Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
FASEB J ; 38(1): e23399, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38174870

RESUMO

Dyslipidemia is characterized by elevated plasma levels of low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and TG-rich lipoprotein (TGRLs) in circulation, and is closely associated with the incidence and development of cardiovascular disease. Angiopoietin-like protein 3 (ANGPTL3) deficiency has been identified as a cause of familial combined hypolipidemia in humans, which allows it to be an important therapeutic target for reducing plasma lipids. Here, we report the discovery and characterization of a novel fully human antibody F1519-D95aA against N-terminal ANGPTL3 (NT-ANGPTL3), which potently inhibits NT-ANGPTL3 with a KD as low as 9.21 nM. In hyperlipidemic mice, F1519-D95aA shows higher apolipoprotein B (ApoB) and TG-lowering, and similar LDL-C reducing activity as compared to positive control Evinacumab (56.50% vs 26.01% decrease in serum ApoB levels, 30.84% vs 25.28% decrease in serum TG levels, 23.32% vs 22.52% decrease in serum LDLC levels, relative to vehicle group). Molecular docking and binding energy calculations reveal that the F1519-D95aA-ANGPTL3 complex (10 hydrogen bonds, -65.51 kcal/mol) is more stable than the Evinacumab-ANGPTL3 complex (4 hydrogen bonds, -63.76 kcal/mol). Importantly, F1519-D95aA binds to ANGPTL3 with different residues in ANGPTL3 from Evinacumab, suggesting that F1519-D95aA may be useful for the treatment of patients resistant to Evinacumab. In conclusion, F1519-D95aA is a novel fully human anti-NT-ANGPTL3 antibody with potent plasma ApoB, TG, and LDL-C lowering activities, which can potentially serve as a therapeutic agent for hyperlipidemia and relevant cardiovascular diseases.


Assuntos
Bacteriófagos , Doenças Cardiovasculares , Hiperlipidemias , Doenças Metabólicas , Humanos , Camundongos , Animais , Proteína 3 Semelhante a Angiopoietina , LDL-Colesterol , Proteínas Semelhantes a Angiopoietina/metabolismo , Hiperlipidemias/tratamento farmacológico , Simulação de Acoplamento Molecular , Triglicerídeos , Apolipoproteínas B
2.
Br J Haematol ; 205(4): 1361-1373, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38960449

RESUMO

Chimeric antigen receptor T cell (CAR-T) therapy has shown remarkable efficacy in treating advanced B-cell malignancies by targeting CD19, but antigen-negative relapses and immune responses triggered by murine-derived antibodies remain significant challenges, necessitating the development of novel humanized multitarget CAR-T therapies. Here, we engineered a second-generation 4-1BB-CD3ζ-based CAR construct incorporating humanized CD19 single-chain variable fragments (scFvs) and BAFFR single-variable domains on heavy chains (VHHs), also known as nanobodies. The resultant CAR-T cells, with different constructs, were functionally compared both in vitro and in vivo. We found that the optimal tandem and bicistronic (BI) structures retained respective antigen-binding abilities, and both demonstrated specific activation when stimulated with target cells. At the same time, BI CAR-T cells (BI CARs) exhibited stronger tumour-killing ability and better secretion of interleukin-2 and tumour necrosis factor-alpha than single-target CAR-T cells. Additionally, BI CARs showed less exhaustion phenotype upon repeated antigen stimulation and demonstrated more potent and persistent antitumor effects in mouse xenograft models. Overall, we developed a novel humanized CD19/BAFFR bicistronic CAR (BI CAR) based on a combination of scFv and VHH, which showed potent and sustained antitumor ability both in vitro and in vivo, including against tumours with CD19 or BAFFR deficiencies.


Assuntos
Antígenos CD19 , Receptor do Fator Ativador de Células B , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Animais , Antígenos CD19/imunologia , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Imunoterapia Adotiva/métodos , Receptor do Fator Ativador de Células B/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Linfócitos T/imunologia , Linfoma de Células B/terapia , Linfoma de Células B/imunologia , Linhagem Celular Tumoral , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia
3.
Mol Ther ; 29(9): 2707-2722, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274536

RESUMO

T cell malignancies are a group of hematologic cancers with high recurrence and mortality rates. CD5 is highly expressed in ∼85% of T cell malignancies, although normal expression of CD5 is restricted to thymocytes, T cells, and B1 cells. However, CD5 expression on chimeric antigen receptor (CAR)-T cells leads to CAR-T cell fratricide. Once this limitation is overcome, CD5-targeting CAR-T therapy could be an attractive strategy to treat T cell malignancies. Here, we report the selection of novel CD5-targeting fully human heavy-chain variable (FHVH) domains for the development of a biepitopic CAR, termed FHVH3/VH1, containing FHVH1 and FHVH3, which were validated to bind different epitopes of the CD5 antigen. To prevent fratricide in CD5 CAR-T cells, we optimized the manufacturing procedures of a CRISPR-Cas9-based CD5 knockout (CD5KO) and lentiviral transduction of anti-CD5 CAR. In vitro and in vivo functional comparisons demonstrated that biepitopic CD5KO FHVH3/VH1 CAR-T cells exhibited enhanced and longer lasting efficacy; produced moderate levels of cytokine secretion; showed similar specificity profiles as either FHVH1, FHVH3, or the clinically tested H65; and is therefore suitable for further development.


Assuntos
Antígenos CD5/imunologia , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Domínio Único/metabolismo , Animais , Antígenos CD5/química , Antígenos CD5/genética , Linhagem Celular Tumoral , Feminino , Técnicas de Inativação de Genes , Humanos , Cadeias Pesadas de Imunoglobulinas/química , Células Jurkat , Células K562 , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805896

RESUMO

Small-cell lung cancer (SCLC) is the most aggressive form of lung cancer and the leading cause of global cancer-related mortality. Despite the earlier identification of membrane-proximal cleavage of cell adhesion molecule 1 (CADM1) in cancers, the role of the membrane-bound fragment of CAMD1 (MF-CADM1) is yet to be clearly identified. In this study, we first isolated MF-CADM1-specific fully human single-chain variable fragments (scFvs) from the human synthetic scFv antibody library using the phage display technology. Following the selected scFv conversion to human immunoglobulin G1 (IgG1) scFv-Fc antibodies (K103.1-4), multiple characterization studies, including antibody cross-species reactivity, purity, production yield, and binding affinity, were verified. Finally, via intensive in vitro efficacy and toxicity evaluation studies, we identified K103.3 as a lead antibody that potently promotes the death of human SCLC cell lines, including NCI-H69, NCI-H146, and NCI-H187, by activated Jurkat T cells without severe endothelial toxicity. Taken together, these findings suggest that antibody-based targeting of MF-CADM1 may be an effective strategy to potentiate T cell-mediated SCLC death, and MF-CADM1 may be a novel potential therapeutic target in SCLC for antibody therapy.


Assuntos
Neoplasias Pulmonares , Anticorpos de Cadeia Única , Carcinoma de Pequenas Células do Pulmão , Molécula 1 de Adesão Celular/genética , Técnicas de Visualização da Superfície Celular , Humanos , Anticorpos de Cadeia Única/farmacologia
5.
J Cell Physiol ; 236(8): 5832-5847, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33432627

RESUMO

Impressive outcomes have been achieved by chimeric antigen receptor (CAR)-T cell therapy using murine-derived single-chain variable fragment (scFv) FMC63 specific for CD19 in patients with B cell malignancies. However, evidence suggests that human anti-mouse immune responses might be responsible for poor persistence and dysfunction of CAR-T cells, leading to poor outcomes or early tumor recurrence. Substituting a fully human scFv for murine-derived scFv may address this clinically relevant concern. In this study, we discovered two human anti-CD19 scFv candidates through an optimized protein/cell alternative panning strategy and evaluated their function in CAR-T cells and CD19/CD3 bispecific antibody formats. The two clones exhibited excellent cytotoxicity in CAR-T cells and bispecific antibodies in vitro compared with the benchmarks FMC63 CAR-T cells and blinatumomab. Furthermore, Clone 78-BBz CAR-T cells exhibited similar in vivo antitumor activity to FMC63-BBz CAR-T cells. Our results indicate that Clone 78-BBz CAR has excellent efficacy and safety profile and is a good candidate for clinical development.


Assuntos
Antígenos CD19/imunologia , Terapia Baseada em Transplante de Células e Tecidos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Animais , Anticorpos Biespecíficos/farmacologia , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Anticorpos de Cadeia Única/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
Biochem Biophys Res Commun ; 494(1-2): 409-415, 2017 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-28917835

RESUMO

The receptor tyrosine kinase c-Met plays critical roles in promoting tumor growth, invasion, metastasis, and angiogenesis in various types of cancer and is a promising therapeutic target. The development of a species cross-reactive therapeutic antibody could provide useful to comprehensive preclinical assessment in animal models. Towards this goal, we developed human/mouse cross-reactive c-Met antibodies using an antibody phage library. IRCR201, a c-Met antibody with species cross-reactivity, successfully inhibited the HGF/c-Met signaling pathway via degradation of c-Met and disruption of the binding with its partners, and demonstrated strong in vivo antitumor activity. In pharmacokinetic analysis, IRCR201 exhibited a nonlinear pharmacokinetic profile and showed rapid serum clearance at low dosage. Ex vivo fluorescence imaging and immunohistochemistry demonstrated strong tumor accumulation of IRCR201. Hepatotoxicity analysis revealed that IRCR201 does not significantly affect primary human and mouse hepatocytes. Serum chemistry analysis demonstrated that the alanine aminotransferase serum level was elevated in mice treated with 30 mg/kg IRCR201 than in PBS-treated mice, whereas the levels of aspartate aminotransferase and blood urea nitrogen did not significantly differ. Thus, IRCR201 is a potent therapeutic antibody that can disrupt the HGF/c-Met signaling axis and its species cross-reactivity would enable to evaluate precise biological activity in animal models.


Assuntos
Anticorpos Antineoplásicos/farmacologia , Anticorpos Neutralizantes/farmacologia , Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Reações Cruzadas , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Feminino , Expressão Gênica , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/imunologia , Humanos , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neuroglia/imunologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/imunologia , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Int J Mol Sci ; 18(9)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28902178

RESUMO

Hepatocyte growth factor receptor (HGFR, c-Met) is an essential member of the receptor tyrosine kinase (RTK) family that is often dysregulated during tumor progression, driving a malignant phenotypic state and modulating important cellular functions including tumor growth, invasion, metastasis, and angiogenesis, providing a strong rationale for targeting HGF/c-Met signaling axis in cancer therapy. Based on its protumorigenic potentials, we developed IRCR201, a potent antagonistic antibody targeting the plexin-semaphorin-integrin (PSI) domain of c-Met, using synthetic human antibody phage libraries. We characterized and evaluated the biochemical properties and tumor inhibitory effect of IRCR201 in vitro and in vivo. IRCR201 is a novel fully-human bivalent therapeutic antibody that exhibits cross-reactivity against both human and mouse c-Met proteins with high affinity and specificity. IRCR201 displayed low agonist activity and rapidly depleted total c-Met protein via the lysosomal degradation pathway, inhibiting c-Met-dependent downstream activation and attenuating cellular proliferation in various c-Met-expressing cancer cells. In vivo tumor xenograft models also demonstrated the superior tumor inhibitory responsiveness of IRCR201. Taken together, IRCR201 provides a promising therapeutic agent for c-Met-positive cancer patients through suppressing the c-Met signaling pathway and tumor growth.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas c-met/imunologia , Células A549 , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antineoplásicos/imunologia , Anticorpos Neutralizantes/imunologia , Antineoplásicos/imunologia , Apoptose/efeitos dos fármacos , Moléculas de Adesão Celular/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Reações Cruzadas , Mapeamento de Epitopos , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/imunologia , Humanos , Imuno-Histoquímica , Integrinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/imunologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Semaforinas/imunologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Methods ; 65(1): 57-67, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24036249

RESUMO

Over the last nearly three decades in vitro display technologies have played an important role in the discovery and optimization of antibodies and other proteins for therapeutic applications. Here we describe the use of retroviral expression technology for the display of full-length IgG on B lineage cells in vitro with a hallmark of a tight and stable genotype to phenotype coupling. We describe the creation of a high-diversity (>1.0E09 different heavy- and light-chain combinations) cell displayed fully human antibody library from healthy donor-derived heavy- and light-chain gene libraries, and demonstrate the recovery of high affinity target-specific antibodies from this library by staining of cells with a labeled target antigen and their magnetic- and flow cytometry-based cell sorting. The present technology represents a further evolution in the discovery of full-length, fully human antibodies using mammalian display, and is termed Retrocyte Display® (Retroviral B lymphocyte Display).


Assuntos
Anticorpos Monoclonais/biossíntese , Retroviridae/genética , Animais , Anticorpos Monoclonais/genética , Linfócitos B/metabolismo , Criopreservação , Avaliação Pré-Clínica de Medicamentos , Citometria de Fluxo , Variação Genética , Vetores Genéticos , Células HEK293 , Humanos , Cadeias Pesadas de Imunoglobulinas/biossíntese , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/biossíntese , Cadeias Leves de Imunoglobulina/genética , Separação Imunomagnética , Biblioteca de Peptídeos , Ligação Proteica
9.
MAbs ; 16(1): 2387240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113562

RESUMO

Prostate stem cell antigen (PSCA) is expressed in all stages of prostate cancer, including in advanced androgen-independent tumors and bone metastasis. PSCA may associate with prostate carcinogenesis and lineage plasticity in prostate cancer. PSCA is also a promising theranostic marker for a variety of other solid tumors, including pancreatic adenocarcinoma and renal cell carcinoma. Here, we identified a novel fully human PSCA antibody using phage display methodology. The structure-based affinity maturation yielded a high-affinity binder, F12, which is highly specific and does not bind to 6,000 human membrane proteins based on a membrane proteome array assay. F12 targets PSCA amino acids 63-69 as tested by the peptide scanning microarray, and it cross-reacts with the murine PSCA. IgG1 F12 efficiently internalizes into PSCA-expressing tumor cells. The antimitotic reagent monomethyl auristatin E (MMAE)-conjugated IgG1 F12 (ADC, F12-MMAE) exhibits dose-dependent efficacy and specificity in a human prostate cancer PC-3-PSCA xenograft NSG mouse model. This is a first reported ADC based on a fully human PSCA antibody and MMAE that is characterized in a xenograft murine model, which warrants further optimizations and investigations in additional preclinical tumor models, including prostate and other solid tumors.


Assuntos
Antígenos de Neoplasias , Proteínas Ligadas por GPI , Imunoconjugados , Proteínas de Neoplasias , Neoplasias da Próstata , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/imunologia , Imunoconjugados/farmacologia , Animais , Antígenos de Neoplasias/imunologia , Camundongos , Proteínas Ligadas por GPI/imunologia , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/antagonistas & inibidores , Linhagem Celular Tumoral , Oligopeptídeos/imunologia , Oligopeptídeos/farmacologia , Imunoglobulina G/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia
10.
Emerg Microbes Infect ; 13(1): 2392651, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39155772

RESUMO

Ebola disease is a lethal viral hemorrhagic fever caused by ebolaviruses within the Filoviridae family with mortality rates of up to 90%. Monoclonal antibody (mAb) based therapies have shown great potential for the treatment of EVD. However, the potential emerging ebolavirus isolates and the negative effect of decoy protein on the therapeutic efficacy of antibodies highlight the necessity of developing novel antibodies to counter the threat of Ebola. Here, 11 fully human mAbs were isolated from transgenic mice immunized with GP protein and recombinant vesicular stomatitis virus-bearing GP (rVSV-EBOV GP). These mAbs were divided into five groups according to their germline genes and exhibited differential binding activities and neutralization capabilities. In particular, mAbs 8G6, 2A4, and 5H4 were cross-reactive and bound at least three ebolavirus glycoproteins. mAb 4C1 not only exhibited neutralizing activity but no cross-reaction with sGP. mAb 7D8 exhibited the strongest neutralizing capacity. Further analysis on the critical residues for the bindings of 4C1 and 8G6 to GPs was conducted using antibodies complementarity-determining regions (CDRs) alanine scanning. It has been shown that light chain CDR3 played a crucial role in binding and neutralization and that any mutation in CDRs could not improve the binding of 4C1 to sGP. Importantly, mAbs 7D8, 8G6, and 4C1 provided complete protections against EBOV infection in a hamster lethal challenge model when administered 12 h post-infection. These results support mAbs 7D8, 8G6, and 4C1 as potent antibody candidates for further investigations and pave the way for further developments of therapies and vaccines.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Modelos Animais de Doenças , Ebolavirus , Doença pelo Vírus Ebola , Animais , Ebolavirus/imunologia , Ebolavirus/genética , Anticorpos Monoclonais/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Anticorpos Antivirais/imunologia , Cricetinae , Camundongos , Anticorpos Neutralizantes/imunologia , Humanos , Camundongos Transgênicos , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Reações Cruzadas
11.
Int Immunopharmacol ; 142(Pt B): 113204, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39317052

RESUMO

Mucin 1 plays an important role in tumor signaling and is overexpressed in adenocarcinoma and the digestive system. Many antibodies have been developed against MUC1 targets. Previously developed antibodies were mainly directed against distal membrane-terminal MUC1-N, but distal membrane-terminal MUC1-N is shed during cell growth and therefore binds to antibodies developed against tandem repeat sequences and becomes ineffective. Here, we provide a simple and rapid method for preparing antibodies targeting the proximal membrane end of MUC1. Immunological target antigens were designed based on Biocytogen Renlite KO mice. With the help of B-cell high-throughput screening technology, we rapidly screened and prepared fully human antibodies with human-macaque cross-reactivity, high affinity, high specificity, and endocytosis. Using this method, we screened 40 antibodies with human-monkey cross-reactivity, which specifically recognized breast cancer cell lines with human and monkey affinities ranging from (1.04E-07-2.91E-09). Of these, the antibodies with germline genes IGHV4-59*01 and IGHV3-30*03 had nanomolar affinities, with high endocytosis effects in breast cancer cells. Ab.07 (IGHV3-30*03) coupled with monomethyl auristatin E (MMAE) showed good anti-tumor activity in different tumor cells. In summary, we describe a method for designing and producing excellent antibodies that can be assembled into antibody-drug conjugates and bispecific antibodies by proximal-membrane-end immunization and B-cell high-throughput screening that can rapidly generate high-quality antibodies.


Assuntos
Ensaios de Triagem em Larga Escala , Mucina-1 , Humanos , Animais , Ensaios de Triagem em Larga Escala/métodos , Mucina-1/imunologia , Mucina-1/genética , Camundongos , Linhagem Celular Tumoral , Linfócitos B/imunologia , Camundongos Knockout , Reações Cruzadas , Feminino , Endocitose , Anticorpos Monoclonais/imunologia , Neoplasias da Mama/imunologia , Oligopeptídeos
12.
Biomed Pharmacother ; 150: 113051, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35658213

RESUMO

Colorectal cancer (CRC) is one of the life-threatening malignancies worldwide. Thus, novel potential therapeutic targets and therapeutics for the treatment of CRC need to be identified to improve the clinical outcomes of patients with CRC. In this study, we found that glucose-regulated protein 94 (GRP94) is overexpressed in CRC tissues, and its high expression is correlated with increased microvessel density. Next, through phage display technology and consecutive in vitro functional isolations, we generated a novel human monoclonal antibody that specifically targets cell surface GRP94 and shows superior internalizing activity comparable to trastuzumab. We found that this antibody specifically inhibits endothelial cell tube formation and simultaneously promotes the downregulation of GRP94 expression on the endothelial cell surface. Finally, we demonstrated that this antibody effectively suppresses tumor growth and angiogenesis of HCT116 human CRC cells without causing severe toxicity in vivo. Collectively, these findings suggest that cell surface GRP94 is a novel potential anti-angiogenic target in CRC and that antibody targeting of GRP94 on the endothelial cell surface is an effective strategy to suppress CRC tumor angiogenesis.


Assuntos
Neoplasias Colorretais , Glicoproteínas de Membrana/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Proteínas de Choque Térmico HSP70 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteínas de Membrana/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo
13.
FEBS Open Bio ; 12(8): 1542-1557, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674216

RESUMO

Glucocorticoid-induced TNF receptor-related (GITR) can act as a co-stimulatory receptor, representing a potential target for safely enhancing immunotherapy efficacy. GITR is triggered by a GITR ligand or an agonist antibody and activates CD8+ and CD4+ effector T cells, reducing tumor-infiltrating Treg numbers and resulting in activation of immune responses and tumor cell destruction by effector T cells. GITR is an attractive target for immunotherapy, especially in combination therapy with immune checkpoint inhibitors, as is being explored in clinical trials. Using H2L2 transgenic mice encoding the human immunoglobulin variable region and hybridoma technology, we generated a panel of fully human antibodies that showed excellent specific affinity and strong activation of human T cells. After conversion to fully human antibodies and engineering modification, we obtained an anti-GITR antibody hab019e2 with enhanced antitumor activity in a B-hGITR MC38 mouse model compared to Tab9H6V3, an anti-GITR antibody that activates T cells and inhibits Treg suppression from XenoMouse. As a fully human antibody with its posttranslational modification hot spot removed, the hab019e2 antibody exerted more potent therapeutic effects, and may have potential as a novel and developable antibody targeting GITR for follow-up drug studies.


Assuntos
Glucocorticoides , Receptores do Fator de Necrose Tumoral , Animais , Anticorpos , Linhagem Celular Tumoral , Proteína Relacionada a TNFR Induzida por Glucocorticoide/agonistas , Humanos , Imunoterapia/métodos , Camundongos , Receptores do Fator de Necrose Tumoral/agonistas
14.
Front Immunol ; 13: 992787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211410

RESUMO

The coronavirus disease 2019 pandemic has caused more than 532 million infections and 6.3 million deaths to date. The reactive and neutralizing fully human antibodies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are effective detection tools and therapeutic measures. During SARS-CoV-2 infection, a large number of SARS-CoV-2 reactive and neutralizing antibodies will be produced. Most SARS-CoV-2 reactive and neutralizing fully human antibodies are isolated from human and frequently encoded by convergent heavy-chain variable genes. However, SARS-CoV-2 viruses can mutate rapidly during replication and the resistant variants of neutralizing antibodies easily survive and evade the immune response, especially in the face of such focused antibody responses in humans. Therefore, additional tools are needed to develop different kinds of fully human antibodies to compensate for current deficiency. In this study, we utilized antibody humanized CAMouseHG mice to develop a rapid antibody discovery method and examine the antibody repertoire of SARS-CoV-2 RBD-reactive hybridoma cells derived from CAMouseHG mice by using high-throughput single-cell V(D)J sequencing analysis. CAMouseHG mice were immunized by 28-day rapid immunization method. After electrofusion and semi-solid medium screening on day 12 post-electrofusion, 171 hybridoma clones were generated based on the results of SARS-CoV-2 RBD binding activity assay. A rather obvious preferential usage of IGHV6-1 family was found in these hybridoma clones derived from CAMouseHG mice, which was significantly different from the antibodies found in patients with COVID-19. After further virus neutralization screening and antibody competition assays, we generated a noncompeting two-antibody cocktail, which showed a potent prophylactic protective efficacy against SARS-CoV-2 in cynomolgus macaques. These results indicate that humanized CAMouseHG mice not only provide a valuable platform to obtain fully human reactive and neutralizing antibodies but also have a different antibody repertoire from humans. Thus, humanized CAMouseHG mice can be used as a good complementary tool in discovery of fully human therapeutic and diagnostic antibodies.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Hibridomas/metabolismo , Camundongos , Glicoproteína da Espícula de Coronavírus
15.
Clin Transl Immunology ; 10(7): e1302, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221401

RESUMO

OBJECTIVES: The increasing prevalence of antibiotic-resistant Staphylococcus aureus, besides the inadequate numbers of effective antibiotics, emphasises the need to find new therapeutic agents against this lethal pathogen. METHODS: In this study, to obtain antibody fragments against S. aureus, a human single-chain fragment variable (scFv) library was enriched against living methicillin-resistant S. aureus (MRSA) cells, grown in three different conditions, that is human peripheral blood mononuclear cells with plasma, whole blood and biofilm. The antibacterial activity of scFvs was evaluated by the growth inhibition assay in vitro. Furthermore, the therapeutic efficacy of anti-S. aureus scFvs was appraised in a mouse model of bacteraemia. RESULTS: Three scFv antibodies, that is MEH63, MEH158 and MEH183, with unique sequences, were found, which exhibited significant binding to S. aureus and reduced the viability of S. aureus in in vitro inhibition assays. Based on the results, MEH63, MEH158 and MEH183, in addition to their combination, could prolong the survival rate, reduce the bacterial burden in the blood and prevent inflammation and tissue destruction in the kidneys and spleen of mice with MRSA bacteraemia compared with the vehicle group (treated with normal saline). CONCLUSION: The combination therapy with anti-S. aureus scFvs and conventional antibiotics might shed light on the treatment of patients with S. aureus infections.

16.
Transl Oncol ; 14(12): 101232, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34601396

RESUMO

The pancaner molecule CD276 (B7-H3) is an attractive target for antibody based therapy. We identified from a large (1011) phage-displayed single-chain variable fragment (scFv) library, a fully human antibody, B11, which bound with high avidity (KD=0.4 nM) to CD276. B11 specifically bound to the V1/V2 domain of CD276 and competed with the antibody 8H9 (Omburtamab). It was used to design an IgG-format bispecific T cell engager B11-BiTE, which was more effective than 8H9-BiTE in 14 different cancer cell lines. B11-BiTE also exhibited strong ADCC/ADCP. Therefore, the fully human B11-BiTE is a promising candidate for treatment of tumors expressing CD276.

17.
Cancers (Basel) ; 12(4)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276524

RESUMO

Immunotherapy is the most promising therapeutic approach against malignant pleural mesothelioma (MPM). Despite technological progress, the number of targetable antigens or specific antibodies is limited, thus hindering the full potential of recent therapeutic interventions. All possibilities of finding new targeting molecules must be exploited. The specificity of targeting is guaranteed by the use of monoclonal antibodies, while fully human antibodies are preferred, as they are functional and generate no neutralizing antibodies. The aim of this review is to appraise the latest advances in screening methods dedicated to the identification and harnessing of fully human antibodies. The scope of identifying useful molecules proceeds along two avenues, i.e., through the antigen-first or binding-first approaches. The first relies on screening human antibody libraries or plasma from immunized transgenic mice or humans to isolate binders to specific antigens. The latter takes advantage of specific binding to tumor cells of antibodies present in phage display libraries or in responders' plasma samples without prior knowledge of the antigens. Additionally, next-generation sequencing analysis of B-cell receptor repertoire pre- and post-therapy in memory B-cells from responders allows for the identification of clones expanded and matured upon treatment. Human antibodies identified can be subsequently reformatted to generate a plethora of therapeutics like antibody-drug conjugates, immunotoxins, and advanced cell-therapeutics such as chimeric antigen receptor-transduced T-cells.

18.
Cancer Res Treat ; 50(3): 1009-1022, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29129044

RESUMO

PURPOSE: Glioblastoma (GBM) is classified as one of the most aggressive and lethal brain tumor. Great strides have been made in understanding the genomic and molecular underpinnings of GBM, which translated into development of new therapeutic approaches to combat such deadly disease. However, there are only few therapeutic agents that can effectively inhibit GBM invasion in a clinical framework. In an effort to address such challenges, we have generated anti-SEMA3A monoclonal antibody as a potential therapeutic antibody against GBM progression. MATERIALS AND METHODS: We employed public glioma datasets, Repository of Molecular Brain Neoplasia Data and The Cancer Genome Atlas, to analyze SEMA3AmRNA expression in human GBM specimens. We also evaluated for protein expression level of SEMA3A via tissue microarray (TMA) analysis. Cell migration and proliferation kinetics were assessed in various GBM patient-derived cells (PDCs) and U87-MG cell-line for SEMA3A antibody efficacy. GBM patient-derived xenograft (PDX) models were generated to evaluate tumor inhibitory effect of anti-SEMA3A antibody in vivo. RESULTS: By combining bioinformatics and TMA analysis, we discovered that SEMA3A is highly expressed in human GBM specimens compared to non-neoplastic tissues. We developed three different anti-SEMA3A antibodies, in fully human IgG form, through screening phage-displayed synthetic antibody library using a classical panning method. Neutralization of SEMA3A significantly reduced migration and proliferation capabilities of PDCs and U87-MG cell line in vitro. In PDX models, treatment with anti-SEMA3A antibody exhibited notable tumor inhibitory effect through down-regulation of cellular proliferative kinetics and tumor-associated macrophages recruitment. CONCLUSION: In present study, we demonstrated tumor inhibitory effect of SEMA3A antibody in GBM progression and present its potential relevance as a therapeutic agent in a clinical framework.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Semaforina-3A/genética , Semaforina-3A/metabolismo , Anticorpos de Cadeia Única/administração & dosagem , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Gradação de Tumores , Semaforina-3A/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Anticorpos de Cadeia Única/farmacologia , Análise Serial de Tecidos , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Anticancer Res ; 38(5): 2803-2810, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29715102

RESUMO

BACKGROUND/AIM: The aim of our study was to investigate the pharmacokinetics (PK), tissue distribution and toxicity of F11 antibody to semaphorin 3A in mouse models and explore its anti-angiogenic and tumor-inhibitory effect. MATERIALS AND METHODS: Patient-derived xenograft (PDX) models were established via subcutaneous implantation of glioblastoma multiforme (GBM) cells and treated with F11. RESULTS: F11 significantly attenuated tumor growth and angiogenesis in the GBM PDX model. Within the range of administered doses, the PK of F11 in serum demonstrated a linear fashion, consistent with general PK profiles of soluble antigen-targeting antibodies. Additionally, the clearance level was detected at between 4.63 and 7.12 ml/d/kg, while the biological half-life was measured at 6.9 and 9.4 days. Tissue distribution of F11 in kidney, liver and heart was consistent with previously reported antibody patterns. However, the presence of F11 in the brain was an interesting finding. CONCLUSION: Collectively, our results revealed angiogenic and tumor-inhibitory effect of F11 antibody and its potential therapeutic use within a clinical framework based on PK, biodistribution and toxicity evaluation in mouse models.


Assuntos
Antineoplásicos Imunológicos/farmacocinética , Neoplasias Encefálicas , Glioblastoma , Semaforina-3A/antagonistas & inibidores , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Anticorpos de Cadeia Única , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Protein Eng Des Sel ; 28(10): 427-35, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26337062

RESUMO

Since the invention of phage display, in vitro antibody display technologies have revolutionized the field of antibody discovery. In combination with antibody libraries constructed with sequences of human origin, such technologies enable accelerated therapeutic antibody discovery while bypassing the laborious animal immunization and hybridoma generation processes. Many in vitro display technologies developed since aim to differentiate from phage display by displaying full-length IgG proteins, utilizing eukaryotic translation system and codons, increasing library size or real-time kinetic selection by fluorescent activated cell sorting. We report here the development of an mRNA display technology and an accompanying HCDR3 size spectratyping monitor for human antibody discovery. Importantly, the mRNA display technology maintains a monovalent linkage between the mRNA (genotype) and display binding protein (phenotype), which minimizes avidity effect common in other display systems and allows for a stringent affinity and off-rate selection. The mRNA display technology successfully identified 100 human antibodies in 15 different selections against various targets from naïve human antibody libraries. These antibodies in general have high affinity and diversity. By analyzing the germline usage and combination of antibodies selected by the mRNA display technology, we identified trends and determined the productivity of each germline subgroup in the libraries that could serve as the knowledge base for constructing fully synthetic, next generation antibody libraries.


Assuntos
Técnicas de Visualização da Superfície Celular/métodos , Anticorpos de Domínio Único/genética , Humanos , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA