Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39051661

RESUMO

The subgenual anterior cingulate cortex (sgACC) is a critical site for understanding the neural correlates of affect and emotion. While the activity of the sgACC is functionally homogenous, it is comprised of multiple Brodmann Areas (BAs) that possess different cytoarchitectures. In some sgACC BAs, Layer 5 is sublaminated into L5a and L5b which has implications for its projection targets. To understand how the transcriptional profile differs between the BAs, layers, and sublayers of human sgACC, we collected layer strips using laser capture microdissection followed by RNA sequencing. We found no significant differences in transcript expression in these specific cortical layers between BAs within the sgACC. In contrast, we identified striking differences between Layers 3 and 5a or 5b that were concordant across sgACC BAs. We found that sublayers 5a and 5b were transcriptionally similar. Pathway analyses of L3 and L5 revealed overlapping biological processes related to synaptic function. However, L3 was enriched for pathways related to cell-to-cell junction and dendritic spines whereas L5 was enriched for pathways related to brain development and presynaptic function, indicating potential functional differences across layers. Our study provides important insight into normative transcriptional features of the sgACC.


Assuntos
Giro do Cíngulo , Transcriptoma , Humanos , Giro do Cíngulo/fisiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Microdissecção e Captura a Laser
2.
Cogn Affect Behav Neurosci ; 23(1): 203-215, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36418846

RESUMO

Cognitive control deficits are associated with impaired executive functioning in schizophrenia. The Dual Mechanisms of Control framework suggests that proactive control requires sustained dorsolateral prefrontal activity, whereas reactive control marshals a larger network. However, primate studies suggest these processes are maintained by dual-encoding regions. To distinguish between these theories, we compared the distinctiveness of proactive and reactive control functional neuroanatomy. In a reanalysis of data from a previous study, 47 adults with schizophrenia and 56 controls completed the Dot Pattern Expectancy task during an fMRI scan examining proactive and reactive control in frontoparietal and medial temporal regions. Areas suggesting specialized control or between-group differences were tested for association with symptoms and task performance. Elastic net models additionally explored these areas' predictive abilities regarding performance. Most regions were active in both reactive and proactive control. However, evidence of specialized proactive control was found in the left middle and superior frontal gyri. Control participants showed greater proactive control in the left middle and right inferior frontal gyri. Elastic net models moderately predicted task performance and implicated various frontal gyri regions in control participants, with additional involvement of anterior cingulate and posterior parietal regions for reactive control. Elastic nets for patient participants implicated the inferior and superior frontal gyri, and posterior parietal lobe. Specialized cognitive control was unassociated with either performance or schizophrenia symptomatology. Future work is needed to clarify the distinctiveness of proactive and reactive control, and its role in executive deficits in severe psychopathology.


Assuntos
Neuroanatomia , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Lobo Frontal , Córtex Pré-Frontal/diagnóstico por imagem , Lobo Temporal , Imageamento por Ressonância Magnética
3.
J Neurosci ; 41(10): 2229-2244, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33478989

RESUMO

Understanding the relationship between neuroanatomy and function in portions of cortex that perform functions largely specific to humans such as lateral prefrontal cortex (LPFC) is of major interest in systems and cognitive neuroscience. When considering neuroanatomical-functional relationships in LPFC, shallow indentations in cortex known as tertiary sulci have been largely unexplored. Here, by implementing a multimodal approach and manually defining 936 neuroanatomical structures in 72 hemispheres (in both males and females), we show that a subset of these overlooked tertiary sulci serve as a meso-scale link between microstructural (myelin content) and functional (network connectivity) properties of human LPFC in individual participants. For example, the posterior middle frontal sulcus (pmfs) is a tertiary sulcus with three components that differ in their myelin content, resting-state connectivity profiles, and engagement across meta-analyses of 83 cognitive tasks. Further, generating microstructural profiles of myelin content across cortical depths for each pmfs component and the surrounding middle frontal gyrus (MFG) shows that both gyral and sulcal components of the MFG have greater myelin content in deeper compared with superficial layers and that the myelin content in superficial layers of the gyral components is greater than sulcal components. These findings support a classic, yet largely unconsidered theory that tertiary sulci may serve as landmarks in association cortices, as well as a modern cognitive neuroscience theory proposing a functional hierarchy in LPFC. As there is a growing need for computational tools that automatically define tertiary sulci throughout cortex, we share pmfs probabilistic sulcal maps with the field.SIGNIFICANCE STATEMENT Lateral prefrontal cortex (LPFC) is critical for functions that are thought to be specific to humans compared with other mammals. However, relationships between fine-scale neuroanatomical structures largely specific to hominoid cortex and functional properties of LPFC remain elusive. Here, we show that these structures, which have been largely unexplored throughout history, surprisingly serve as markers for anatomical and functional organization in human LPFC. These findings have theoretical, methodological, developmental, and evolutionary implications for improved understanding of neuroanatomical-functional relationships not only in LPFC, but also in association cortices more broadly. Finally, these findings ignite new questions regarding how morphological features of these neglected neuroanatomical structures contribute to functions of association cortices that are critical for human-specific aspects of cognition.


Assuntos
Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/fisiologia , Conectoma/métodos , Feminino , Humanos , Masculino
4.
Cereb Cortex ; 30(11): 5899-5914, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32577717

RESUMO

It has recently been shown that large-scale propagation of blood-oxygen-level-dependent (BOLD) activity is constrained by anatomical connections and reflects transitions between behavioral states. It remains to be seen, however, if the propagation of BOLD activity can also relate to the brain's anatomical structure at a more local scale. Here, we hypothesized that BOLD propagation reflects structured neuronal activity across early visual field maps. To explore this hypothesis, we characterize the propagation of BOLD activity across V1, V2, and V3 using a modeling approach that aims to disentangle the contributions of local activity and directed interactions in shaping BOLD propagation. It does so by estimating the effective connectivity (EC) and the excitability of a noise-diffusion network to reproduce the spatiotemporal covariance structure of the data. We apply our approach to 7T fMRI recordings acquired during resting state (RS) and visual field mapping (VFM). Our results reveal different EC interactions and changes in cortical excitability in RS and VFM, and point to a reconfiguration of feedforward and feedback interactions across the visual system. We conclude that the propagation of BOLD activity has functional relevance, as it reveals directed interactions and changes in cortical excitability in a task-dependent manner.


Assuntos
Mapeamento Encefálico/métodos , Modelos Neurológicos , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
5.
J Physiol ; 598(11): 2061-2079, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32100293

RESUMO

KEY POINTS: The functional neuroanatomy of the mammalian respiratory network is far from being understood since experimental tools that measure neural activity across this brainstem-wide circuit are lacking. Here, we use silicon multi-electrode arrays to record respiratory local field potentials (rLFPs) from 196-364 electrode sites within 8-10 mm3 of brainstem tissue in single arterially perfused brainstem preparations with respect to the ongoing respiratory motor pattern of inspiration (I), post-inspiration (PI) and late-expiration (E2). rLFPs peaked specifically at the three respiratory phase transitions, E2-I, I-PI and PI-E2. We show, for the first time, that only the I-PI transition engages a brainstem-wide network, and that rLFPs during the PI-E2 transition identify a hitherto unknown role for the dorsal respiratory group. Volumetric mapping of pontomedullary rLFPs in single preparations could become a reliable tool for assessing the functional neuroanatomy of the respiratory network in health and disease. ABSTRACT: While it is widely accepted that inspiratory rhythm generation depends on the pre-Bötzinger complex, the functional neuroanatomy of the neural circuits that generate expiration is debated. We hypothesized that the compartmental organization of the brainstem respiratory network is sufficient to generate macroscopic local field potentials (LFPs), and if so, respiratory (r) LFPs could be used to map the functional neuroanatomy of the respiratory network. We developed an approach using silicon multi-electrode arrays to record spontaneous LFPs from hundreds of electrode sites in a volume of brainstem tissue while monitoring the respiratory motor pattern on phrenic and vagal nerves in the perfused brainstem preparation. Our results revealed the expression of rLFPs across the pontomedullary brainstem. rLFPs occurred specifically at the three transitions between respiratory phases: (1) from late expiration (E2) to inspiration (I), (2) from I to post-inspiration (PI), and (3) from PI to E2. Thus, respiratory network activity was maximal at respiratory phase transitions. Spatially, the E2-I, and PI-E2 transitions were anatomically localized to the ventral and dorsal respiratory groups, respectively. In contrast, our data show, for the first time, that the generation of controlled expiration during the post-inspiratory phase engages a distributed neuronal population within ventral, dorsal and pontine network compartments. A group-wise independent component analysis demonstrated that all preparations exhibited rLFPs with a similar temporal structure and thus share a similar functional neuroanatomy. Thus, volumetric mapping of rLFPs could allow for the physiological assessment of global respiratory network organization in health and disease.


Assuntos
Tronco Encefálico , Neuroanatomia , Animais , Neurônios , Ratos , Respiração , Nervo Vago
6.
Laterality ; 24(2): 125-138, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29931998

RESUMO

The ability to speak is a unique human capacity, but where is it located in our brains? This question is closely connected to the pioneering work of Pierre Paul Broca in the 1860s. Based on post-mortem observations of aphasic patients' brains, Broca located language production in the 3rd convolution of the left frontal lobe and thus reinitiated the localizationist view of brain functions. However, contemporary neuroscience has partially rejected this view in favor of a network-based perspective. This leads to the question, whether Broca's findings are still relevant today. In this mini-review, we discuss current and historical implications of Broca's work by focusing on his original contribution and contrasting it with contemporary knowledge. Borrowing from Broca's famous quote, our review shows that humans indeed "speak with the left hemisphere"- but Broca's area is not the sole "seat of articulatory language".


Assuntos
Afasia de Broca/história , Área de Broca/fisiologia , Lateralidade Funcional , Neurociências/história , Fala/fisiologia , Afasia de Broca/fisiopatologia , História do Século XIX , Humanos , Vias Neurais/fisiologia
7.
Neuroimage ; 170: 113-120, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28877513

RESUMO

Functional neuroanatomical maps provide a mesoscale reference framework for studies from molecular to systems neuroscience and psychiatry. The underlying structure-function relationships are typically derived from functional manipulations or imaging approaches. Although highly informative, these are experimentally costly. The increasing amount of publicly available brain and genetic data offers a rich source that could be mined to address this problem computationally. Here, we developed an algorithm that fuses gene expression and connectivity data with functional genetic meta data and exploits cumulative effects to derive neuroanatomical maps related to multi-genic functions. We validated the approach by using public available mouse and human data. The generated neuroanatomical maps recapture known functional anatomical annotations from literature and functional MRI data. When applied to multi-genic meta data from mouse quantitative trait loci (QTL) studies and human neuropsychiatric databases, this method predicted known functional maps underlying behavioral or psychiatric traits. Taken together, genetically weighted connectivity analysis (GWCA) allows for high throughput functional exploration of brain anatomy in silico. It maps functional genetic associations onto brain circuitry for refining functional neuroanatomy, or identifying trait-associated brain circuitry, from genetic data.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Expressão Gênica/genética , Estudos de Associação Genética/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Locos de Características Quantitativas/genética , Animais , Atlas como Assunto , Encéfalo/diagnóstico por imagem , Camundongos , Rede Nervosa/diagnóstico por imagem
8.
Nervenarzt ; 88(8): 858-865, 2017 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-28664265

RESUMO

Apraxia is an umbrella term for different disorders of higher motor abilities that are not explained by elementary sensorimotor deficits (e. g. paresis or ataxia). Characteristic features of apraxia that are easy to recognize in clinical practice are difficulties in pantomimed or actual use of tools as well as in imitation of meaningless gestures. Apraxia is bilateral, explaining the cognitive motor disorders and occurs frequently (but not exclusively) after left hemispheric lesions, as well as in neurodegenerative diseases, such as corticobasal syndrome and Alzheimer's disease. Apraxic deficits can seriously impair activities of daily living, which is why the appropriate diagnosis is of great relevance. At the functional anatomical level, different cognitive motor skills rely on at least partly different brain networks, namely, a ventral processing pathway for semantic components, such as tool-action associations, a ventro-dorsal pathway for sensorimotor representations of learnt motor acts, as well as a dorso-dorsal pathway for on-line motor control and, probably, imitation of meaningless gestures. While these networks partially overlap with language-relevant regions, more clear cut dissociations are found between apraxia deficits and disorders of spatial attention. In addition to behavioral interventions, noninvasive neuromodulation approaches, as well as human-computer interface assistance systems are a growing focus of interest for the treatment of apraxia.


Assuntos
Apraxias/fisiopatologia , Transtornos Cognitivos/fisiopatologia , Destreza Motora/fisiologia , Atividades Cotidianas/classificação , Afasia/classificação , Afasia/diagnóstico , Afasia/fisiopatologia , Afasia/terapia , Apraxias/classificação , Apraxias/diagnóstico , Apraxias/terapia , Transtornos Cognitivos/classificação , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/terapia , Demência/classificação , Demência/diagnóstico , Demência/fisiopatologia , Demência/terapia , Avaliação da Deficiência , Humanos , Modelos Neurológicos , Vias Neurais/fisiopatologia , Doenças Neurodegenerativas/classificação , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/fisiopatologia , Doenças Neurodegenerativas/terapia , Testes Neuropsicológicos , Prognóstico
9.
Neuroimage ; 135: 115-24, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27153976

RESUMO

Brain dynamics at rest depend on the large-scale interactions between oscillating cortical microcircuits arranged into macrocolumns. Cytoarchitectonic studies have shown that the structure of those microcircuits differs between cortical regions, but very little is known about interregional differences of their intrinsic dynamics at a macro-scale in human. We developed here a new method aiming at mapping the dynamical properties of cortical microcircuits non-invasively using the coupling between robotized transcranial magnetic stimulation and electroencephalography. We recorded the responses evoked by the stimulation of 18 cortical targets largely covering the accessible neocortex in 22 healthy volunteers. Specific data processing methods were developed to map the local source activity of each cortical target, which showed inter-regional differences with very good interhemispheric reproducibility. Functional signatures of cortical microcircuits were further studied using spatio-temporal decomposition of local source activities in order to highlight principal brain modes. The identified brain modes revealed that cortical areas with similar intrinsic dynamical properties could be distributed either locally or not, with a spatial signature that was somewhat reminiscent of resting state networks. Our results provide the proof of concept of "functional cytoarchitectonics", that would guide the parcellation of the human cortex using not only its cytoarchitecture but also its intrinsic responses to local perturbations. This opens new avenues for brain modelling and physiopathology readouts.


Assuntos
Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Neocórtex/fisiologia , Rede Nervosa/fisiologia , Robótica/métodos , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Masculino , Valores de Referência
10.
Cereb Cortex ; 24(9): 2401-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23592823

RESUMO

A strong relationship between cortical folding and the location of primary sensory areas in the human brain is well established. However, it is unknown if coupling between functional responses and gross anatomy is found at higher stages of sensory processing. We examined the relationship between cortical folding and the location of the retinotopic maps hV4 and VO1, which are intermediate stages in the human ventral visual processing stream. Our data show a consistent arrangement of the eccentricity maps within hV4 and VO1 with respect to anatomy, with the consequence that the hV4/VO1 boundary is found consistently in the posterior transverse collateral sulcus (ptCoS) despite individual variability in map size and cortical folding. Understanding this relationship allowed us to predict the location of visual areas hV4 and VO1 in a separate set of individuals, using only their anatomies, with >85% accuracy. These findings have important implications for understanding the relation between cortical folding and functional maps as well as for defining visual areas from anatomical landmarks alone.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Vias Visuais/anatomia & histologia , Vias Visuais/fisiologia , Adulto Jovem
11.
Eur J Neurosci ; 39(11): 1973-81, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24713032

RESUMO

The human dorsolateral prefrontal cortex (dlPFC) is crucial for monitoring and manipulating information in working memory, but whether such contributions are domain-specific remains unsettled. Neuroimaging studies have shown bilateral dlPFC activity associated with working memory independent of the stimulus domain, but the causality of this relationship cannot be inferred. Repetitive transcranial magnetic stimulation (rTMS) has the potential to test whether the left and right dlPFC contribute equally to verbal and spatial domains; however, this is the first study to investigate the interaction of task domain and hemisphere using offline rTMS to temporarily modulate dlPFC activity. In separate sessions, 20 healthy right-handed adults received 1 Hz rTMS to the left dlPFC and right dlPFC, plus the vertex as a control site. The working memory performance was assessed pre-rTMS and post-rTMS using both verbal-'letter' and spatial-'location' versions of the 3-back task. The response times were faster post-rTMS, independent of the task domain or stimulation condition, indicating the influence of practice or other nonspecific effects. For accuracy, rTMS of the right dlPFC, but not the left dlPFC or vertex, led to a transient dissociation, reducing spatial, but increasing verbal accuracy. A post-hoc correlation analysis found no relationship between these changes, indicating that the substrates underlying the verbal and spatial domains are functionally independent. Collapsing across time, there was a trend towards a double dissociation, suggesting a potential laterality in the functional organisation of verbal and spatial working memory. At a minimum, these findings provide human evidence for domain-specific contributions of the dlPFC to working memory and reinforce the potential of rTMS to ameliorate cognition.


Assuntos
Memória de Curto Prazo , Córtex Pré-Frontal/fisiologia , Memória Espacial , Comportamento Verbal , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Humanos , Masculino , Estimulação Magnética Transcraniana
12.
Synapse ; 68(5): 179-93, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24430888

RESUMO

The neuropeptide galanin is implicated in regulation of affective behavior, including modulation of 5-HT signaling. Here, we investigated, by use of microdialysis in freely moving rats, the effects of intracerebral (i.c.) and intracerebroventricular (i.c.v.) infusions of galanin on basal extracellular 5-HT levels in medial prefrontal cortex (mPFC), CA1 area of ventral hippocampus (vHPC), central amygdaloid nucleus (CeA), ventromedial hypothalamic nucleus ventrolateral part (VMHvl), and ventromedial caudate putamen (CPu). These results were compared with a parallel immunohistochemical analysis of the distribution of galanin, 5-HT, and noradrenaline (NA) nerve terminals, and with data on galanin receptors. Galanin i.c.v. significantly decreased the 5-HT levels in mPFC to 79% and in vHPC to 72%. Local infusions of galanin caused a long-lasting decrease in 5-HT levels in vHPC to 88%, and a moderate decrease in CeA, whereas the 5-HT levels in mPFC significantly increased to 121%. These effects of i.c. galanin correlated well with the density of 5-HT and galanin nerve terminals and galanin receptors autoradiography in mPFC, vHPC, and CeA. No effects of i.c. or i.c.v. galanin on 5-HT levels were observed in CPu or VMHvl, in agreement with the low numbers of galanin-positive terminals and low/moderate galanin receptor density. Galanin was often found to coexist in NA, but could never be detected in 5-HT terminals. Together the results show a neuroanatomical correlation between the effects of galanin infusions on 5-HT release and distribution of galanin and its receptors, and that i.c.v. and i.c. administration can give opposite effects on 5-HT release.


Assuntos
Encéfalo/metabolismo , Galanina/farmacocinética , Receptores de Galanina/metabolismo , Serotonina/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Galanina/administração & dosagem , Infusões Intraventriculares , Masculino , Microdiálise , Terminações Nervosas/efeitos dos fármacos , Terminações Nervosas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Galanina/genética , Distribuição Tecidual , Vigília
13.
Toxicol Pathol ; 42(3): 487-509, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24135464

RESUMO

This review article is designed to serve as an introductory guide in neuroanatomy for toxicologic pathologists evaluating general toxicity studies. The article provides an overview of approximately 50 neuroanatomical subsites and their functional significance across 7 transverse sections of the brain. Also reviewed are 3 sections of the spinal cord, cranial and peripheral nerves (trigeminal and sciatic, respectively), and intestinal autonomic ganglia. The review is limited to the evaluation of hematoxylin and eosin-stained tissue sections, as light microscopic evaluation of these sections is an integral part of the first-tier toxicity screening of environmental chemicals, drugs, and other agents. Prominent neuroanatomical sites associated with major neurological disorders are noted. This guide, when used in conjunction with detailed neuroanatomic atlases, may aid in an understanding of the significance of functional neuroanatomy, thereby improving the characterization of neurotoxicity in general toxicity and safety evaluation studies.


Assuntos
Pesquisa Biomédica/normas , Encéfalo/anatomia & histologia , Histocitoquímica/normas , Patologia/normas , Testes de Toxicidade/normas , Animais , Feminino , Masculino , Ratos , Estados Unidos
14.
J Clin Med ; 13(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39064242

RESUMO

Dementia is a highly prevalent condition with devastating clinical and socioeconomic sequela. It is expected to triple in prevalence by 2050. No treatment is currently known to be effective. Symptomatic late-onset dementia and predementia (SLODP) affects 95% of patients with the syndrome. In contrast to trials of pharmacological prevention, no treatment is suggested to remediate or cure these symptomatic patients. SLODP but not young onset dementia is intensely associated with multimorbidity (MUM), including brain-perturbating conditions (BPCs). Recent studies showed that MUM/BPCs have a major role in the pathogenesis of SLODP. Fortunately, most MUM/BPCs are medically treatable, and thus, their treatment may modify and improve SLODP, relieving suffering and reducing its clinical and socioeconomic threats. Regrettably, the complex system features of SLODP impede the diagnosis and treatment of the potentially remediable conditions (PRCs) associated with them, mainly due to failure of pattern recognition and a flawed diagnostic workup. We suggest incorporating two SLODP-specific conceptual themes into the diagnostic workup: MUM/BPC and multilevel phenomenological themes. By doing so, we were able to improve the diagnostic accuracy of SLODP components and optimize detecting and favorably treating PRCs. These revolutionary concepts and their implications for remediability and other parameters are discussed in the paper.

15.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798426

RESUMO

Recent work has uncovered relationships between evolutionarily new small and shallow cerebral indentations, or sulci, and human behavior. Yet, this relationship remains unexplored in the lateral parietal cortex (LPC) and the lateral parieto-occipital junction (LPOJ). After defining thousands of sulci in a young adult cohort, we revised the previous LPC/LPOJ sulcal landscape to include four previously overlooked, small, shallow, and variable sulci. One of these sulci (ventral supralateral occipital sulcus, slocs-v) is present in nearly every hemisphere and is morphologically, architecturally, and functionally dissociable from neighboring sulci. A data-driven, model-based approach, relating sulcal depth to behavior further revealed that the morphology of only a subset of LPC/LPOJ sulci, including the slocs-v, is related to performance on a spatial orientation task. Our findings build on classic neuroanatomical theories and identify new neuroanatomical targets for future "precision imaging" studies exploring the relationship among brain structure, brain function, and cognitive abilities in individual participants.

16.
Brain Sci ; 14(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39061391

RESUMO

Spinal cord epidural electrical stimulation (EES) has been successfully employed to treat chronic pain and to restore lost functions after spinal cord injury. Yet, the efficacy of this approach is largely challenged by the suboptimal spatial distribution of the electrode contacts across anatomical targets, limiting the spatial selectivity of stimulation. In this study, we exploited different ESS paradigms, designed as either Spatial-Selective Stimulation (SSES) or Orientation-Selective Epidural Stimulation (OSES), and compared them to Conventional Monopolar Epidural Stimulation (CMES). SSES, OSES, and CMES were delivered with a 3- or 4-contact electrode array. Amplitudes and latencies of the Spinally Evoked Motor Potentials (SEMPs) were evaluated with different EES modalities. The results demonstrate that the amplitudes of SEMPs in hindlimb muscles depend on the orientation of the electrical field and vary between stimulation modalities. These findings show that the electric field applied with SSES or OSES provides more selective control of amplitudes of the SEMPs as compared to CMES. We demonstrate that spinal cord epidural stimulation applied with SSES or OSES paradigms in the rodent model could be tailored to the functional spinal cord neuroanatomy and can be tuned to specific target fibers and their orientation, optimizing the effect of neuromodulation.

17.
Biomolecules ; 13(4)2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-37189339

RESUMO

The orexin system is related to food behavior, energy balance, wakefulness and the reward system. It consists of the neuropeptides orexin A and B, and their receptors, orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R). OX1R has selective affinity for orexin A, and is implicated in multiple functions, such as reward, emotions, and autonomic regulation. This study provides information about the OX1R distribution in human hypothalamus. The human hypothalamus, despite its small size, demonstrates a remarkable complexity in terms of cell populations and cellular morphology. Numerous studies have focused on various neurotransmitters and neuropeptides in the hypothalamus, both in animals and humans, however, there is limited experimental data on the morphological characteristics of neurons. The immunohistochemical analysis of the human hypothalamus revealed that OX1R is mainly found in the lateral hypothalamic area, the lateral preoptic nucleus, the supraoptic nucleus, the dorsomedial nucleus, the ventromedial nucleus, and the paraventricular nucleus. The rest of the hypothalamic nuclei do not express the receptor, except for a very low number of neurons in the mammillary bodies. After identifying the nuclei and neuronal groups that were immunopositive for OX1R, a morphological and morphometric analysis of those neurons was conducted using the Golgi method. The analysis revealed that the neurons in the lateral hypothalamic area were uniform in terms of their morphological characteristics, often forming small groups of three to four neurons. A high proportion of neurons in this area (over 80%) expressed the OX1R, with particularly high expression in the lateral tuberal nucleus (over 95% of neurons). These results were analyzed, and shown to represent, at the cellular level, the distribution of OX1R, and we discuss the regulatory role of orexin A in the intra-hypothalamic areas, such as its special role in the plasticity of neurons, as well as in neuronal networks of the human hypothalamus.


Assuntos
Hipotálamo , Neuropeptídeos , Animais , Humanos , Orexinas/metabolismo , Receptores de Orexina/metabolismo , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Neurônios/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-35886651

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease, whose main neuropathological finding is pars compacta degeneration due to the accumulation of Lewy bodies and Lewy neurites, and subsequent dopamine depletion. This leads to an increase in the activity of the subthalamic nucleus (STN) and the internal globus pallidus (GPi). Understanding functional anatomy is the key to understanding and developing new targets and new technologies that could potentially improve motor and non-motor symptoms in PD. Currently, the classical targets are insufficient to improve the entire wide spectrum of symptoms in PD (especially non-dopaminergic ones) and none are free of the side effects which are not only associated with the procedure, but with the targets themselves. The objective of this narrative review is to show new targets in DBS surgery as well as new technologies that are under study and have shown promising results to date. The aim is to give an overview of these new targets, as well as their limitations, and describe the current studies in this research field in order to review ongoing research that will probably become effective and routine treatments for PD in the near future.


Assuntos
Estimulação Encefálica Profunda , Doenças Neurodegenerativas , Doença de Parkinson , Núcleo Subtalâmico , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/métodos , Globo Pálido , Humanos , Doenças Neurodegenerativas/etiologia
19.
Dev Cogn Neurosci ; 50: 100977, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34147987

RESUMO

Humans differ in their capacity for integrating perceived events and related actions. The "Theory of event coding" (TEC) conceptualizes how stimuli and actions are cognitively bound into a common functional representation (or "code"), known as the "event file". To date, however, the neural processes underlying the development of event file coding mechanisms across age are largely unclear. We investigated age-related neural changes of event file coding from late childhood to early adulthood, using EEG signal decompositions methods. We included a group of healthy participants (n = 91) between 10 and 30 years, performing an event file paradigm. Results of this study revealed age-related effects on event file coding processes both at the behavioural and the neurophysiological level. Performance accuracy data showed that event file unbinding und rebinding processes become more efficient from late childhood to early adulthood. These behavioural effects are reflected by age-related effects in two neurophysiological subprocesses associated with the superior parietal cortex (BA7) as revealed in the analyses using EEG signal decomposition. The first process entails mapping and association processes between stimulus and response; whereas, the second comprises inhibitory control subprocesses subserving the selection of the relevant motor programme amongst competing response options.


Assuntos
Eletroencefalografia , Percepção , Adolescente , Adulto , Criança , Estudos Transversais , Potenciais Evocados , Feminino , Humanos , Masculino , Lobo Parietal , Adulto Jovem
20.
eNeuro ; 7(4)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32471848

RESUMO

The olfactory system is uniquely heterogeneous, performing multifaceted functions (beyond basic sensory processing) across diverse, widely distributed neural substrates. While knowledge of human olfaction continues to grow, it remains unclear how the olfactory network is organized to serve this unique set of functions. Leveraging a large and high-quality resting-state functional magnetic resonance imaging (rs-fMRI) dataset of nearly 900 participants from the Human Connectome Project (HCP), we identified a human olfactory network encompassing cortical and subcortical regions across the temporal and frontal lobes. Highlighting its reliability and generalizability, the connectivity matrix of this olfactory network mapped closely onto that extracted from an independent rs-fMRI dataset. Graph theoretical analysis further explicated the organizational principles of the network. The olfactory network exhibits a modular composition of three (i.e., the sensory, limbic, and frontal) subnetworks and demonstrates strong small-world properties, high in both global integration and local segregation (i.e., circuit specialization). This network organization thus ensures the segregation of local circuits, which are nonetheless integrated via connecting hubs [i.e., amygdala (AMY) and anterior insula (INSa)], thereby enabling the specialized, yet integrative, functions of olfaction. In particular, the degree of local segregation positively predicted olfactory discrimination performance in the independent sample, which we infer as a functional advantage of the network organization. In sum, an olfactory functional network has been identified through the large HCP dataset, affording a representative template of the human olfactory functional neuroanatomy. Importantly, the topological analysis of the olfactory network provides network-level insights into the remarkable functional specialization and spatial segregation of the olfactory system.


Assuntos
Conectoma , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Reprodutibilidade dos Testes , Olfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA