Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Mol Microbiol ; 121(5): 912-926, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38400525

RESUMO

Fungal cell walls represent the frontline contact with the host and play a prime role in pathogenesis. While the roles of the cell wall polymers like chitin and branched ß-glucan are well understood in vegetative and pathogenic development, that of the most prominent galactose-containing polymers galactosaminogalactan and fungal-type galactomannan is unknown in plant pathogenic fungi. Mining the genome of the maize pathogen Colletotrichum graminicola identified the single-copy key galactose metabolism genes UGE1 and UGM1, encoding a UDP-glucose-4-epimerase and UDP-galactopyranose mutase, respectively. UGE1 is thought to be required for biosynthesis of both polymers, whereas UGM1 is specifically required for fungal-type galactomannan formation. Promoter:eGFP fusion strains revealed that both genes are expressed in vegetative and in pathogenic hyphae at all stages of pathogenesis. Targeted deletion of UGE1 and UGM1, and fluorescence-labeling of galactosaminogalactan and fungal-type galactomannan confirmed that Δuge1 mutants were unable to synthesize either of these polymers, and Δugm1 mutants did not exhibit fungal-type galactomannan. Appressoria of Δuge1, but not of Δugm1 mutants, were defective in adhesion, highlighting a function of galactosaminogalactan in the establishment of these infection cells on hydrophobic surfaces. Both Δuge1 and Δugm1 mutants showed cell wall defects in older vegetative hyphae and severely reduced appressorial penetration competence. On intact leaves of Zea mays, both mutants showed strongly reduced disease symptom severity, indicating that UGE1 and UGM1 represent novel virulence factors of C. graminicola.


Assuntos
Colletotrichum , Proteínas Fúngicas , Galactose , Doenças das Plantas , Fatores de Virulência , Zea mays , Parede Celular/metabolismo , Colletotrichum/genética , Colletotrichum/metabolismo , Colletotrichum/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Galactanos/metabolismo , Galactose/metabolismo , Galactose/análogos & derivados , Hifas/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Mananas/metabolismo , Doenças das Plantas/microbiologia , UDPglucose 4-Epimerase/metabolismo , UDPglucose 4-Epimerase/genética , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Zea mays/microbiologia
2.
Trends Immunol ; 43(9): 706-717, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35961916

RESUMO

Mucosal tissues are constitutively colonized by a wide assortment of host-adapted microbes. This includes the polymorphic fungus Candida albicans which is a primary target of human adaptive responses. Immunogenicity is replicated after intestinal colonization in preclinical models with a surprising array of protective benefits for most hosts, but harmful consequences for a few. The interaction between fungus and host is complex, and traditionally, the masking of antigenic fungal ligands has been viewed as a tactic for fungal immune evasion during invasive infection. However, we propose that dynamic expression of cell wall moieties, host cell lysins, and other antigenic C. albicans determinants is necessary during the more ubiquitous context of intestinal colonization to prime immunogenicity and optimize mammalian host symbiosis.


Assuntos
Candida albicans , Simbiose , Animais , Parede Celular , Humanos , Evasão da Resposta Imune , Mamíferos
3.
J Infect Dis ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126323

RESUMO

BACKGROUND: Mucormycosis is an aggressive, invasive fungal infection caused by moulds in the order Mucorales. Early diagnosis is key to improving patient prognosis, yet relies on insensitive culture or non-specific histopathology. A pan-Mucorales specific monoclonal antibody (mAb), TG11, was recently developed. Here, we investigate the spatio-temporal localisation of the antigen and specificity of the mAb for immunohistochemistry. METHODS: We use immunofluorescence (IF) microscopy to assess antigen localisation in eleven Mucorales species of clinical importance and live imaging of Rhizopus arrhizus germination. Immunogold transmission electron microscopy (immunoTEM) reveals the sub-cellular location of mAb TG11 binding. Finally, we perform immunohistochemistry of R. arrhizus in an ex vivo murine lung infection model alongside lung infection by Aspergillus fumigatus. RESULTS: IF revealed TG11 antigen production at the emerging hyphal tip and along the length of growing hyphae in all Mucorales except Sakasenea. Timelapse imaging revealed early antigen exposure during spore germination and along the growing hypha. ImmunoTEM confirmed mAb TG11 binding to the hyphal cell wall only. The TG11 mAb specifically stained Mucorales but not Aspergillus hyphae in infected murine lung tissue. CONCLUSIONS: TG11 detects early hyphal growth and has valuable potential for diagnosing mucormycosis by enhancing discriminatory detection of Mucorales in tissue.

4.
Mol Plant Microbe Interact ; 37(3): 196-210, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37955547

RESUMO

The cell wall (CW) of plant-interacting fungi, as the direct interface with host plants, plays a crucial role in fungal development. A number of secreted proteins are directly associated with the fungal CW, either through covalent or non-covalent interactions, and serve a range of important functions. In the context of plant-fungal interactions many are important for fungal development in the host environment and may therefore be considered fungal CW-associated effectors (CWAEs). Key CWAE functions include integrating chemical/physical signals to direct hyphal growth, interfering with plant immunity, and providing protection against plant defenses. In recent years, a diverse range of mechanisms have been reported that underpin their roles, with some CWAEs harboring conserved motifs or functional domains, while others are reported to have novel features. As such, the current understanding regarding fungal CWAEs is systematically presented here from the perspective of their biological functions in plant-fungal interactions. An overview of the fungal CW architecture and the mechanisms by which proteins are secreted, modified, and incorporated into the CW is first presented to provide context for their biological roles. Some CWAE functions are reported across a broad range of pathosystems or symbiotic/mutualistic associations. Prominent are the chitin interacting-effectors that facilitate fungal CW modification, protection, or suppression of host immune responses. However, several alternative functions are now reported and are presented and discussed. CWAEs can play diverse roles, some possibly unique to fungal lineages and others conserved across a broad range of plant-interacting fungi. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Proteínas Fúngicas , Fungos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Plantas/microbiologia , Simbiose/fisiologia , Parede Celular/metabolismo , Doenças das Plantas/microbiologia
5.
New Phytol ; 243(3): 1101-1122, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38742361

RESUMO

The appressorium of phytopathogenic fungi is a specific structure with a crucial role in plant cuticle penetration. Pathogens with melanized appressoria break the cuticle through cell wall melanization and intracellular turgor pressure. However, in fungi with nonmelanized appressorium, the mechanisms governing cuticle penetration are poorly understood. Here we characterize Row1, a previously uncharacterized appressoria-specific protein of Ustilago maydis that localizes to membrane and secretory vesicles. Deletion of row1 decreases appressoria formation and plant penetration, thereby reducing virulence. Specifically, the Δrow1 mutant has a thicker cell wall that is more resistant to glucanase degradation. We also observed that the Δrow1 mutant has secretion defects. We show that Row1 is functionally conserved at least among Ustilaginaceae and belongs to the Row family, which consists of five other proteins that are highly conserved among Basidiomycota fungi and are involved in U. maydis virulence. We observed similarities in localization between Row1 and Row2, which is also involved in cell wall remodelling and secretion, suggesting similar molecular functions for members of this protein family. Our data suggest that Row1 could modify the chitin-glucan matrix of the fungal cell wall and may be involved in unconventional protein secretion, thereby promoting both appressoria maturation and penetration.


Assuntos
Parede Celular , Proteínas Fúngicas , Doenças das Plantas , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Parede Celular/metabolismo , Doenças das Plantas/microbiologia , Virulência , Sequência Conservada , Mutação/genética , Basidiomycota
6.
Appl Microbiol Biotechnol ; 108(1): 437, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133429

RESUMO

ß-1,6-Glucan plays a crucial role in fungal cell walls by linking the outer layer of mannoproteins and the inner layer of ß-1,3-glucan, contributing significantly to the maintenance of cell wall rigidity. Therefore, the hydrolysis of ß-1,6-glucan by ß-1,6-glucanase directly leads to the disintegration of the fungal cell wall. Here, a novel ß-1,6-glucanase FlGlu30 was identified from the endophytic Flavobacterium sp. NAU1659 and heterologously expressed in Escherichia coli BL21 (DE3). The optimal reaction conditions of purified FlGlu30 were 50℃ and pH 6.0, resulting in a specific activity of 173.1 U/mg using pustulan as the substrate. The hydrolyzed products of FlGlu30 to pustulan were mainly gentianose within 1 h of reaction. With the extension of reaction time, gentianose was gradually hydrolyzed to glucose, indicating that FlGlu30 is an endo-ß-1,6-glucanase. The germination of Magnaporthe oryzae Guy11 spores could not be inhibited by FlGlu30, but the appressorium formation of spores was completely inhibited under the concentration of 250.0 U/mL FlGlu30. The disruptions of cell wall and accumulation of intracellular reactive oxide species (ROS) were observed in FlGlu30-treated M. oryzae Guy11 cells, suggesting the significant importance of ß-1,6-glucan as a potential antifungal target and the potential application of FlGlu30. KEY POINTS: • ß-1,6-Glucan is a key component maintaining the rigid structure of fungal cell wall. • ß-1,6-Glucanase is an antifungal protein with significant potential applications. • FlGlu30 is the first reported ß-1, 6-glucanase derived from Flavobacterium.


Assuntos
Antifúngicos , Parede Celular , Escherichia coli , Flavobacterium , Glicosídeo Hidrolases , Flavobacterium/enzimologia , Flavobacterium/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Hidrólise , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Parede Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucanos/metabolismo , Concentração de Íons de Hidrogênio , beta-Glucanas/metabolismo , Clonagem Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Especificidade por Substrato , Polissacarídeos
7.
J Biomol NMR ; 77(3): 111-119, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37289305

RESUMO

In the last three decades, the scope of solid-state NMR has expanded to exploring complex biomolecules, from large protein assemblies to intact cells at atomic-level resolution. This diversity in macromolecules frequently features highly flexible components whose insoluble environment precludes the use of solution NMR to study their structure and interactions. While High-resolution Magic-Angle Spinning (HR-MAS) probes offer the capacity for gradient-based 1H-detected spectroscopy in solids, such probes are not commonly used for routine MAS NMR experiments. As a result, most exploration of the flexible regime entails either 13C-detected experiments, the use of partially perdeuterated systems, or ultra-fast MAS. Here we explore proton-detected pulse schemes probing through-bond 13C-13C networks to study mobile protein sidechains as well as polysaccharides in a broadband manner. We demonstrate the use of such schemes to study a mixture of microtubule-associated protein (MAP) tau and human microtubules (MTs), and the cell wall of the fungus Schizophyllum commune using 2D and 3D spectroscopy, to show its viability for obtaining unambiguous correlations using standard fast-spinning MAS probes at high and ultra-high magnetic fields.


Assuntos
Carbono , Prótons , Humanos , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Proteínas/química
8.
Planta ; 258(6): 116, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946063

RESUMO

MAIN CONCLUSION: Each ß-1,3-glucanase with antifungal activity or yeast lytic activity hydrolyzes different structures of ß-1,3-glucans in the fungal cell wall, respectively. Plants express several glycoside hydrolases that target chitin and ß-glucan in fungal cell walls and inhibit pathogenic fungal infection. An antifungal ß-1,3-glucanase was purified from gazyumaru (Ficus microcarpa) latex, designated as GlxGluA, and the corresponding gene was cloned and expressed in Escherichia coli. The sequence shows that GlxGluA belongs to glycoside hydrolase family 17 (GH17). To investigate how GlxGluA acts to degrade fungal cell wall ß-glucan, it was compared with ß-1,3-glucanase with different substrate specificities. We obtained recombinant ß-1,3-glucanase (designated as CcGluA), which belongs to GH64, from the bacterium Cellulosimicrobium cellulans. GlxGluA inhibited the growth of the filamentous fungus Trichoderma viride but was unable to lyse the yeast Saccharomyces cerevisiae. In contrast, CcGluA lysed yeast cells but had a negligible inhibitory effect on the growth of filamentous fungi. GlxGluA degraded the cell wall of T. viride better than CcGluA, whereas CcGluA degraded the cell wall of S. cerevisiae more efficiently than GlxGluA. These results suggest that the target substrates in fungal cell walls differ between GlxGluA (GH17 class I ß-1,3-glucanase) and CcGluA (GH64 ß-1,3-glucanase).


Assuntos
Ficus , beta-Glucanas , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Saccharomyces cerevisiae/metabolismo , beta-Glucanas/metabolismo , Ficus/metabolismo , Látex/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/análise , Glicosídeo Hidrolases/metabolismo , Fungos/metabolismo , Bactérias/metabolismo , Parede Celular/metabolismo
9.
Appl Environ Microbiol ; 89(10): e0057323, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37702503

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) can perform oxidative cleavage of glycosidic bonds in carbohydrate polymers (e.g., cellulose, chitin), making them more accessible to hydrolytic enzymes. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. The AA10 LPMOs are active on chitin and/or cellulose and mostly found in bacteria and in some viruses and archaea. Interestingly, AA10-encoding genes are also encountered in some pathogenic fungi of the Ustilaginomycetes class, such as Ustilago maydis, responsible for corn smut disease. Transcriptomic studies have shown the overexpression of the AA10 gene during the infectious cycle of U. maydis. In fact, U. maydis has a unique AA10 gene that codes for a catalytic domain appended with a C-terminal disordered region. To date, there is no public report on fungal AA10 LPMOs. In this study, we successfully produced the catalytic domain of this LPMO (UmAA10_cd) in Pichia pastoris and carried out its biochemical characterization. Our results show that UmAA10_cd oxidatively cleaves α- and ß-chitin with C1 regioselectivity and boosts chitin hydrolysis by a GH18 chitinase from U. maydis (UmGH18A). Using a biologically relevant substrate, we show that UmAA10_cd exhibits enzymatic activity on U. maydis fungal cell wall chitin and promotes its hydrolysis by UmGH18A. These results represent an important step toward the understanding of the role of LPMOs in the fungal cell wall remodeling process during the fungal life cycle.IMPORTANCELytic polysaccharide monooxygenases (LPMOs) have been mainly studied in a biotechnological context for the efficient degradation of recalcitrant polysaccharides. Only recently, alternative roles and paradigms begin to emerge. In this study, we provide evidence that the AA10 LPMO from the phytopathogen Ustilago maydis is active against fungal cell wall chitin. Given that chitin-active LPMOs are commonly found in microbes, it is important to consider fungal cell wall as a potential target for this enigmatic class of enzymes.


Assuntos
Quitina , Polissacarídeos , Quitina/metabolismo , Polissacarídeos/metabolismo , Oxigenases de Função Mista/metabolismo , Celulose/metabolismo , Parede Celular/metabolismo
10.
Proc Natl Acad Sci U S A ; 117(36): 22061-22067, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839341

RESUMO

The correct distribution and trafficking of proteins are essential for all organisms. Eukaryotes evolved a sophisticated trafficking system which allows proteins to reach their destination within highly compartmentalized cells. One eukaryotic hallmark is the attachment of a glycosylphosphatidylinositol (GPI) anchor to C-terminal ω-peptides, which are used as a zip code to guide a subset of membrane-anchored proteins through the secretory pathway to the plasma membrane. In fungi, the final destination of many GPI-anchored proteins is their outermost compartment, the cell wall. Enzymes of the Dfg5 subfamily catalyze the essential transfer of GPI-anchored substrates from the plasma membrane to the cell wall and discriminate between plasma membrane-resident GPI-anchored proteins and those transferred to the cell wall (GPI-CWP). We solved the structure of Dfg5 from a filamentous fungus and used in crystallo glycan fragment screening to reassemble the GPI-core glycan in a U-shaped conformation within its binding pocket. The resulting model of the membrane-bound Dfg5•GPI-CWP complex is validated by molecular dynamics (MD) simulations and in vivo mutants in yeast. The latter show that impaired transfer of GPI-CWPs causes distorted cell-wall integrity as indicated by increased chitin levels. The structure of a Dfg5•ß1,3-glycoside complex predicts transfer of GPI-CWP toward the nonreducing ends of acceptor glycans in the cell wall. In addition to our molecular model for Dfg5-mediated transglycosylation, we provide a rationale for how GPI-CWPs are specifically sorted toward the cell wall by using GPI-core glycan modifications.


Assuntos
Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Glicoproteínas/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Parede Celular/química , Parede Celular/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fungos/química , Fungos/classificação , Fungos/genética , Glicoproteínas/química , Glicoproteínas/genética , Glicosilfosfatidilinositóis/química , Transporte Proteico
11.
World J Microbiol Biotechnol ; 39(9): 232, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37349471

RESUMO

The fungal cell wall protects fungi against threats, both biotic and abiotic, and plays a role in pathogenicity by facilitating host adhesion, among other functions. Although carbohydrates (e.g. glucans, chitin) are the most abundant components, the fungal cell wall also harbors ionic proteins, proteins bound by disulfide bridges, alkali-extractable, SDS-extractable, and GPI-anchored proteins, among others; the latter consisting of suitable targets which can be used for fungal pathogen control. Pseudocercospora fijiensis is the causal agent of black Sigatoka disease, the principal threat to banana and plantain worldwide. Here, we report the isolation of the cell wall of this pathogen, followed by extensive washing to eliminate all loosely associated proteins and conserve those integrated to its cell wall. In the HF-pyridine protein fraction, one of the most abundant protein bands was recovered from SDS-PAGE gels, electro-eluted and sequenced. Seven proteins were identified from this band, none of which were GPI-anchored proteins. Instead, atypical (moonlight-like) cell wall proteins were identified, suggesting a new class of atypical proteins, bound to the cell wall by unknown linkages. Western blot and histological analyses of the cell wall fractions support that these proteins are true cell wall proteins, most likely involved in fungal pathogenesis/virulence, since they were found conserved in many fungal pathogens.


Assuntos
Ascomicetos , Musa , Doenças das Plantas/microbiologia , Parede Celular , Musa/microbiologia , Proteínas Ligadas por GPI , Proteínas Fúngicas/genética
12.
Appl Environ Microbiol ; 88(23): e0158122, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36354345

RESUMO

Filamentous fungi are keystone microorganisms in the regulation of many processes occurring on Earth, such as plant biomass decay and pathogenesis as well as symbiotic associations. In many of these processes, fungi secrete carbohydrate-active enzymes (CAZymes) to modify and/or degrade carbohydrates. Ten years ago, while evaluating the potential of a secretome from the maize pathogen Ustilago maydis to supplement lignocellulolytic cocktails, we noticed it contained many unknown or poorly characterized CAZymes. Here, and after reannotation of this data set and detailed phylogenetic analyses, we observed that several CAZymes (including glycoside hydrolases and carbohydrate oxidases) are predicted to act on the fungal cell wall (FCW), notably on ß-1,3-glucans. We heterologously produced and biochemically characterized two new CAZymes, called UmGH16_1-A and UmAA3_2-A. We show that UmGH16_1-A displays ß-1,3-glucanase activity, with a preference for ß-1,3-glucans with short ß-1,6 substitutions, and UmAA3_2-A is a dehydrogenase catalyzing the oxidation of ß-1,3- and ß-1,6-gluco-oligosaccharides into the corresponding aldonic acids. Working on model ß-1,3-glucans, we show that the linear oligosaccharide products released by UmGH16_1-A are further oxidized by UmAA3_2-A, bringing to light a putative biocatalytic cascade. Interestingly, analysis of available transcriptomics data indicates that both UmGH16_1-A and UmAA3_2-A are coexpressed, only during early stages of U. maydis infection cycle. Altogether, our results suggest that both enzymes are connected and that additional accessory activities still need to be uncovered to fully understand the biocatalytic cascade at play and its physiological role. IMPORTANCE Filamentous fungi play a central regulatory role on Earth, notably in the global carbon cycle. Regardless of their lifestyle, filamentous fungi need to remodel their own cell wall (mostly composed of polysaccharides) to grow and proliferate. To do so, they must secrete a large arsenal of enzymes, most notably carbohydrate-active enzymes (CAZymes). However, research on fungal CAZymes over past decades has mainly focused on finding efficient plant biomass conversion processes while CAZymes directed at the fungus itself have remained little explored. In the present study, using the maize pathogen Ustilago maydis as model, we set off to evaluate the prevalence of CAZymes directed toward the fungal cell wall during growth of the fungus on plant biomass and characterized two new CAZymes active on fungal cell wall components. Our results suggest the existence of a biocatalytic cascade that remains to be fully understood.


Assuntos
Glicosídeo Hidrolases , Ustilago , Glicosídeo Hidrolases/metabolismo , Zea mays/metabolismo , Oxirredutases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Filogenia , Parede Celular/metabolismo , Fungos/metabolismo , Plantas/metabolismo , Carboidratos , Glucanos/metabolismo
13.
Appl Microbiol Biotechnol ; 106(22): 7491-7503, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36239763

RESUMO

The low production of natural products (NPs) is still the critical restrictive factor in exploiting their potential large-scale applications and a barrier to isolating and identifying other meaningful products. Given that the stimulation of cell wall integrity (CWI) has become a novel strategy to modulate the production of microbial natural products, herein, exogenous ß-glucanase treatment was developed as an external cell wall ß-glucan stress to stimulate the fungal CWI, and then to improve the production of fungal NPs. It was found that the production of fungal NPs cercosporin and sophorolipids, biosynthesized by Cercospora sp. and Starmerella bombicola, respectively, was significantly improved by the treatment of ß-glucanase under a controllable dose. Moreover, it demonstrated that ß-glucanase had an ability to stimulate fungal CWI through slight fungal superficial damage, thus facilitating the secretion of NPs. We expected that this easy-operating method to stimulate fungal CWI could be feasible to improve more fungal NPs production. KEY POINTS: • Exogenous ß-glucanase stimulated the fungal cell wall integrity • Changing fungal cell walls modulated natural product production • ß-glucanase with potential universal effects on more fungal natural products.


Assuntos
Produtos Biológicos , beta-Glucanas , Proteínas Fúngicas , Produtos Biológicos/farmacologia , Parede Celular
14.
European J Org Chem ; 2022(27): e202200313, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-36035813

RESUMO

Oligosaccharide fragments of fungal cell wall glycans are important molecular probes for studying both the biology of fungi and fungal infections of humans, animals, and plants. The fungal cell wall contains large amounts of various polysaccharides that are ligands for pattern recognition receptors (PRRs), eliciting an immune response upon recognition. Towards the establishment of a glycan array platform for the identification of new ligands of plant PRRs, tri-, penta-, and heptasaccharide fragments of different cell wall polysaccharides were prepared. Chito- and ß-(1→6)-gluco-oligosaccharides were synthesized by automated glycan assembly (AGA), and α-(1→3)- and α-(1→4)-gluco-oligosaccharides were synthesized in solution using a recently reported highly α-selective glycosylation methodology. Incubation of plants with the synthesized oligosaccharides revealed i) length dependence for plant activation by chito-oligosaccharides and ii) ß-1,6-glucan oligosaccharides as a new class of glycans capable of triggering plant activation.

15.
Plant J ; 102(6): 1142-1156, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31925978

RESUMO

Plants survey their environment for the presence of potentially harmful or beneficial microbes. During colonization, cell surface receptors perceive microbe-derived or modified-self ligands and initiate appropriate responses. The recognition of fungal chitin oligomers and the subsequent activation of plant immunity are well described. In contrast, the mechanisms underlying ß-glucan recognition and signaling activation remain largely unexplored. Here, we systematically tested immune responses towards different ß-glucan structures and show that responses vary between plant species. While leaves of the monocots Hordeum vulgare and Brachypodium distachyon can recognize longer (laminarin) and shorter (laminarihexaose) ß-1,3-glucans with responses of varying intensity, duration and timing, leaves of the dicot Nicotiana benthamiana activate immunity in response to long ß-1,3-glucans, whereas Arabidopsis thaliana and Capsella rubella perceive short ß-1,3-glucans. Hydrolysis of the ß-1,6 side-branches of laminarin demonstrated that not the glycosidic decoration but rather the degree of polymerization plays a pivotal role in the recognition of long-chain ß-glucans. Moreover, in contrast to the recognition of short ß-1,3-glucans in A. thaliana, perception of long ß-1,3-glucans in N. benthamiana and rice is independent of CERK1, indicating that ß-glucan recognition may be mediated by multiple ß-glucan receptor systems.


Assuntos
Imunidade Vegetal , beta-Glucanas/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Brachypodium/imunologia , Brachypodium/metabolismo , Capsella/imunologia , Capsella/metabolismo , Glucanos/metabolismo , Hordeum/imunologia , Hordeum/metabolismo , Oligossacarídeos/metabolismo , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Receptores Imunológicos/metabolismo , Especificidade da Espécie , Nicotiana/imunologia , Nicotiana/metabolismo
16.
Biol Chem ; 401(12): 1389-1405, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33035180

RESUMO

Selective adhesion of fungal cells to one another and to foreign surfaces is fundamental for the development of multicellular growth forms and the successful colonization of substrates and host organisms. Accordingly, fungi possess diverse cell wall-associated adhesins, mostly large glycoproteins, which present N-terminal adhesion domains at the cell surface for ligand recognition and binding. In order to function as robust adhesins, these glycoproteins must be covalently linkedto the cell wall via C-terminal glycosylphosphatidylinositol (GPI) anchors by transglycosylation. In this review, we summarize the current knowledge on the structural and functional diversity of so far characterized protein families of adhesion domains and set it into a broad context by an in-depth bioinformatics analysis using sequence similarity networks. In addition, we discuss possible mechanisms for the membrane-to-cell wall transfer of fungal adhesins by membrane-anchored Dfg5 transglycosidases.


Assuntos
Glicosilfosfatidilinositóis/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adesão Celular , Saccharomyces cerevisiae/citologia
17.
New Phytol ; 227(1): 185-199, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32112567

RESUMO

The biotrophic fungus Ustilago maydis causes the smut disease of maize. The interaction with its host and induction of characteristic tumors are governed largely by secreted effectors whose function is mostly unknown. To identify effectors with a prominent role in virulence, we used RNA sequencing and found that the gene sta1 is upregulated during early stages of infection. We characterized Sta1 by comparative genomics, reverse genetics, protein localization, stress assays, and microscopy. sta1 mutants show a dramatic reduction of virulence and show altered colonization of tissue neighboring the vascular bundles. Functional orthologues of Sta1 are found in related smut pathogens infecting monocot and dicot plants. Sta1 is secreted by budding cells but is attached to the cell wall of filamentous hyphae. Upon constitutive expression of Sta1, fungal filaments become susceptible to Congo red, ß-glucanase, and chitinase, suggesting that Sta1 alters the structure of the fungal cell wall. Constitutive or delayed expression of sta1 during plant colonization negatively impacts on virulence. Our results suggest that Sta1 is a novel kind of effector, which needs to modify the hyphal cell wall to allow hyphae to be accommodated in tissue next to the vascular bundles.


Assuntos
Doenças das Plantas , Ustilago , Basidiomycota , Parede Celular , Proteínas Fúngicas/genética , Ustilago/genética , Virulência , Zea mays
18.
Appl Microbiol Biotechnol ; 103(12): 4723-4731, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31079167

RESUMO

Fungi possess extraordinary strength in attachment to biotic and abiotic surfaces. This review focuses on adhesion mechanisms of yeast and filamentous fungi and the proposed combination of the adhesive forces of both organisms in an immobilization system called yeast biocapsules, whereby Saccharomyces cerevisiae cells are attached to the hyphae of Penicillium chrysogenum. The natural adherent properties of each organism, one multicellular and another unicellular, allow yeast to be fixated securely on the filamentous fungi and complete alcoholic fermentation. Following alcoholic fermentation, the hyphae become an inert support for yeast cells while maintaining shape and integrity. Biocapsules have been used successfully in both wine and bioethanol production. Investigation of the potential genes involved in fungal-yeast fusion suggests that natural hydrophobic interactions of both organisms play a major role. Analysis of the possible mechanisms involved in fungus and yeast adhesion, future perspectives on improving yeast immobilization, and proposed applications of the biocapsules are explored.


Assuntos
Adesão Celular , Células Imobilizadas/microbiologia , Fungos/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia , Parede Celular/metabolismo , Fermentação , Interações Hidrofóbicas e Hidrofílicas , Hifas/metabolismo , Microbiologia Industrial , Penicillium chrysogenum/metabolismo
19.
World J Microbiol Biotechnol ; 35(7): 105, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31267317

RESUMO

Pseudocercospora fijiensis causes black Sigatoka disease, the most important threat to banana. The cell wall is crucial for fungal biological processes, including pathogenesis. Here, we performed cell wall proteomics analyses of two P. fijiensis strains, the highly virulent Oz2b, and the less virulent C1233 strains. Strains were starved from nitrogen to mimic the host environment. Interestingly, in vitro cultures of the C1233 strain grew faster than Oz2b in PDB medium, suggesting that C1233 survives outside the host better than the highly virulent Oz2b strain. Both strains were submitted to nitrogen starvation and the cell wall proteins were isolated and subjected to nano-HPLC-MS/MS. A total of 2686 proteins were obtained from which only 240 had a known function and thus, bioinformatics analyses were performed on this group. We found that 90 cell wall proteins were shared by both strains, 21 were unique for Oz2b and 39 for C1233. Shared proteins comprised 24 pathogenicity factors, including Avr4 and Ecp6, two effectors from P. fijiensis, while the unique proteins comprised 16 virulence factors in C1233 and 11 in Oz2b. The P. fijiensis cell wall proteome comprised canonical proteins, but thirty percent were atypical, a feature which in other phytopathogens has been interpreted as contamination. However, a comparison with the identities of atypical proteins in other reports suggests that the P. fijiensis proteins we detected were not contaminants. This is the first proteomics analysis of the P. fijiensis cell wall and our results expands the understanding of the fundamental biology of fungal phytopathogens and will help to decipher the molecular mechanisms of pathogenesis and virulence in P. fijiensis.


Assuntos
Ascomicetos/genética , Ascomicetos/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Proteoma , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Ascomicetos/isolamento & purificação , Ascomicetos/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Genoma Fúngico , Musa/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Espectrometria de Massas em Tandem , Virulência
20.
Proc Natl Acad Sci U S A ; 112(12): E1490-7, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25775513

RESUMO

A rise in resistance to current antifungals necessitates strategies to identify alternative sources of effective fungicides. We report the discovery of poacic acid, a potent antifungal compound found in lignocellulosic hydrolysates of grasses. Chemical genomics using Saccharomyces cerevisiae showed that loss of cell wall synthesis and maintenance genes conferred increased sensitivity to poacic acid. Morphological analysis revealed that cells treated with poacic acid behaved similarly to cells treated with other cell wall-targeting drugs and mutants with deletions in genes involved in processes related to cell wall biogenesis. Poacic acid causes rapid cell lysis and is synergistic with caspofungin and fluconazole. The cellular target was identified; poacic acid localized to the cell wall and inhibited ß-1,3-glucan synthesis in vivo and in vitro, apparently by directly binding ß-1,3-glucan. Through its activity on the glucan layer, poacic acid inhibits growth of the fungi Sclerotinia sclerotiorum and Alternaria solani as well as the oomycete Phytophthora sojae. A single application of poacic acid to leaves infected with the broad-range fungal pathogen S. sclerotiorum substantially reduced lesion development. The discovery of poacic acid as a natural antifungal agent targeting ß-1,3-glucan highlights the potential side use of products generated in the processing of renewable biomass toward biofuels as a source of valuable bioactive compounds and further clarifies the nature and mechanism of fermentation inhibitors found in lignocellulosic hydrolysates.


Assuntos
Ácidos Cumáricos/química , Fungicidas Industriais/química , Poaceae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Estilbenos/química , beta-Glucanas/química , Caspofungina , Membrana Celular/metabolismo , Parede Celular/metabolismo , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Equinocandinas/química , Genômica , Hidrólise , Concentração Inibidora 50 , Lignina/química , Lipopeptídeos , Extratos Vegetais/química , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA