RESUMO
This study demonstrates the enhanced performance in high-voltage sodium full cells using a novel electrolyte composition featuring a highly fluorinated borate ester anion (1 M Na[B(hfip)4].3DME) in a binary carbonate mixture (EC:EMC), compared to a conventional electrolyte (1 M Na[PF6] EC:EMC). The prolonged cycling performance of sodium metal battery employing high voltage cathodes (NVPF@C@CNT and NFMO) is attributed to uniform and dense sodium deposition along with the formation of fluorine and boron-rich solid electrolyte interphase (SEI) on the sodium metal anode. Simultaneously, a robust cathode electrolyte interphase (CEI) is formed on the cathode side due to the improved electrochemical stability window and superior aluminum passivation of the novel electrolyte. The CEIs on high-voltage cathodes are discovered to be abundant in C-F, B-O, and B-F components, which contributes to long-term cycling stability by effectively suppressing undesirable side reactions and mitigating electrolyte decomposition. The participation of DME in the primary solvation shell coupled with the comparatively weaker interaction between Na+ and [B(hfip)4]- in the secondary solvation shell, provides additional confirmation of labile desolvation. This, in turn, supports the active participation of the anion in the formation of fluorine and boron-rich interphases on both the anode and cathode.
RESUMO
Tremendous efforts are put forward to develop novel high-performance electrodes for Na-ion batteries (SIBs) in order to replace commercial Li-ion batteries (LIBs). Graphite, the most versatile anode for LIBs, fails to accommodate Na+ions owing to the poor thermodynamic stability of the binary graphite intercalation compound. This study aims to exfoliate the layers of graphite through a simple mechanical process at different time intervals (1, 5, 10, 20, 40, and 80 h) and examine the potential candidate for Na-storage in the presence of carbonate-based electrolytes. This study reports that ball milling plays a vital role in the performance of the graphite in Na-storage. The graphite exfoliated for 80 h (EG-80h) rendered an excellent reversible capacity of 209 mAh g-1 with coulombic efficiency of >99% after 100 cycles in EC-based electrolyte. In situ impedance analysis is performed to validate the charge storage mechanism and Na-ion kinetics. The performance of EG-80h in a full-cell assembly is evaluated with a carbon-coated Na3V2(PO4)3 cathode, which exhibited an initial capacity of ≈75 mAh g-1 and energy density of 201 Wh kg-1. In addition, the adaptability of the NVPC/EG-80h cell at different temperatures is examined from -10 to 50 °C, displaying excellent performance in both high and low-temperature conditions.
RESUMO
The initial Na loss limits the theoretical specific capacity of cathodes in Na-ion full cell applications, especially for Na-deficient P2-type cathodes. In this study, we propose a presodiation strategy for cathodes to compensate for the initial Na loss in Na-ion full cells, resulting in a higher specific capacity and a higher energy density. By employing an electrochemical presodiation approach, we inject 0.32 excess active Na into P2-type Na0.67Li0.1Fe0.37Mn0.53O2 (NLFMO), aiming to compensate for the initial Na loss in hard carbon (HC) and the inherent Na deficiency of NLFMO. The structure of the NLFMO cathode converts from P2 to P'2 upon active Na injection, without affecting subsequent cycles. As a result, the HC||NLFMOpreNa full cell exhibits a specific capacity of 125 mAh/g, surpassing the value of 61 mAh/g of the HC||NLFMO full cell without presodiation due to the injected active Na. Moreover, the presodiation effect can be achieved through other engineering approaches (e.g., Na-metal contact), suggesting the scalability of this methodology.
RESUMO
Graphite (Gr) has been considered as the most promising anode material for potassium-ion batteries (PIBs) commercialization due to its high theoretical specific capacity and low cost. However, Gr-based PIBs remain unfeasible at low temperature (LT), suffering from either poor kinetics based on conventional carbonate electrolytes or K+ -solvent co-intercalation issue based on typical ether electrolytes. Herein, a high-performance Gr-based LT rechargeable PIB is realized for the first time by electrolyte chemistry. Applying unidentate-ether-based molecule as the solvent dramatically weakens the K+ -solvent interactions and lowers corresponding K+ de-solvation kinetic barrier. Meanwhile, introduction of steric hindrance suppresses co-intercalation of K+ -solvent into Gr, greatly elevating operating voltage and cyclability of the full battery. Consequently, the as-prepared Gr||prepotassiated 3,4,9,10-perylene-tetracarboxylicacid-dianhydride (KPTCDA) full PIB can reversibly charge/discharge between -30 and 45 °C with a considerable energy density up to 197â Wh kgcathode -1 at -20 °C, hopefully facilitating the development of LT PIBs.
RESUMO
Compensating the irreversible loss of limited active lithium (Li) is essentially important for improving the energy-density and cycle-life of practical Li-ion battery full-cell, especially after employing high-capacity but low initial coulombic efficiency anode candidates. Introducing prelithiation agent can provide additional Li source for such compensation. Herein, we precisely implant trace Co (extracted from transition metal oxide) into the Li site of Li2 O, obtaining (Li0.66 Co0.11 â¡0.23 )2 O (CLO) cathode prelithiation agent. The synergistic formation of Li vacancies and Co-derived catalysis efficiently enhance the inherent conductivity and weaken the Li-O interaction of Li2 O, which facilitates its anionic oxidation to peroxo/superoxo species and gaseous O2 , achieving 1642.7â mAh/g~Li2O prelithiation capacity (≈980â mAh/g for prelithiation agent). Coupled 6.5â wt % CLO-based prelithiation agent with LiCoO2 cathode, substantial additional Li source stored within CLO is efficiently released to compensate the Li consumption on the SiO/C anode, achieving 270â Wh/kg pouch-type full-cell with 92 % capacity retention after 1000 cycles.
RESUMO
Lithium sulfide (Li2 S) is considered as a promising cathode material for sulfur-based batteries. However, its activation remains to be one of the key challenges against its commercialization. The extraction of Li+ from bulk Li2 S has a high activation energy (Ea ) barrier, which is fundamentally responsible for the initial large overpotential. Herein, a systematic investigation of accelerated bulk Li2 S oxidation reaction kinetics was studied by using organochalcogenide-based redox mediators, in which phenyl ditelluride (PDTe) can significantly reduce the Ea of Li2 S and lower the initial charge potential. Simultaneously, it can alleviate the polysulfides shuttling effect by covalently anchoring the soluble polysulfides and converting them into insoluble lithium phenyl tellusulfides (PhTe-Sx Li, x>1). This alters the redox pathway and accelerates the reaction kinetics of Li2 S cathode. Consequently, the Li||Li2 S-PDTe cell shows excellent rate capability and enhanced cycling stability. The Si||Li2 S-PDTe full cell delivers a considerable capacity of 953.5â mAh g-1 at 0.2â C.
RESUMO
Potassium-ion batteries (PIBs) are promising for cryogenic energy storage. However, current researches on low-temperature PIBs are limited to half cells utilizing potassium metal as an anode, and realizing rechargeable full cells is challenged by lacking viable anode materials and compatible electrolytes. Herein, a hard carbon (HC)-based low-temperature potassium-ion full cell is successfully fabricated for the first time. Experimental evidence and theoretical analysis revealed that potassium storage behaviors of HC anodes in the matched low-temperature electrolyte involve defect adsorption, interlayer co-intercalation, and nanopore filling. Notably, these unique potassiation processes exhibited low interfacial resistances and small reaction activation energies, enabling an excellent cycling performance of HC with a capacity of 175â mAh g-1 at -40 °C (68 % of its room-temperature capacity). Consequently, the HC-based full cells demonstrated impressive rechargeability and high energy density above 100â Wh kg-1 cathode at -40 °C, representing a significant advancement in the development of PIBs.
RESUMO
Forming olivine-structured Li(Mn,Fe)PO4 solid solution is theoretically a feasible way to improve the energy density of the solid solutions for lithium ion batteries. However, the Jahn-Teller active Mn3+ in the solid solution restricts their energy density and rate performance. Here, as demonstrated by operando X-ray diffraction, we show that equimolar LiMn0.5Fe0.5PO4 solid solution nanocrystals undergo a single-phase transition during the whole (de)lithiation process, with a feature of zero lithium miscibility gap, which endows the nanocrystals with excellent electrochemical properties. Specifically, the energy density of LiMn0.5Fe0.5PO4 reaches 625 Wh kg-1, which is 16% higher than that of LiFePO4. Moreover, the high-performance LiMn0.5Fe0.5PO4 nanocrystals are prepared by a microwave-assisted hydrothermal synthesis in pure water.
RESUMO
The high activation barrier, inferior rate performance, and short cycling life severely constrain the practical applications of the high-capacity Li2 S cathode. Herein, we fabricate a Li2 S-Cu nanocomposite with a drastically reduced activation potential, fast rate capability, and extraordinary cycling stability even under a practically relevant areal capacity of 2.96â mAh cm-2 . Detailed experimental investigations aided by theoretical calculations indicate that instead of converting to S8 via troublesome soluble lithium polysulfides, Li2 S is thermodynamically and kinetically more favorable to react with Cu by the displacement reaction, which alters the redox couple from Li2 S/S to Cu/Cu2 S, leading to the excellent electrochemical performance. Moreover, the stability of the composite is demonstrated in the full-cell configuration consisting of commercial graphite anodes. This work provides an innovative and effective approach to realize highly activated and stable Li2 S cathode materials.
RESUMO
Up to now, the silicon-graphite anode materials with commercial prospect for lithium batteries (LIBs) still face three dilemmas of the huge volume effect, the poor interface compatibility, and the high resistance. To address the above challenges, micro-nano structured composites of graphite coating by ZnO-incorporated and carbon-coated silicon (marked as Gr@ZnO-Si-C) are reasonably synthesized via an efficient and convenient method of liquid phase self-assembly synthesis combined with annealing treatment. The designed composites of Gr@ZnO-Si-C deliver excellent lithium battery performance with good rate performance and stable long-cycling life of 1000 cycles with reversible capacities of 1150 and 780 mAh g-1 tested at 600 and 1200 mA g-1 , respectively. The obtained results reveal that the incorporated ZnO effectively improve the interface compatibility between electrolyte and active materials, and boost the formation of compact and stable surface solid electrolyte interphase layer for electrodes. Furthermore, the pyrolytic carbon layer formed from polyacrylamide can directly improve electrical conductivity, decrease polarization, and thus promote their electrochemical performance. Finally, based on the scalable preparation of Gr@ZnO-Si-C composites, the pouch full cells of Gr@ZnO-Si-C||NCM523 are assembled and used to evaluate the commercial prospects of Si-graphite composites, offering highly useful information for researchers working in the battery industry.
RESUMO
Herein, copper silicide (Cu15Si4) nanowires (NWs) grown in high densities from a metallic Cu substrate are utilized as nanostructured hosts for amorphous silicon (aSi) deposition. The conductive Cu15Si4 NW scaffolds offer an increased surface area, versus planar substrates, and enable the preparation of high capacity Li-ion anodes consisting of a nanostructured active material. The formation method involves a two-step process, where Cu15Si4 nanowires are synthesized from a Cu substrate via a solvent vapor growth (SVG) approach followed by the plasma-enhanced chemical vapor deposition (PECVD) of aSi. These binder-free anodes are investigated in half-cell (versus Li-foil) and full-cell (versus LCO) configurations with discharge capacities greater than 2000 mAh/g retained after 200 cycles (half-cell) and reversible capacities of 1870 mAh/g exhibited after 100 cycles (full-cell). A noteworthy rate capability is also attained where capacities of up to 1367 mAh/g and 1520 mAh/g are exhibited at 5C in half-cell and full-cell configurations, respectively, highlighting the active material's promise for fast charging and high power applications. The anode material is characterized prior to cycling and after 1, 25, and 100 charge/discharge cycles, by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), to track the effects of cycling on the material.
RESUMO
Sodium-ion batteries (SIBs) have attracted tremendous interest and become a worldwide research hotpot owing to their low cost and abundant resources. To obtain suitable anode materials with excellent performance for SIBs, an effective and controllable strategy is presented to fabricate SnS2 nanosheets coating on nanohollow cubic CoS2 /C (CoS2 /C@SnS2 ) composites with a hollow structure using Co-metal-organic frameworks as the starting material. As anodes for SIBs, the CoS2 /C@SnS2 electrode exhibits ultralong cycle life and excellent rate performance, which can maintain a high specific capacity of 400.1 mAh g-1 even after 3500 cycles at a current density of 10 A g-1 . When used in a full-cell, it also shows enhanced sodium storage properties and delivers a high reversible capacity of 567.3 mAh g-1 after 1000 cycles at 1 A g-1 . This strategy can pave a way for preparing various metal sulfides with fascinating structure and excellent performance for the potential application in energy storage area.
RESUMO
Silicon is a promising anode material for lithium-ion batteries because of its high gravimetric/volumetric capacities and low lithiation/delithiation voltages. However, it suffers from poor cycling stability due to drastic volume expansion (>300%) when it alloys with lithium, leading to structural disintegration upon lithium removal. Here, it is demonstrated that titanium atoms inside the silicon matrix can act as an atomic binding agent to hold the silicon atoms together during lithiation and mend the structure after delithiation. Direct evidence from in situ dilatometry of cosputtered silicon-titanium thin films reveals significantly smaller electrode thickness change during lithiation, compared to a pure silicon thin film. In addition, the thickness change is fully reversible with lithium extraction, and ex situ post-mortem microscopy shows that film cracking is suppressed. Furthermore, Raman spectroscopy measurements indicate that the Si-Ti interaction remains intact after cycling. Optimized Si-Ti thin films can deliver a stable capacity of 1000 mAh g-1 at a current of 2000 mA g-1 for more than 300 cycles, demonstrating the effectiveness of titanium in stabilizing the material structure. A full cell with a Si-Ti anode and LiFePO4 cathode is demonstrated, which further validates the readiness of the technology.
RESUMO
Spinel Li4 Ti5 O12 , known as a zero-strain material, is capable to be a competent anode material for promising applications in state-of-art electrochemical energy storage devices (EESDs). Compared with commercial graphite, spinel Li4 Ti5 O12 offers a high operating potential of â¼1.55 V vs Li/Li+ , negligible volume expansion during Li+ intercalation process and excellent thermal stability, leading to high safety and favorable cyclability. Despite the merits of Li4 Ti5 O12 been presented, there still remains the issue of Li4 Ti5 O12 suffering from poor electronic conductivity, manifesting disadvantageous rate performance. Typically, a material modification process of Li4 Ti5 O12 will be proposed to overcome such an issue. However, the previous reports have made few investigations and achievements to analyze the subsequent processes after a material modification process. In this review, we attempt to put considerable interest in complete device design and assembly process with its material structure design (or modification process), electrode structure design and device construction design. Moreover, we have systematically concluded a series of representative design schemes, which can be divided into three major categories involving: (1) nanostructures design, conductive material coating process and doping process on material level; (2) self-supporting or flexible electrode structure design on electrode level; (3) rational assembling of lithium ion full cell or lithium ion capacitor on device level. We believe that these rational designs can give an advanced performance for Li4 Ti5 O12 -based energy storage device and deliver a deep inspiration.
RESUMO
In this study, aiming to improve the economic feasibility of acetone-butanol-ethanol (ABE) fermentation process, generate valuable products and extend the product chain, esterification catalyzed by Candida sp. 99-125 cells was hybrid with the ABE fermentation-gas-stripping integration system. The gas-stripping condensate that contained concentrated ABE products was directly used for esterification without the participation of toxic organic solvents. Full-cell catalysis temperature and the cell dosage rate on oleate production were evaluated and optimized in the esterification process. Under the optimized conditions (35 °C, 8% of cells), ~ 68% of butyl oleate and ~ 12% of ethyl oleate were obtained after 4 h of esterification. The Candida sp. 99-125 cells were able to be reused for at least four cycles. The novel cascade process showed environmental benefits, which also showed promising in improving the economic feasibility of the conventional ABE fermentation process.
Assuntos
Acetona/metabolismo , Biocatálise , Butanóis/metabolismo , Candida/crescimento & desenvolvimento , Etanol/metabolismo , Ácidos Oleicos/biossíntese , EsterificaçãoRESUMO
To satisfy the increasing energy demands of portable electronics, electric vehicles, and miniaturized energy storage devices, improvements to lithium-ion batteries (LIBs) are required to provide higher energy/power densities and longer cycle lives. Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes are promising candidates for use as electrodes in next-generation LIBs owing to their extremely high gravimetric and volumetric capacities, low working voltages, and natural abundances. However, due to the violent volume changes that occur during lithium-ion insertion/extraction and the formation of an unstable solid electrolyte interface, the use of Group IVA element-based anodes in commercial LIBs is still a great challenge. Evaluating the electrochemical performance of an anode in a full-cell configuration is a key step in investigating the possible application of the active material in LIBs. In this regard, the recent progress and important approaches to overcoming and alleviating the drawbacks of Group IVA element-based anode materials are reviewed, such as the severe volume variations during cycling and the relatively brittle electrode/electrolyte interface in full-cell LIBs. Finally, perspectives and future challenges in achieving the practical application of Group IVA element-based anodes in high-energy and high-power-density LIB systems are proposed.
RESUMO
Despite the recent considerable progress, the reversibility and cycle life of silicon anodes in lithium-ion batteries are yet to be improved further to meet the commercial standards. The current major industry, instead, adopts silicon monoxide (SiOx, x ≈ 1), as this phase can accommodate the volume change of embedded Si nanodomains via the silicon oxide matrix. However, the poor Coulombic efficiencies (CEs) in the early period of cycling limit the content of SiOx, usually below 10 wt % in a composite electrode with graphite. Here, we introduce a scalable but delicate prelithiation scheme based on electrical shorting with lithium metal foil. The accurate shorting time and voltage monitoring allow a fine-tuning on the degree of prelithiation without lithium plating, to a level that the CEs in the first three cycles reach 94.9%, 95.7%, and 97.2%. The excellent reversibility enables robust full-cell operations in pairing with an emerging nickel-rich layered cathode, Li[Ni0.8Co0.15Al0.05]O2, even at a commercial level of initial areal capacity of 2.4 mAh cm(-2), leading to a full cell energy density 1.5-times as high as that of graphite-LiCoO2 counterpart in terms of the active material weight.
RESUMO
The development of safe, stable, and long-life Li-ion batteries is being intensively pursued to enable the electrification of transportation and intelligent grid applications. Here, we report a new solid-state Li-ion battery technology, using a solid nanocomposite electrolyte composed of porous silica matrices with in situ immobilizing Li(+)-conducting ionic liquid, anode material of MCMB, and cathode material of LiCoO2, LiNi1/3Co1/3Mn1/3O2, or LiFePO4. An injection printing method is used for the electrode/electrolyte preparation. Solid nanocomposite electrolytes exhibit superior performance to the conventional organic electrolytes with regard to safety and cycle-life. They also have a transparent glassy structure with high ionic conductivity and good mechanical strength. Solid-state full cells tested with the various cathodes exhibited high specific capacities, long cycling stability, and excellent high temperature performance. This solid-state battery technology will provide new avenues for the rational engineering of advanced Li-ion batteries and other electrochemical devices.
RESUMO
Lithium-sulfur batteries could become an excellent alternative to replace the currently used lithium-ion batteries due to their higher energy density and lower production cost; however, commercialization of lithium-sulfur batteries has so far been limited due to the cyclability problems associated with both the sulfur cathode and the lithium-metal anode. Herein, we demonstrate a highly reliable lithium-sulfur battery showing cycle performance comparable to that of lithium-ion batteries; our design uses a highly reversible dual-type sulfur cathode (solid sulfur electrode and polysulfide catholyte) and a lithiated Si/SiOx nanosphere anode. Our lithium-sulfur cell shows superior battery performance in terms of high specific capacity, excellent charge-discharge efficiency, and remarkable cycle life, delivering a specific capacity of â¼750 mAh g(-1) over 500 cycles (85% of the initial capacity). These promising behaviors may arise from a synergistic effect of the enhanced electrochemical performance of the newly designed anode and the optimized layout of the cathode.
RESUMO
Exploring special anode materials with high capacity, stable structure, and extreme temperature feasibility remains a great challenge in secondary sodium based energy systems. Here, a bimetallic Cu-Fe selenide nanosheet with refined nanostructure providing confined internal ion transport channels are reported, in which the structure improves the pseudocapacitance and reduces the charge transfer resistance for making a significant contribution to accelerating the reaction dynamics. The CuFeSe2 nanosheets have a high initial specific capacity of 480.4 mAh g-1 at 0.25 A g-1, showing impressively excellent rate performance and ultralong cycling life over 1000 cycles with 261.1 mAh g-1 at 2.5 A g-1. Meanwhile, it exhibits a good sodium storage performance at extreme temperatures from -20 °C to 50 °C, supporting at least 500 cycles. Besides, the CuFeSe2||Na3V2(PO4)3/C full cell delivers a high specific capacity of 168.5 mAh g-1 at 0.5 A g-1 and excellent feasibility for over 600 cycles long cycling. Additionally, the Na+ storage mechanisms are further revealed by ex situ X-ray diffraction (XRD) and in situ transmission electron microscopy (TEM) techniques. A feasible channelized structural design strategy is provided that inspires new instruction into the development of novel materials with high structural stability and low volume expansion rate toward the application of other secondary batteries.