Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Molecules ; 28(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764404

RESUMO

It is well known that bacterial infections and fire-hazards are potentially injurious in daily life. With the increased security awareness of life and properties as well as the improvement of living standards, there has been an increasing demand for multifunctional textiles with flame retardant and antibacterial properties, especially in the fields of home furnishing and medical protection. So far, various treatment methods, including the spray method, the dip-coating method, and the pad-dry-cure method, have been used to apply functional finishing agents onto fabrics to achieve the functionalization in the past exploration stage. Moreover, in addition to the traditional finishing technology, a number of novel technologies have emerged, such as layer-by-layer (LBL) deposition, the sol-gel process, and chemical grafting modification. In addition, some natural biomasses, including chitin, chitosan (CS), and several synthetic functional compounds that possess both flame-retardant and bacteriostatic properties, have also received extensive attention. Hence, this review focuses on introducing some commonly used finishing technologies and flame retardant/antibacterial agents. At the same time, the advantages and disadvantages of different methods and materials were summarized, which will contribute to future research and promote the development and progress of the industry.


Assuntos
Retardadores de Chama , Antibacterianos/farmacologia , Biomassa , Quitina , Têxteis
2.
Biomed Microdevices ; 21(3): 56, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222509

RESUMO

Biogenic silver nanoparticles (AgNPs) were obtained throughout the fungal biosynthesis using extracellular filtrate of the epiphytic fungus B. ochroleuca and were incorporated in cotton and polyester fabrics by common impregnation procedure that was repeated once, twice or four times. Both fabrics were analyzed by scanning electron microscopy (SEM), and the effectiveness of impregnation was determined using inductively coupled plasma optical emission spectrometry (ICP OES). The AgNPs loaded fabrics showed potent antimicrobial activity on Staphylococcus aureus and Escherichia coli as well as on clinically relevant Candida albicans, Candida glabrata, and Candida parapsilosis, indicating that the AgNPs impregnation of cotton and polyester fabrics was efficient. AgNPs effectively inhibited the biofilm formation by Pseudomonas aeruginosa and was not toxic to Galleria mellonella larvae indicating a promising probability of biotechnological application.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Hypocreales/metabolismo , Nanopartículas Metálicas , Prata/química , Prata/farmacologia , Têxteis , Animais , Antibacterianos/biossíntese , Antibacterianos/toxicidade , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Lepidópteros/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Prata/metabolismo , Prata/toxicidade
3.
Adv Mater ; 36(11): e2304876, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37543841

RESUMO

Photovoltaic devices represent an efficient electricity generation mode. Integrating them into textiles offers exciting opportunities for smart electronic textiles-with the ultimate goal of supplying power for wearable technology-which is poised to change how electronic devices are designed. Many human activities occur indoors, so realizing indoor photovoltaic fibers (IPVFs) that can be woven into textiles to power wearables is critical, although currently unavailable. Here, a dye-sensitized IPVF is constructed by incorporating titanium dioxide nanoparticles into aligned nanotubes to produce close contact and stable interfaces among active layers on a curved fiber substrate, thus presenting efficient charge transport and low charge recombination in the photoanode. With the combination of highly conductive core-sheath Ti/carbon nanotube fiber as a counter electrode, the IPVF shows a certified power conversion efficiency of 25.53% under 1500 lux illuminance. Its performance variation is below 5% after bending, twisting, or pressing for 1000 cycles. These IPVFs are further integrated with fiber batteries as self-charging power textiles, which are demonstrated to effectively supply electricity for wearables, solving the power supply problem in this important direction.

4.
Pediatr Allergy Immunol ; 24(6): 603-13, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23980847

RESUMO

Atopic dermatitis (AD) is a relapsing inflammatory skin disease with a considerable social and economic burden. Functional textiles may have antimicrobial and antipruritic properties and have been used as complementary treatment in AD. We aimed to assess their effectiveness and safety in this setting. We carried out a systematic review of three large biomedical databases. GRADE approach was used to rate the levels of evidence and grade of recommendation. Meta-analyses of comparable studies were carried out. Thirteen studies (eight randomized controlled trials and five observational studies) met the eligibility criteria. Interventions were limited to silk (six studies), silver-coated cotton (five studies), borage oil, and ethylene vinyl alcohol (EVOH) fiber (one study each). Silver textiles were associated with improvement in SCORAD (2 of 4), fewer symptoms, a lower need for rescue medication (1 of 2), no difference in quality of life, decreased Staphyloccosus aureus colonization (2 of 3), and improvement of trans-epidermal water loss (1 of 2), with no safety concerns. Silk textile use was associated with improvement in SCORAD and symptoms (2 of 4), with no differences in quality of life or need for rescue medication. With borage oil use only skin erythema showed improvement, and with EVOH fiber, an improvement in eczema severity was reported. Recommendation for the use of functional textiles in AD treatment is weak, supported by low quality of evidence regarding effectiveness in AD symptoms and severity, with no evidence of hazardous consequences with their use. More studies with better methodology and longer follow-up are needed.


Assuntos
Terapias Complementares , Dermatite Atópica/terapia , Infecções Cutâneas Estafilocócicas/terapia , Staphylococcus aureus/imunologia , Têxteis/estatística & dados numéricos , Fibra de Algodão , Dermatite Atópica/complicações , Progressão da Doença , Humanos , Óleos de Plantas/administração & dosagem , Óleos de Plantas/efeitos adversos , Polivinil/administração & dosagem , Polivinil/efeitos adversos , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Seda/administração & dosagem , Seda/efeitos adversos , Prata/administração & dosagem , Prata/efeitos adversos , Infecções Cutâneas Estafilocócicas/complicações , Resultado do Tratamento , Ácido gama-Linolênico/administração & dosagem , Ácido gama-Linolênico/efeitos adversos
5.
Int J Biol Macromol ; 227: 1078-1088, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464182

RESUMO

The development of antibacterial cotton fabrics with an overall performance is critical but remains challenging. In this study, we propose a facile method to prepare durable antibacterial cotton fabric without significant sacrifices of wearing comfortability. Cotton fabric is firstly oxidated to obtain dialdehyde groups, then treated with PM molecules to establish a PM coating on the fiber surfaces via Schiff base linkages. The resultant cotton fabrics show durably antibacterial activity, realizing high bacterial reduction rates against both E. coli and S. aureus higher than 99.99 %, and offering remarkable durabilities tolerable 50 washing cycles and 500 rubbing times. These fabrics also show reliable safety for human skin that proofed by a series of cytotoxicity tests with positive results. This work demonstrates an example of versatile strategy to impart effective antibacterial function with durable activity to cotton textiles, showing great potential for practical applications in functional textile fields.


Assuntos
Fibra de Algodão , Escherichia coli , Humanos , Staphylococcus aureus , Protaminas , Bases de Schiff , Têxteis , Antibacterianos/farmacologia
6.
Heliyon ; 9(11): e22013, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034740

RESUMO

The environmental and health-related impacts of synthetic dyes have led to growing interest in natural dyes as sustainable and eco-friendly alternatives. However, natural dyes have been used to dye textiles with limited color shade and poor fastness properties, and little research has been conducted in this field. Additionally, natural dyes also have the potential to provide added functionalities to textiles, such as antibacterial and anti-UV properties. A systematic literature review of 38 studies was conducted to analyze the use of six natural dyes derived from eucalyptus (Eucalyptus globulus Labill.), weld (Reseda luteola L.), madder (Rubia tinctorum L.), annatto (Bixa Orellana L.), true indigo (Indigofera tinctoria L.) and woad (Isatis tinctoria L.). These dyes were selected after a preliminary analysis of studies on plant-based natural dyes with primary colors, considering their chromatic and potential medicinal properties. This study explores the influence of different dyeing parameters and auxiliary products in these properties. The research discussed how the chromatic and medicinal properties of natural dyes can be affected by various factors and provides a summary table with the chromatic palette possibilities according to the different materials and processes relationships. Exploring the combination of natural dyes with environmentally friendly auxiliary products can be a promising development area for creating a wide range of color shades. Further research is also needed to optimize the dyeing processes with natural dyes, towards more sustainable textile dyeing possibilities.

7.
Polymers (Basel) ; 15(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36850264

RESUMO

Stab-resistant garments have been used for centuries, utilizing metals, paper, or polymeric structures, often inspired by natural structures such as scales. Nowadays, stab-resistant vests or vest inserts are used by police and security personnel, but also by bus drivers, ambulance officers, and other people who are empirically often attacked on duty. Since stab protection garments are often heavy and thus uncomfortable and not well accepted, whether in the form of chain-mail or metal inserts in protective vests, researchers are striving to find lightweight, drapable alternatives, often based on polymeric materials. These research attempts have recently focused on textile fabrics, mostly with impregnation by shear-thickening fluids (STFs) or ceramic coatings, as well as on lightweight composites. The first studies on 3D printed polymeric objects with tailored shapes, as well as theoretical investigations of the stab-protective effect of different materials, have been published throughout the last years. Here, we discuss different measurement methods, including dynamic and quasistatic methods, and correlations of stab-resistance with other physical properties, before we give an overview of recent developments of stab-resistant polymers, using different materials/material combinations and structures.

8.
Nanomaterials (Basel) ; 12(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335819

RESUMO

Nanotechnology is a powerful tool for engineering functional materials that has the potential to transform textiles into high-performance, value-added products. In recent years, there has been considerable interest in the development of functional textiles using metal nanoparticles (MNPs). The incorporation of MNPs in textiles allows for the obtention of multifunctional properties, such as ultraviolet (UV) protection, self-cleaning, and electrical conductivity, as well as antimicrobial, antistatic, antiwrinkle, and flame retardant properties, without compromising the inherent characteristics of the textile. Environmental sustainability is also one of the main motivations in development and innovation in the textile industry. Thus, the synthesis of MNPs using ecofriendly sources, such as polysaccharides, is of high importance. The main functions of polysaccharides in these processes are the reduction and stabilization of MNPs, as well as the adhesion of MNPs onto fabrics. This review covers the major research attempts to obtain textiles with different functional properties using polysaccharides and MNPs. The main polysaccharides reported include chitosan, alginate, starch, cyclodextrins, and cellulose, with silver, zinc, copper, and titanium being the most explored MNPs. The potential applications of these functionalized textiles are also reported, and they include healthcare (wound dressing, drug release), protection (antimicrobial activity, UV protection, flame retardant), and environmental remediation (catalysts).

9.
Int J Biol Macromol ; 213: 96-109, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35636528

RESUMO

Functional textiles with antibacterial properties and UV protection are essential for human health. However, the process of functional modification of textiles is usually done with the help of chemical cross-linking agents to improve the bonding fastness of functional finishing agents on textiles. The use of chemical cross-linking agents is not eco-friendly enough and is prone to chemical waste. In this study, some highly reactive polyamine biomolecules were combined with dopamine quinone, a super adhesive bionic material, to spontaneously construct amino-quinone networks (AQNs) coatings on the surface of cotton fabrics without the addition of chemical crosslinkers. The amino/quinone compounds (A/Q) self-crosslinking reaction is achieved by Michael addition and Schiff base reaction between the quinone group in dopamine quinone and the amino group in chitosan (CTS), chitooligosaccharide (COS) or ԑ-polylysine (ԑ-PL). The combination of polyamines and dopamine quinone during the cotton finishing process imparts antibacterial and UV protection to cotton fabric. The results showed that the AQNs coating modified fabrics had superb UV protection and antibacterial rates of over 96% against both E. coli and S. aureus. In addition, the AQNs coating modified fabrics had good resistance to washing and mechanical abrasion. This study proposes that self-assembled amino-quinone network multifunctional coatings of dopamine quinone and polyamine biomolecules are of guiding significance for the development of environmentally friendly bio-based materials.


Assuntos
Escherichia coli , Staphylococcus aureus , Antibacterianos/química , Fibra de Algodão , Dopamina/análogos & derivados , Humanos , Poliaminas , Quinonas , Têxteis
10.
MethodsX ; 9: 101636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251947

RESUMO

In this study, we introduced a novel polymerization method of polyester using collagen peptides derived from fish scale waste. After the extraction process of collagen peptide from fish scales, putting collagen peptide, ethylene glycol and Benzenedicarboxylic acid into a container, and mixing them to form a mixture; heating the mixture for executing an esterification reaction, to product esters and water; heating the esters, and stirring the esters via a mixer; in a specific period, decreasing the pressure in the container for executing a polycondensation reaction; decreasing the pressure in the container to a second pressure, and stirring the esters via the mixer, to produce a collagen modified polyester. Collagen peptides are rich in glycine, proline, and hydroxyproline, and by forming a triple helix structure, such as that of the copolyester, gain better hydrophilicity, antistaticity, and ductility. As a result, the produced collagen modified polyester fiber keeps the characteristics of the traditional polyethylene terephthalate fibers including strength, durability, and resistance to wrinkle and shrink. However, the supramolecular collagen modified polyester containing animal collagen peptides has naturally a soft touch and champagne-like color. Consequently, it can be used as a suitable material for skin-friendly functional clothes with or without additional dying. In brief,•This study introduces a novel method for collagen modified polyester.•Upcycled fish scale waste brings the sustainable benefits of circular economy.•Collagen modified polyester provides a new direction for future technological development in the textile industry.

11.
Materials (Basel) ; 14(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34771993

RESUMO

Wearable E-textile systems should be comfortable so that highest efficiency of their functionality can be achieved. The development of electronic textiles (functional textiles) as a wearable technology for various applications has intensified the use of flexible wearable functional textiles instead of wearable electronics. However, the wearable functional textiles still bring comfort complications during wear. The purpose of this review paper is to sightsee and recap recent developments in the field of functional textile comfort evaluation systems. For textile-based materials which have close contact to the skin, clothing comfort is a fundamental necessity. In this paper, the effects of functional finishing on the comfort of the textile material were reviewed. A brief review of clothing comfort evaluations for textile fabrics based on subjective and objective techniques was conducted. The reasons behind the necessity for sensory evaluation for smart and functional clothing have been presented. The existing works of literature on comfort evaluation techniques applied to functional fabrics have been reviewed. Statistical and soft computing/artificial intelligence presentations from selected fabric comfort studies were also reviewed. Challenges of smart textiles and its future highlighted. Some experimental results were presented to support the review. From the aforementioned reviews, it is noted that the electronics clothing comfort evaluation of smart/functional fabrics needs more focus.

12.
Nanomaterials (Basel) ; 11(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34685015

RESUMO

ZnO nanoparticle-based multifunctional coatings were prepared by a simple, time-saving microwave method. Arginine and ammonia were used as precipitation agents, and zinc acetate dehydrate was used as a zinc precursor. Under the optimized conditions, flower-like morphologies of ZnO aggregates were obtained. The prepared nanopowders were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and UV/Visible spectroscopy. The developed in situ synthesis with microwave irradiation enabled significant ZnO nanoparticle deposition on cotton fabrics, without additional steps. The functionalized textiles were tested as a photocatalyst in methylene blue (MB) photodegradation and showed good self-cleaning and UV-blocking properties. The coated cotton fabrics exhibited good antibacterial properties against common microbial trains (Staphylococcus aureus, Escherichia coli, and Candida albicans), together with self-cleaning and photocatalytic efficiency in organic dye degradation. The proposed microwave-assisted in situ synthesis of ZnO nanocoatings on textiles shows high potential as a rapid, efficient, environmentally friendly, and scalable method to fabricate functional fabrics.

13.
Polymers (Basel) ; 13(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672322

RESUMO

This study focuses on the potential uses in textiles of fibers of soy protein (SP) and chitin, which are naturally occurring polymers that can be obtained from agricultural and food processing by-products and wastes. The as-received natural fibers were first subjected to a three-step manufacturing process to develop yarns that were, thereafter, converted into fabrics by weft knitting. Different characterizations in terms of physical properties and comfort parameters were carried out on the natural fibers and compared to waste derived fibers of coir and also conventional cotton and cotton-based fibers, which are widely used in the textile industry. The evaluation of the geometry and mechanical properties revealed that both SP and chitin fibers showed similar fineness and tenacity values than cotton, whereas coir did not achieve the expected properties to develop fabrics. In relation to the moisture content, it was found that the SP fibers outperformed the other natural fibers, which could successfully avoid variations in the mechanical performance of their fabrics as well as impair the growth of microorganisms. In addition, the antimicrobial activity of the natural fibers was assessed against different bacteria and fungi that are typically found on the skin. The obtained results indicated that the fibers of chitin and also SP, being the latter functionalized with biocides during the fiber-formation process, showed a high antimicrobial activity. In particular, reductions of up to 100% and 60% were attained for the bacteria and fungi strains, respectively. Finally, textile comfort was evaluated on the weft-knitted fabrics of the chitin and SP fibers by means of thermal and tactile tests. The comfort analysis indicated that the thermal resistance of both fabrics was similar to that of cotton, whereas their air permeability was higher, particularly for chitin due to its higher fineness, which makes these natural fibers very promising for summer clothes. Both the SP and chitin fabrics also presented relatively similar values of fullness and softness than the pure cotton fabric in terms of body feeling and richness. However, the cotton/polyester fabric was the only one that achieved a good range for uses in winter-autumn cloths. Therefore, the results of this work demonstrate that non-conventional chitin and SP fibers can be considered as potential candidates to replace cotton fibers in fabrics for the textile industry due to their high comfort and improved sustainability. Furthermore, these natural fibers can also serve to develop novel functional textiles with antimicrobial properties.

14.
Polymers (Basel) ; 13(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668865

RESUMO

The far-infrared ray (FIR) is one kind of electromagnetic wave employed for numerous bio-interactive applications such as body thermoregulation, infrared therapy, etc. Tuning the FIR-emitting property of the functional textile surface can initiate a new horizon to utilize this property in sportswear or even smart textiles. Ceramic particles were studied for their unique ability to constantly emit FIR rays. The purpose of this research is to characterize the FIR emission properties and the thermogravimetric analysis of ceramic-embedded polyurethane films. For this purpose, ceramic particles such as aluminum oxide, silicon dioxide, and titanium dioxide were incorporated (individually) with water-based polyurethane (WPU) binder by a sonication technique to make a thin layer of film. Significant improvement in FIR emissive property of the films was found when using different ceramic particles into the polyurethane films. Reflection and transmission at the FIR range were measured with a gold integrating sphere by Fourier-transform infrared (FTIR) spectrometer. The samples were also characterized by thermogravimetric analysis (TGA). Different physical tests, such as tensile strength and contact angle measurements, were performed to illustrate the mechanical properties of the films. The study suggested that the mechanical properties of the polyurethane films were significantly influenced by the addition of ceramic particles.

15.
Nanomaterials (Basel) ; 11(1)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435145

RESUMO

The Langmuir-Blodgett (LB) method is a well-known deposition technique for the fabrication of ordered monolayer and multilayer thin films of nanomaterials onto different substrates that plays a critical role in the development of functional devices for various applications. This paper describes detailed studies about the best coating configuration for nanoparticles of a porous metal-organic framework (MOF) onto both insulating or conductive threads and nylon fiber. We design and fabricate customized polymethylmethacrylate sheets (PMMA) holders to deposit MOF layers onto the threads or fiber using the LB technique. Two different orientations, namely, horizontal and vertical, are used to deposit MIL-96(Al) monolayer films onto five different types of threads and nylon fiber. These studies show that LB film formation strongly depends on deposition orientation and the type of threads or fiber. Among all the samples tested, cotton thread and nylon fiber with vertical deposition show more homogenous monolayer coverage. In the case of conductive threads, the MOF particles tend to aggregate between the conductive thread's fibers instead of forming a continuous monolayer coating. Our results show a significant contribution in terms of MOF monolayer deposition onto single fiber and threads that will contribute to the fabrication of single fiber or thread-based devices in the future.

16.
Adv Mater ; 31(1): e1802348, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30272829

RESUMO

The ability to integrate complex electronic and optoelectronic functionalities within soft and thin fibers is one of today's key advanced manufacturing challenges. Multifunctional and connected fiber devices will be at the heart of the development of smart textiles and wearable devices. These devices also offer novel opportunities for surgical probes and tools, robotics and prostheses, communication systems, and portable energy harvesters. Among the various fiber-processing methods, the preform-to-fiber thermal drawing technique is a very promising process that is used to fabricate multimaterial fibers with complex architectures at micro- and nanoscale feature sizes. Recently, a series of scientific and technological breakthroughs have significantly advanced the field of multimaterial fibers, allowing a wider range of functionalities, better performance, and novel applications. Here, these breakthroughs, in the fundamental understanding of the fluid dynamics, rheology, and tailoring of materials microstructures at play in the thermal drawing process, are presented and critically discussed. The impact of these advances on the research landscape in this field and how they offer significant new opportunities for this rapidly growing scientific and technological platform are also discussed.

17.
Nanoscale Res Lett ; 10(1): 501, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26714863

RESUMO

Nanoparticles are very interesting because of their surface properties, different from bulk materials. Such properties make possible to endow ordinary products with new functionalities. Their relatively low cost with respect to other nano-additives make them a promising choice for industrial mass-production systems. Nanoparticles of different kind of materials such as silver, titania, and zinc oxide have been used in the functionalization of fibers and fabrics achieving significantly improved products with new macroscopic properties. This article reviews the most relevant approaches for incorporating such nanoparticles into synthetic fibers used traditionally in the textile industry allowing to give a solution to traditional problems for textiles such as the microorganism growth onto fibers, flammability, robustness against ultraviolet radiation, and many others. In addition, the incorporation of such nanoparticles into special ultrathin fibers is also analyzed. In this field, electrospinning is a very promising technique that allows the fabrication of ultrathin fiber mats with an extraordinary control of their structure and properties, being an ideal alternative for applications such as wound healing or even functional membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA