Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 243(2): 765-780, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38798267

RESUMO

Mutualisms between plants and fruit-eating animals were key to the radiation of angiosperms. Still, phylogenetic uncertainties limit our understanding of fleshy-fruit evolution, as in the case of Solanum, a genus with remarkable fleshy-fruit diversity, but with unresolved phylogenetic relationships. We used 1786 nuclear genes from 247 species, including 122 newly generated transcriptomes/genomes, to reconstruct the Solanum phylogeny and examine the tempo and mode of the evolution of fruit color and size. Our analysis resolved the backbone phylogeny of Solanum, providing high support for its clades. Our results pushed back the origin of Solanum to 53.1 million years ago (Ma), with most major clades diverging between 35 and 27 Ma. Evolution of Solanum fruit color and size revealed high levels of trait conservatism, where medium-sized berries that remain green when ripe are the likely ancestral form. Our analyses revealed that fruit size and color are evolutionary correlated, where dull-colored fruits are two times larger than black/purple and red fruits. We conclude that the strong phylogenetic conservatism shown in the color and size of Solanum fruits could limit the influences of fruit-eating animals on fleshy-fruit evolution. Our findings highlight the importance of phylogenetic constraints on the diversification of fleshy-fruit functional traits.


Assuntos
Evolução Biológica , Núcleo Celular , Cor , Frutas , Filogenia , Pigmentação , Solanum , Solanum/genética , Frutas/genética , Pigmentação/genética , Núcleo Celular/genética , Genes de Plantas
2.
J Integr Plant Biol ; 66(2): 228-251, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38351714

RESUMO

Fruit functions in seed protection and dispersal and belongs to many dry and fleshy types, yet their evolutionary pattern remains unclear in part due to uncertainties in the phylogenetic relationships among several orders and families. Thus we used nuclear genes of 502 angiosperm species representing 231 families to reconstruct a well supported phylogeny, with resolved relationships for orders and families with previously uncertain placements. Using this phylogeny as a framework, molecular dating supports a Triassic origin of the crown angiosperms, followed by the emergence of most orders in the Jurassic and Cretaceous and their rise to ecological dominance during the Cretaceous Terrestrial Revolution. The robust phylogeny allowed an examination of the evolutionary pattern of fruit and ovary types, revealing a trend of parallel carpel fusions during early diversifications in eudicots, monocots, and magnoliids. Moreover, taxa in the same order or family with the same ovary type can develop either dry or fleshy fruits with strong correlations between specific types of dry and fleshy fruits; such associations of ovary, dry and fleshy fruits define several ovary-fruit "modules" each found in multiple families. One of the frequent modules has an ovary containing multiple ovules, capsules and berries, and another with an ovary having one or two ovules, achenes (or other single-seeded dry fruits) and drupes. This new perspective of relationships among fruit types highlights the closeness of specific dry and fleshy fruit types, such as capsule and berry, that develop from the same ovary type and belong to the same module relative to dry and fleshy fruits of other modules (such as achenes and drupes). Further analyses of gene families containing known genes for ovary and fruit development identified phylogenetic nodes with multiple gene duplications, supporting a possible role of whole-genome duplications, in combination with climate changes and animal behaviors, in angiosperm fruit and ovary diversification.


Assuntos
Frutas , Magnoliopsida , Animais , Feminino , Frutas/genética , Filogenia , Magnoliopsida/genética , Ovário , Sementes/genética
3.
Am J Bot ; 110(9): e16223, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37551422

RESUMO

PREMISE: The scents of volatile organic compounds (VOCs) are an important component of ripe fleshy fruit attractiveness, yet their variation across closely related wild species is poorly understood. Phylogenetic patterns in these compounds and their biosynthetic pathways offer insight into the evolutionary drivers of fruit diversity, including whether scent can communicate an honest signal of nutrient content to animal dispersers. We assessed ripe fruit VOC content across the tomato clade (Solanum sect. Lycopersicon), with implications for crop improvement since these compounds are key components of tomato flavor. METHODS: We analyzed ripe fruit volatiles from 13 species of wild tomato grown in a common garden. Interspecific variations in 66 compounds and their biosynthetic pathways were assessed in 32 accessions, and an accession-level phylogeny was constructed to account for relatedness. RESULTS: Wild tomato species can be differentiated by their VOCs, with Solanum pennellii notably distinct. Phylogenetic conservatism exists to a limited extent. Major cladewide patterns corresponded to divergence of the five brightly colored-fruited species from the nine green-fruited species, particularly for nitrogen-containing compounds (higher in colored-fruited) and esters (higher in green-fruited), the latter appearing to signal a sugar reward. CONCLUSIONS: We established a framework for fruit scent evolution studies in a crop wild relative system, showing that each species in the tomato clade has a unique VOC profile. Differences between color groups align with fruit syndromes that could be driven by selection from frugivores. The evolution of colored fruits was accompanied by changes in biosynthetic pathways for esters and nitrogen-containing compounds, volatiles important to tomato flavor.

4.
J Integr Plant Biol ; 65(2): 283-298, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36031801

RESUMO

The flower is an evolutionary innovation in angiosperms that drives the evolution of biodiversity. The carpel is integral to a flower and develops into fruits after fertilization, while the perianth, consisting of the calyx and corolla, is decorative to facilitate pollination and protect the internal organs, including the carpels and stamens. Therefore, the nature of flower origin is carpel and stamen origin, which represents one of the greatest and fundamental unresolved issues in plant evolutionary biology. Here, we briefly summarize the main progress and key genes identified for understanding floral development, focusing on the origin and development of the carpels. Floral ABC models have played pioneering roles in elucidating flower development, but remain insufficient for resolving flower and carpel origin. The genetic basis for carpel origin and subsequent diversification leading to fruit diversity also remains elusive. Based on current research progress and technological advances, simplified floral models and integrative evolutionary-developmental (evo-devo) strategies are proposed for elucidating the genetics of carpel origin and fruit evolution. Stepwise birth of a few master regulatory genes and subsequent functional diversification might play a pivotal role in these evolutionary processes. Among the identified transcription factors, AGAMOUS (AG) and CRABS CLAW (CRC) may be the two core regulatory genes for carpel origin as they determine carpel organ identity, determinacy, and functionality. Therefore, a comparative identification of their protein-protein interactions and downstream target genes between flowering and non-flowering plants from an evo-devo perspective may be primary projects for elucidating carpel origin and development.


Assuntos
Frutas , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Frutas/metabolismo , Fatores de Transcrição/metabolismo , Flores/genética , Genes de Plantas , Regulação da Expressão Gênica de Plantas
5.
J Exp Bot ; 72(20): 6882-6903, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34181715

RESUMO

Floral B-function MADS-box genes, such as GLOBOSA (GLO), function in corolla and stamen organ identity specification. The functions of these genes outside these floral whorls are rarely reported. DOLL1 is a GLO gene controlling corolla and androecium organ identity. In this study we found that, in Physalis floridana double-layered-lantern 1 (doll1) mutant pollinated with wild-type pollen, fruit set was extremely low, indicating that doll1 females are dysfunctional. Stigma and style structure, stigma receptivity, pollen tube guidance, and embryo sac development were also impaired in doll1. P. floridana CRABS CLAW (PFCRC), predominantly expressed in carpels, was repressed in doll1 native carpels. Loss-of-function of PFCRC altered carpel meristem determinacy, carpel closure, and ovule number, and the resultant 'pistil' consisted of multiple spirally-arranged dorsiventral carpels occasionally with 1-2 naked ovules on the margin and trichomes at each mutated carpel tip, implying an alteration of carpel organ identity. Regulatory and genetic interactions between B-class MADS-box genes and PFCRC were revealed in a context-dependent manner in floral development. Our work reveals a new role for the B-function genes in carpel and ovule development via regulating PFCRC, providing a new understanding of genetic regulatory networks between MADS-domain and CRC transcription factors in mediating carpel organ specification, functionality, and origin.


Assuntos
Physalis , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Physalis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Am J Bot ; 108(8): 1354-1373, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34418063

RESUMO

PREMISE: Lantana and Lippia (Verbenaceae) are two large Linnean genera whose classification has been based on associated fruit traits: fleshy vs. dry fruits and one vs. two seed-bearing units. We reconstruct evolutionary relationships and the evolution of the two fruit traits to test the validity of these traits for classification. METHODS: Previous studies of plastid DNA sequences provided limited resolution for this group. Consequently, seven nuclear loci, including ITS, ETS, and five PPR loci, were sequenced for 88 accessions of the Lantana/Lippia clade and three outgroups. RESULTS: Neither Lantana nor Lippia is monophyletic. Burroughsia, Nashia, Phyla, and several Aloysia species are included within the clade comprising Lantana and Lippia. We provide a hypothesis for fruit evolution and biogeographic history in the group and their relevance for classification. CONCLUSIONS: Fleshy fruits evolved multiple times in the Lantana/Lippia clade and thus are not suitable taxonomic characters. Several sections of Lantana and Lippia and the small genera are monophyletic, but Lippia section Zappania is broadly paraphyletic, making circumscription of genera difficult. Lippia sect. Rhodolippia is a polyphyletic group characterized by convergence in showy bracts. Species of Lantana sect. Sarcolippia, previously transferred to Lippia, are not monophyletic. The clade originated and diversified in South America, with at least four expansions into both Central America and the Caribbean and two to Africa. The types species of Lantana and Lippia occur in small sister clades, rendering any taxonomy that retains either genus similar to its current circumscription impossible.


Assuntos
Lantana , Lippia , Verbenaceae , Teorema de Bayes , Lippia/genética , Filogenia , Análise de Sequência de DNA , Verbenaceae/genética
7.
Mol Biol Evol ; 34(2): 262-281, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27856652

RESUMO

Fruits are the defining feature of angiosperms, likely have contributed to angiosperm successes by protecting and dispersing seeds, and provide foods to humans and other animals, with many morphological types and important ecological and agricultural implications. Rosaceae is a family with ∼3000 species and an extraordinary spectrum of distinct fruits, including fleshy peach, apple, and strawberry prized by their consumers, as well as dry achenetum and follicetum with features facilitating seed dispersal, excellent for studying fruit evolution. To address Rosaceae fruit evolution and other questions, we generated 125 new transcriptomic and genomic datasets and identified hundreds of nuclear genes to reconstruct a well-resolved Rosaceae phylogeny with highly supported monophyly of all subfamilies and tribes. Molecular clock analysis revealed an estimated age of ∼101.6 Ma for crown Rosaceae and divergence times of tribes and genera, providing a geological and climate context for fruit evolution. Phylogenomic analysis yielded strong evidence for numerous whole genome duplications (WGDs), supporting the hypothesis that the apple tribe had a WGD and revealing another one shared by fleshy fruit-bearing members of this tribe, with moderate support for WGDs in the peach tribe and other groups. Ancestral character reconstruction for fruit types supports independent origins of fleshy fruits from dry-fruit ancestors, including the evolution of drupes (e.g., peach) and pomes (e.g., apple) from follicetum, and drupetum (raspberry and blackberry) from achenetum. We propose that WGDs and environmental factors, including animals, contributed to the evolution of the many fruits in Rosaceae, which provide a foundation for understanding fruit evolution.


Assuntos
Duplicação Gênica , Rosaceae/genética , Evolução Biológica , Bases de Dados de Compostos Químicos , Evolução Molecular , Frutas/genética , Genoma de Planta , Genômica , Malus/genética , Filogenia , Proteínas de Plantas/genética , Sementes/genética , Transcriptoma
8.
Mol Phylogenet Evol ; 110: 134-149, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28288945

RESUMO

The cosmopolitan genus Geranium L. (Geraniaceae) consists of c. 350 species distributed in temperate habitats worldwide, with most of its diversity concentrated in the Mediterranean region. Unlike other genera in Geraniaceae, the species of Geranium present contrasting seed discharge syndromes, i.e. the 'Erodium-type' (ET), the 'carpel-projection type' (CP), the 'seed-ejection type' (SE), and the 'inoperative type' (IT), which have been used to delimit major groups within the genus. However, phylogenetic relationships within Geranium are unknown and so is the evolution of the different seed discharge mechanisms. Here, we used a calibrated multispecies coalescent approach to infer the species-level phylogeny and divergence times of the genus based on chloroplast (rbcL, trnL-trnF) and nuclear (ITS) DNA sequences. Our sampling represents most of the morphological variation described in the genus. We reconstruct the evolution of the seed discharge mechanism using ancestral state reconstruction (ASR) techniques on the multispecies coalescent tree, and assess the association between fruit type evolution and species diversification using stochastic birth-death and trait-dependent diversification models. Finally, we reconstruct the early biogeographic history of the genus using discrete and continuous biogeographic analyses of species distribution centroids, including fossil evidence and tip dates. Our results show that fruit type is homoplasious and that the classification based on fruit type in Geranium is artificial. The taxonomy and putative apomorphic characters for Geranium are discussed. ASR of the fruit characters suggests that ET may represent the ancestral state in Geranium and from which CP originated twice, IT presumably once, and SE twice. The independent appearance of the SE syndrome is in both cases associated with increases in diversification rates in the genus. The biogeographic analysis centers the origin and early 10Ma diversification of Geranium on the Mediterranean region. The evolution of seed discharge mechanism about 5Ma might have allowed the species of Geranium to increase in geographic range and to ultimately, diversify.


Assuntos
Biodiversidade , Frutas/anatomia & histologia , Geranium/anatomia & histologia , Geranium/classificação , Filogenia , Sequência de Bases , Teorema de Bayes , DNA de Cloroplastos/genética , DNA de Plantas/genética , DNA Ribossômico/genética , Geranium/genética , Modelos Biológicos , Filogeografia , Sementes/anatomia & histologia , Análise de Sequência de DNA , Especificidade da Espécie
9.
New Phytol ; 209(1): 418-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26204796

RESUMO

As a primary determinant of spatial structure in angiosperm populations, fruit dispersal may impact large-scale ecological and evolutionary processes. Essential to understanding these mechanisms is an accurate reconstruction of dispersal mode over the entire history of an angiosperm lineage. A total-evidence phylogeny is presented for most fossil fruit and all extant genera in Fagales over its c. 95 million yr history. This phylogeny - the largest of its kind to include plant fossils - was used to reconstruct an evolutionary history directly informed by fossil morphologies and to assess relationships among dispersal mode, biogeographic range size, and diversification rate. Reconstructions indicate four transitions to wind dispersal and seven to biotic dispersal, with the phylogenetic integration of fossils crucial to understanding these patterns. Complexity further increased when more specialized behaviors were considered, with fluttering, gliding, autorotating, and scatter-hoarding evolving multiple times across the order. Preliminary biogeographic analyses suggest larger range sizes in biotically dispersed lineages, especially when pollination mode was held constant. Biotically dispersed lineages had significantly higher diversification rates than abiotically dispersed lineages, although transitions in dispersal mode alone cannot explain all detected diversification rate shifts across Fagales.


Assuntos
Magnoliopsida/genética , Dispersão de Sementes/genética , Sementes/genética , Evolução Biológica , Fósseis , Magnoliopsida/anatomia & histologia , Magnoliopsida/fisiologia , Filogenia , Filogeografia , Sementes/anatomia & histologia , Sementes/fisiologia , Análise de Sequência de DNA
10.
J Exp Bot ; 65(16): 4505-13, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24482369

RESUMO

Arabidopsis research in the last decade has started to unravel the genetic networks directing gynoecium and fruit patterning in this model species. Only recently, the work from several groups has also started to address the conservation of these networks in a wide number of species with very different fruit morphologies, and we are now beginning to understand how they might have evolved. This review summarizes recent advances in this field, focusing mainly on MADS-box genes with a well-known role in dehiscence zone development, while also discussing how these studies may contribute to expand our views on fruit evolution.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Evolução Biológica , Frutas/anatomia & histologia , Frutas/fisiologia , Frutas/crescimento & desenvolvimento , Filogenia , Dispersão de Sementes/fisiologia
11.
J Evol Biol ; 27(2): 313-24, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24456225

RESUMO

Animal seed dispersal provides an important ecosystem service by strongly benefiting plant communities. There are several theoretical studies on the ecology of plant-animal seed-disperser interactions, but few studies have explored the evolution of this mutualism. Moreover, these studies ignore plant life history and frugivore foraging behaviour. Thus, it remains an open question what the conditions for the diversification of fruit traits are, in spite of the multitude of empirical studies on fruit trait diversity. Here, we study the evolution of fruit traits using a spatially explicit individual-based model, which considers the costs associated with adaptations inducing dispersal by frugivory, as well as frugivore foraging behaviour and abundance. Our model predicts that these costs are the main determinants of the evolution of fruit traits and that when the costs are not very high, the evolution of larger fruit traits (e.g. fleshy/colourful fruits) is controlled by the choosiness and response thresholds of the frugivores as well as their numerical abundance.


Assuntos
Evolução Biológica , Frutas/fisiologia , Dispersão de Sementes , Animais , Comportamento Alimentar , Frutas/anatomia & histologia , Árvores/anatomia & histologia , Árvores/fisiologia
12.
Am J Bot ; 101(12): 2097-112, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25480707

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: The species-rich Neotropical genera Centropogon, Burmeistera, and Siphocampylus represent more than half of the ∼1200 species in the subfamily Lobelioideae (Campanulaceae). They exhibit remarkable morphological variation in floral morphology and habit. Limited taxon sampling and phylogenetic resolution, however, obscures our understanding of relationships between and within these genera and underscores our uncertainty of the systematic value of fruit type as a major diagnostic character.• METHODS: We inferred a phylogeny from five plastid DNA regions (rpl32-trnL, ndhF-rpl32, rps16-trnK, trnG-trnG-trns, rbcL) using maximum-likelihood and Bayesian inference. Ancestral character reconstructions were applied to infer patterns of fruit evolution.• KEY RESULTS: Our results demonstrate that the majority of species in the genera Centropogon, Burmeistera, and Siphocampylus together form a primarily mainland Neotropical clade, collectively termed the "centropogonids." Caribbean Siphocampylus, however, group with other Caribbean lobelioid species. We find high support for the monophyly of Burmeistera and the polyphyly of Centropogon and mainland Siphocampylus. The ancestral fruit type of the centropogonids is a capsule; berries have evolved independently multiple times.• CONCLUSIONS: Our plastid phylogeny greatly improves the phylogenetic resolution within Neotropical Lobelioideae and highlights the need for taxonomic revisions in the subfamily. Inference of ancestral character states identifies a dynamic pattern of fruit evolution within the centropogonids, emphasizing the difficulty of diagnosing broad taxonomic groups on the basis of fruit type. Finally, we identify that the centropogonids, Lysipomia, and Lobelia section Tupa form a Pan-Andean radiation with broad habitat diversity. This clade is a prime candidate for investigations of Neotropical biogeography and morphological evolution.


Assuntos
Evolução Biológica , Campanulaceae/genética , DNA de Plantas/análise , Frutas/anatomia & histologia , Filogenia , Teorema de Bayes , Campanulaceae/anatomia & histologia , Campanulaceae/classificação , Região do Caribe , Classificação , Ecossistema , Evolução Molecular , Plastídeos , Análise de Sequência de DNA , Especificidade da Espécie
13.
Am J Bot ; 100(5): 883-905, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23608646

RESUMO

PREMISE OF THE STUDY: This work surveys endocarp morphology of Menispermaceae in the context of a well-supported molecular phylogeny. The study is important since menispermaceous endocarps appear often in the fossil record and indicate the presence of a wet forest ecosystem. • METHODS: Three chloroplast regions were used to derive phylogenies for 53 genera and 60 species. Endocarps of 47 genera and 92 species were dissected and morphological characters scored. Photographs of key features are presented. We superimposed our morphological matrix onto the phylogeny to explore character evolution. A detailed key to fruits is presented, allowing identification of extant and fossil specimens to the level of clade or genus. • KEY RESULTS: Menispermaceae consists of two major subfamilies: Tinosporoideae and Menispermoideae. Within Tinosporoideae, tribe Coscineae is basal. Within Menispermoideae, tribe Menispermeae is basal. Tinosporoideae consists mainly of taxa with apical style scars, bilateral curvature, subhemispherical condyles, and foliaceous cotyledons with divaricate or imbricate orientation. Menispermoideae consists almost entirely of taxa with basal or subbasal style scars, dorsoventral curvature, bilaterally and/or dorsoventrally compressed condyles, and subterete or fleshy cotyledons oriented dorsoventrally or laterally. • CONCLUSIONS: Several fruit characters differentiate major clades, and further synapomorphies are diagnostic of various subclades. Fruit characters that can be inferred as ancestral in the family are basal or subbasal stylar scars, endocarps with dorsoventral curvature, endocarp walls woody or bony, presence of a condyle, locule without ribs, sublateral vascular traces, presence of endosperm, and foliaceous or subterete cotyledons.


Assuntos
Frutas/genética , Menispermaceae/genética , Menispermaceae/fisiologia , Filogenia , Flores , Fósseis , Frutas/anatomia & histologia , Especificidade da Espécie
14.
Am J Bot ; 100(10): 2102-11, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24107582

RESUMO

PREMISE OF STUDY: A monophyletic group composed of five genera of the Cleomaceae represents an intriguing lineage with outstanding taxonomic and evolutionary questions. Generic boundaries are poorly defined, and historical hypotheses regarding the evolution of fruit type and phylogenetic relationships provide testable questions. This is the first detailed phylogenetic investigation of all 22 species in this group. We use this phylogenetic framework to assess generic monophyly and test Iltis's evolutionary "reduction series" hypothesis regarding phylogeny and fruit type/seed number. • METHODS: Maximum likelihood and Bayesian analyses of four plastid intergenic spacer region sequences (rpl32-trnL, trnQ-rps16, ycf1-rps15, and psbA-trnH) and one nuclear (ITS) region were used to reconstruct phylogenetic relationships among the NA cleomoid species. Stochastic mapping and ancestral-state reconstruction were used to study the evolution of fruit type. • KEY RESULTS: Both analyses recovered nearly identical phylogenies. Three of the currently recognized genera (Wislizenia, Carsonia, and Oxystylis) are monophyletic while two (Cleomella and Peritoma) are para- or polyphyletic. There was a single origin of the two-seeded schizocarp in the ancestor of the Oxystylis-Wislizenia clade and a secondary derivation of elongated capsule-type fruits in Peritoma from a truncated capsule state in Cleomella. • CONCLUSIONS: Our well-resolved phylogeny supports most of the current species circumscriptions but not current generic circumscriptions. Additionally, our results are inconsistent with Iltis's hypothesis of species with elongated many-seed fruits giving rise to species with truncated few-seeded fruits. Instead, we find support for the reversion to elongated multiseeded fruits from a truncate few-seeded ancestor in Peritoma.


Assuntos
Magnoliopsida/classificação , Modelos Biológicos , Filogenia , Cromossomos de Plantas/genética , Funções Verossimilhança , América do Norte , Probabilidade
15.
Front Plant Sci ; 10: 43, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30846991

RESUMO

Ecologically and economically important fleshy edible fruits have evolved from dry fruit numerous times during angiosperm diversification. However, the molecular mechanisms that underlie these shifts are unknown. In the Solanaceae there has been a major shift to fleshy fruits in the subfamily Solanoideae. Evidence suggests that an ortholog of FRUITFULL (FUL), a transcription factor that regulates cell proliferation and limits the dehiscence zone in the silique of Arabidopsis, plays a similar role in dry-fruited Solanaceae. However, studies have shown that FUL orthologs have taken on new functions in fleshy fruit development, including regulating elements of tomato ripening such as pigment accumulation. FUL belongs to the core eudicot euFUL clade of the angiosperm AP1/FUL gene lineage. The euFUL genes fall into two paralogous clades, euFULI and euFULII. While most core eudicots have one gene in each clade, Solanaceae have two: FUL1 and FUL2 in the former, and MBP10 and MBP20 in the latter. We characterized the evolution of the euFUL genes to identify changes that might be correlated with the origin of fleshy fruit in Solanaceae. Our analyses revealed that the Solanaceae FUL1 and FUL2 clades probably originated through an early whole genome multiplication event. By contrast, the data suggest that the MBP10 and MBP20 clades are the result of a later tandem duplication event. MBP10 is expressed at weak to moderate levels, and its atypical short first intron lacks putative transcription factor binding sites, indicating possible pseudogenization. Consistent with this, our analyses show that MBP10 is evolving at a faster rate compared to MBP20. Our analyses found that Solanaceae euFUL gene duplications, evolutionary rates, and changes in protein residues and expression patterns are not correlated with the shift in fruit type. This suggests deeper analyses are needed to identify the mechanism underlying the change in FUL ortholog function.

16.
Front Plant Sci ; 5: 284, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25009543

RESUMO

Plant evolution is largely driven by adaptations in seed protection and dispersal strategies that allow diversification into new niches. This is evident by the tremendous variation in flowering and fruiting structures present both across and within different plant lineages. Within a single plant family a staggering variety of fruit types can be found such as fleshy fruits including berries, pomes, and drupes and dry fruit structures like achenes, capsules, and follicles. What are the evolutionary mechanisms that enable such dramatic shifts to occur in a relatively short period of time? This remains a fundamental question of plant biology today. On the surface it seems that these extreme differences in form and function must be the consequence of very different developmental programs that require unique sets of genes. Yet as we begin to decipher the molecular and genetic basis underlying fruit form it is becoming apparent that simple genetic changes in key developmental regulatory genes can have profound anatomical effects. In this review, we discuss recent advances in understanding the molecular mechanisms of fruit endocarp tissue differentiation that have contributed to species diversification within three plant lineages.

17.
Front Plant Sci ; 6: 28, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25699063
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA