervised, data-driven methods are commonly used in neuroscience to automatically decompose data into interpretable patterns. These patterns differ from one another depending on the assumptions of the models. How these assumptions affect specific data decompositions in practice, however, is often unclear, which hinders model applicability and interpretability. For instance, the hidden Markov model (HMM) automatically detects characteristic, recurring activity patterns (so-called states) from time series data. States are defined by a certain probability distribution, whose state-specific parameters are estimated from the data. But what specific features, from all of those that the data contain, do the states capture? That depends on the choice of probability distribution and on other model hyperparameters. Using both synthetic and real data, we aim to better characterize the behavior of two HMM types that can be applied to electrophysiological data. Specifically, we study which differences in data features (such as frequency, amplitude, or signal-to-noise ratio) are more salient to the models and therefore more likely to drive the state decomposition. Overall, we aim at providing guidance for the appropriate use of this type of analysis on one- or two-channel neural electrophysiological data and an informed interpretation of its results given the characteristics of the data and the purpose of the analysis.NEW & NOTEWORTHY Compared with classical supervised methods, unsupervised methods of analysis have the advantage to be freer of subjective biases. However, it is not always clear what aspects of the data these methods are most sensitive to, which complicates interpretation. Focusing on the hidden Markov model, commonly used to describe electrophysiological data, we explore in detail the nature of its estimates through simulations and real data examples, providing important insights about what to expect from these models.


Assuntos
Algoritmos , Aprendizado de Máquina não Supervisionado , Cadeias de Markov , Probabilidade
20.
Hum Brain Mapp ; 44(17): 5936-5952, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728249

RESUMO

Response inhibition is an important instance of cognitive control and can be complicated by perceptual conflict. The neurophysiological mechanisms underlying these processes are still not understood. Especially the relationship between neural processes directly preceding cognitive control (proactive control) and processes underlying cognitive control (reactive control) has not been examined although there should be close links. In the current study, we investigate these aspects in a sample of N = 50 healthy adults. Time-frequency and beamforming approaches were applied to analyze the interrelation of brain states before (pre-trial) and during (within-trial) cognitive control. The behavioral data replicate a perceptual conflict-dependent modulation of response inhibition. During the pre-trial period, insular, inferior frontal, superior temporal, and precentral alpha activity was positively correlated with theta activity in the same regions and the superior frontal gyrus. Additionally, participants with a stronger pre-trial alpha activity in the primary motor cortex showed a stronger (within-trial) conflict effect in the theta band in the primary motor cortex. This theta conflict effect was further related to a stronger theta conflict effect in the midcingulate cortex until the end of the trial. The temporal cascade of these processes suggests that successful proactive preparation (anticipatory information gating) entails a stronger reactive processing of the conflicting stimulus information likely resulting in a realization of the need to adapt the current action plan. The results indicate that theta and alpha band activity share and transfer aspects of information when it comes to the interrelationship between proactive and reactive control during conflict-modulated motor inhibition.


Assuntos
Córtex Pré-Frontal , Ritmo Teta , Adulto , Humanos , Ritmo Teta/fisiologia , Córtex Pré-Frontal/fisiologia , Encéfalo , Inibição Psicológica , Giro do Cíngulo , Eletroencefalografia , Lobo Frontal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA