Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 103(23-24): 9633-9642, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31686148

RESUMO

Cell physiology parameters are essential aspects of biological processes; however, they are difficult to determine on-line. Dielectric spectroscopy allows the on-line estimation of viable cells and can provide important information about cell physiology during culture. In this study, we investigated the dielectric property variations in Kluyveromyces marxianus SLP1 and Saccharomyces cerevisiae ERD yeasts stressed by 5-hydroxymethyl-2-furaldehyde and 2-furaldehyde during aerobic growth. The dielectric properties of cell permittivity, specific membrane capacitance (Cm), and intracellular conductivity (σIn) were considerably affected by furan aldehydes in the same way that the cell population, viability, cell size, substrate consumption, organic acid production, and respiratory parameters were. The yeasts stressed with furan aldehydes exhibited three physiological states (φ): adaptation, replicating, and nonreplicating states. During the adaptation state, there were small and stable signs of permittivity, Cm, and σIn; additionally, no cell growth was observed. During the replicating state, cell growth was restored, and the cell viability increased; in addition, the permittivity and σIn increased rapidly and reached their maximum values, while the Cm decreased. In the nonreplicating state, the permittivity and σIn were stable, and Cm decreased to its minimum value. Our results demonstrated that knowing dielectric properties allowed us to obtain information about the physiological state of the cells under control and stressed conditions. Since the permittivity, Cm, and σIn are directly associated with the physiological state of the yeast, these results should contribute to a better understanding of the stress response of yeasts and open the possibility to on-line monitor and control the physiological state of the cell in the near future.


Assuntos
Aldeídos/farmacologia , Furanos/farmacologia , Kluyveromyces/efeitos dos fármacos , Kluyveromyces/fisiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Aldeídos/química , Reatores Biológicos , Espectroscopia Dielétrica , Fermentação , Furanos/química , Viabilidade Microbiana/efeitos dos fármacos
2.
Bioresour Technol ; 367: 128220, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36328172

RESUMO

Research on producing medium- and long-chain hydrocarbons as drop-in biofuels has recently accelerated. In addition, lipids are emerging as precursors for biofuel production, and thus, microbial lipid production utilizing agrowastes is becoming a feasible platform technology. Nonetheless, microorganisms are often inhibited by furan aldehydes in biomass-derived hydrolysates. Accordingly, this study aimed to develop oleaginous yeast strains that can tolerate furan aldehydes for producing lipids as biofuel precursors. Rhodosporidium toruloides was selected as the target for adaptive laboratory evolution. The evolved strain, which was obtained from 16 rounds of subcultures, showed a 2.5-fold higher specific growth rate than the wild-type strain in the presence of furan aldehydes and slightly higher lipid production in rice straw hydrolysate. The results discussed in this study provide insights into the production of lipid production by oleaginous yeast utilizing agrowastes as feedstock to obtain drop-in biofuels and contribute to feasible strategies to address climate crises.


Assuntos
Biocombustíveis , Oryza , Furaldeído , Leveduras , Lipídeos
3.
ChemSusChem ; 15(13): e202102532, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997695

RESUMO

Catalytic hydrogenolysis of biobased furan aldehydes (i. e., 5-methylfurfural, 5-hydroxymethylfurfural) to 2,5-dimethylfuran has gained extensive interest for biomass-derived fuels and chemicals. Herein, a class of NiCo2 O4 -supported palladium with considerable oxygen defects was synthesized by hydrogen plasma etching and phosphating methods. The oxygen defects not only promoted the hydrogenation of the C=O group but also enhanced the accessibility of coordinatively unsaturated metal cations with Lewis acidity for the hydrogenolysis of the C-OH group. Meanwhile, the additional Brønsted acidity in Pd/NiCo2 O4-x obtained by phosphating could further strengthen the hydrogenolysis ability by the etherification route of C-OH. Finally, Pd/NiCo2 O4-x exhibited the most effective performance with 2,5-dimethylfuran yields of 92.9 and 90.5 % from 5-methylfurfural and 5-hydroxymethylfurfural, respectively. These catalytic mechanisms were confirmed by in-situ infrared spectroscopy and control experiments. Furthermore, the catalyst showed outstanding recycling stability. This work shows powerful synergistic catalysis in the hydrogenolysis reaction by multifunctional active sites.


Assuntos
Aldeídos , Furanos , Catálise , Furanos/química , Oxigênio , Paládio/química
4.
Bioresour Technol ; 346: 126563, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34910969

RESUMO

To obtain fermentable sugars from lignocellulose, various inhibitors, especially furan aldehydes, are usually generated during the pretreatment process. These inhibitors are harmful to subsequent microbial growth and fermentation. In this study, a novel detoxification strategy was proposed to remove 5-hydroxymethylfurfural (HMF) and furfural while retaining glucose and xylose using self-prepared chitosan-chitin nanofiber hybrid hydrogel beads (C-CNBs). After C-CNBs treatment, the removal rates of HMF and furfural from sugarcane bagasse hydrolysates reached 63.1% and 68.4%, while the loss rates of glucose and xylose were only 6.3% and 8.2%, respectively. Two typical industrial strains grew well in monosaccharide-rich detoxified hydrolysates, with a specific growth rate at least 4.1 times that of undetoxified hydrolysates. Furthermore, adsorption mechanism analysis revealed that the Schiff base reaction and mesopore filling were involved in furan aldehyde adsorption. In total, C-CNBs provide an efficient and practical approach for the removal of furan aldehydes from lignocellulosic hydrolysates.


Assuntos
Quitosana , Nanofibras , Saccharum , Aldeídos , Celulose , Quitina , Fermentação , Furanos , Hidrogéis , Lignina/metabolismo , Saccharum/metabolismo
5.
ChemSusChem ; 15(13): e202102444, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34918485

RESUMO

Currently, low intimacy between hydrogenation sites and acidic sites causes unsatisfactory catalytic activity and selectivity for the synthesis of 2,5-hexanedione from C6 furan aldehydes (5-methylfurfural, 5-hydroxymethylfurfural). Herein, iodine(I) modification of Pd-supported catalysts (such as PdI/Al2 O3 and PdI/SiO2 ) was investigated to modulate the hydrogenation sites and acidic sites. Unlike Pd catalysts that produced 71.4 % yield of 2-hydroxymethyl-5-methyl tetrahydrofuran via an overhydrogenation route of 5-methylfurfural, PdI catalysts showed a high efficiency for 2,5-hexanedione with 93.7 % yield by a hydrogenative ring-opening route. More importantly, the selective synthesis of 2,5-hexanedione from 5-hydroxymethylfurfural with a high yield of 50.2 % by the hydrogenolysis and subsequent ring-opening route was reported for the first time. I-modified Pd nanoparticles produced in-situ hydrogen spillover, which promoted the selective C=O hydrogenation and ring-opening steps by regulating the adsorption configuration of the reactants and the transformation of Lewis to Brønsted acidity, respectively.


Assuntos
Aldeídos , Iodo , Furanos , Hexanonas , Iodetos , Dióxido de Silício
6.
Front Microbiol ; 13: 1035263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338095

RESUMO

As a dehydration product of pentoses in hemicellulose sugar streams derived from lignocellulosic biomass, furfural is a prevalent inhibitor in the efficient microbial conversion process. To solve this obstacle, exploiting a biorefinery strain with remarkable furfural tolerance capability is essential. Pseudomonas putida KT2440 (P. putida) has served as a valuable bacterial chassis for biomass biorefinery. Here, a high-concentration furfural-tolerant P. putida strain was developed via adaptive laboratory evolution (ALE). The ALE resulted in a previously engineered P. putida strain with substantially increased furfural tolerance as compared to wild-type. Whole-genome sequencing of the adapted strains and reverse engineering validation of key targets revealed for the first time that several genes and their mutations, especially for PP_RS19785 and PP_RS18130 [encoding ATP-binding cassette (ABC) transporters] as well as PP_RS20740 (encoding a hypothetical protein), play pivotal roles in the furfural tolerance and conversion of this bacterium. Finally, strains overexpressing these three striking mutations grew well in highly toxic lignocellulosic hydrolysate, with cell biomass around 9-, 3.6-, and two-fold improvement over the control strain, respectively. To our knowledge, this study first unravels the furan aldehydes tolerance mechanism of industrial workhorse P. putida, which provides a new foundation for engineering strains to enhance furfural tolerance and further facilitate the valorization of lignocellulosic biomass.

7.
Sheng Wu Gong Cheng Xue Bao ; 37(2): 473-485, 2021 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-33645149

RESUMO

Lignocellulose is the most abundant renewable organic carbon resource on earth. However, due to its complex structure, it must undergo a series of pretreatment processes before it can be efficiently utilized by microorganisms. The pretreatment process inevitably generates typical inhibitors such as furan aldehydes that seriously hinder the growth of microorganisms and the subsequent fermentation process. It is an important research field for bio-refining to recognize and clarify the furan aldehydes metabolic pathway of microorganisms and further develop microbial strains with strong tolerance and transformation ability towards these inhibitors. This article reviews the sources of furan aldehyde inhibitors, the inhibition mechanism of furan aldehydes on microorganisms, the furan aldehydes degradation pathways in microorganisms, and particularly focuses on the research progress of using biotechnological strategies to degrade furan aldehyde inhibitors. The main technical methods include traditional adaptive evolution engineering and metabolic engineering, and the emerging microbial co-cultivation systems as well as functional materials assisted microorganisms to remove furan aldehydes.


Assuntos
Aldeídos , Lignina , Fermentação , Furanos , Lignina/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-25741507

RESUMO

Production of fuels and chemicals through a fermentation-based manufacturing process that uses renewable feedstock such as lignocellulosic biomass is a desirable alternative to petrochemicals. Although it is still in its infancy, synthetic biology offers great potential to overcome the challenges associated with lignocellulose conversion. In this review, we will summarize the identification and optimization of synthetic biological parts used to enhance the utilization of lignocellulose-derived sugars and to increase the biocatalyst tolerance for lignocellulose-derived fermentation inhibitors. We will also discuss the ongoing efforts and future applications of synthetic integrated biological systems used to improve lignocellulose conversion.

9.
J Agric Food Chem ; 62(40): 9792-9, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25186182

RESUMO

Lignocellulosic biomass serves as a potential alternative feedstock for production of bacterial nanocellulose (BNC), a high-value-added product of bacteria such as Gluconacetobacter xylinus. The tolerance of G. xylinus to lignocellulose-derived inhibitors (formic acid, acetic acid, levulinic acid, furfural, and 5-hydroxymethylfurfural) was investigated. Whereas 100 mM formic acid completely suppressed the metabolism of G. xylinus, 250 mM of either acetic acid or levulinic acid still allowed glucose metabolism and BNC production to occur. Complete suppression of glucose utilization and BNC production was observed after inclusion of 20 and 30 mM furfural and 5-hydroxymethylfurfural, respectively. The bacterium oxidized furfural and 5-hydroxymethylfurfural to furoic acid and 5-hydroxymethyl-2-furoic acid, respectively. The highest yields observed were 88% for furoic acid/furfural and 76% for 5-hydroxymethyl-2-furoic acid/5-hydroxymethylfurfural. These results are the first demonstration of the capability of G. xylinus to tolerate lignocellulose-derived inhibitors and to convert furan aldehydes.


Assuntos
Gluconacetobacter xylinus/efeitos dos fármacos , Gluconacetobacter xylinus/metabolismo , Lignina/química , Ácido Acético/farmacologia , Aldeídos/farmacologia , Celulose/metabolismo , Formiatos/farmacologia , Furaldeído/análogos & derivados , Furaldeído/metabolismo , Furaldeído/farmacologia , Furanos/metabolismo , Furanos/farmacologia , Glucose/metabolismo , Microbiologia Industrial/métodos , Ácidos Levulínicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA