Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int Endod J ; 57(5): 549-565, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332717

RESUMO

AIM: To explore the influence of PDGF-AA on cell communication between human dental pulp stem cells (DPSCs) by characterizing gap junction intercellular communication (GJIC) and its potential biomechanical mechanism. METHODOLOGY: Quantitative real-time PCR was used to measure connexin family member expression in DPSCs. Cell migration and CCK-8 assays were utilized to examine the influence of PDGF-AA on DPSC migration and proliferation. A scrape loading/dye transfer assay was applied to evaluate GJIC triggered by PDGF-AA, a PI3K/Akt signalling pathway blocker (LY294002) and a PDGFR-α blocker (AG1296). Western blotting and immunofluorescence were used to test the expression and distribution of the Cx43 and p-Akt proteins in DPSCs. Scanning electron microscopy (SEM) and immunofluorescence were used to observe the morphology of GJIC in DPSCs. RESULTS: PDGF-AA promoted gap junction formation and intercellular communication between human dental pulp stem cells. PDGF-AA upregulates the expression of Cx43 to enhance gap junction formation and intercellular communication. PDGF-AA binds to PDGFR-α and activates PI3K/Akt signalling to regulate cell communication. CONCLUSIONS: This research demonstrated that PDGF-AA can enhance Cx43-mediated GJIC in DPSCs via the PDGFR-α/PI3K/Akt axis, which provides new cues for dental pulp regeneration from the perspective of intercellular communication.


Assuntos
Polpa Dentária , Fator de Crescimento Derivado de Plaquetas , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Conexina 43/metabolismo , Fosfatidilinositol 3-Quinases , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Regeneração , Células-Tronco/metabolismo
2.
Connect Tissue Res ; 63(5): 544-558, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35152816

RESUMO

BACKGROUND: Gap junction intercellular communication (GJIC) plays an important role in cell growth, development and homeostasis. Connexin 43 (Cx43) is an important half-channel protein responsible for gap junction formation. Platelet-derived growth factor AA (PDGF-AA) regulates the proliferation, migration, metabolism, apoptosis and cell cycle of chondrocytes. However, the role of PDGF-AA in gap junction intercellular communication in chondrocytes is not fully understood. In the current study, we performed experiments to explore the effect of PDGF-AA on GJIC and its underlying biomechanical mechanism. METHODS: qPCR was performed to determine the expression of PDGF, PDGFR and connexin family genes in chondrocytes and/or cartilage. A scrape loading/dye transfer assay was used to determine GJIC. Western blot analysis was applied to detect the expression of Cx43 and PI3K/Akt signaling pathway proteins. Immunofluorescence staining was utilized to examine protein distribution. Scanning electron microscopy was used to delineate the morphology of chondrocytes. RESULTS: Expression of PDGF-A mRNA was highest among the PDGF family in chondrocytes and cartilage tissues. PDGF-AA promoted functional GJIC formation in chondrocytes by upregulating the expression of Cx43. Enhanced functional GJIC formation in chondrocytes induced by PDGF-AA occurred through the activation of PI3K/Akt signaling and its nuclear accumulation. CONCLUSION: For the first time, this study provides evidence demonstrating the role of PDGF-AA in cell-to-cell communication in chondrocytes through mediating Cx43 expression.


Assuntos
Conexina 43 , Fosfatidilinositol 3-Quinases , Comunicação Celular , Condrócitos/metabolismo , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Environ Toxicol ; 37(11): 2692-2702, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35920667

RESUMO

As a common environmental pollutant, cadmium (Cd) causes damage to many organs of the body. Gap junction intercellular communication (GJIC) represents one of the most important routes of rapid signaling between cells. However, the mechanisms underlying GJIC's role in hepatotoxicity induced by Cd remain unknown. We established a Cd poisoning model in vitro by co-culturing Cd-exposed and unexposed hepatocytes and found that 18ß-glycyrrhetinic acid (GA), a GJIC inhibitor, can effectively reduce the apoptosis rate of healthy cells co-cultured with apoptotic cells treated with Cd. We also found that anti-FasL antibody had the same effect. However, in mono-cultured cells, GA treatment in combination with Cd was found to aggravate the damage induced by Cd exposure, increase the level of oxidative stress and protein expression of HO-1, decrease the mitochondrial membrane potential, incur more serious morphological damage to mitochondria than Cd treatment alone. Moreover, compared with Cd-only exposure, GA and Cd co-treatment further increased the expression levels of the apoptosis-related proteins Fas, FasL, FADD and the ratio of Bax/Bcl-2, inhibited the protein expression of ASK1 and Daxx. We also found that the protein expression of Daxx in siFADD + Cd hepatocytes was significantly higher than in Cd-treated cells. Thus, our study suggests that gap junction inhibition may play a dual role in Cd-induced cell damage by inhibiting the transmission of death signals from damaged cells to healthy cells but also aggravating the transmission of death signals between damaged cells, and that the Fas/FasL-mediated death receptor pathway may play an important role in this process.


Assuntos
Cádmio , Poluentes Ambientais , Apoptose , Cádmio/metabolismo , Comunicação Celular , Poluentes Ambientais/metabolismo , Proteína Ligante Fas/metabolismo , Junções Comunicantes , Hepatócitos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Receptor fas/metabolismo
4.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445682

RESUMO

Dysregulation of gap junction intercellular communication (GJIC) is recognized as one of the key hallmarks for identifying non-genotoxic carcinogens (NGTxC). Currently, there is a demand for in vitro assays addressing the gap junction hallmark, which would have the potential to eventually become an integral part of an integrated approach to the testing and assessment (IATA) of NGTxC. The scrape loading-dye transfer (SL-DT) technique is a simple assay for the functional evaluation of GJIC in various in vitro cultured mammalian cells and represents an interesting candidate assay. Out of the various techniques for evaluating GJIC, the SL-DT assay has been used frequently to assess the effects of various chemicals on GJIC in toxicological and tumor promotion research. In this review, we systematically searched the existing literature to gather papers assessing GJIC using the SL-DT assay in a rat liver epithelial cell line, WB-F344, after treating with chemicals, especially environmental and food toxicants, drugs, reproductive-, cardio- and neuro-toxicants and chemical tumor promoters. We discuss findings derived from the SL-DT assay with the known knowledge about the tumor-promoting activity and carcinogenicity of the assessed chemicals to evaluate the predictive capacity of the SL-DT assay in terms of its sensitivity, specificity and accuracy for identifying carcinogens. These data represent important information with respect to the applicability of the SL-DT assay for the testing of NGTxC within the IATA framework.


Assuntos
Testes de Carcinogenicidade/métodos , Comunicação Celular/fisiologia , Junções Comunicantes/metabolismo , Animais , Bioensaio/métodos , Carcinógenos , Comunicação Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Corantes/metabolismo , Fígado/patologia , Microscopia de Fluorescência/métodos , Ratos
5.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806300

RESUMO

Connexin- and pannexin (Panx)-formed hemichannels (HCs) and gap junctions (GJs) operate an interaction with the extracellular matrix and GJ intercellular communication (GJIC), and on account of this they are involved in cancer onset and progression towards invasiveness and metastatization. When we deal with cancer, it is not correct to omit the immune system, as well as neglecting its role in resisting or succumbing to formation and progression of incipient neoplasia until the formation of micrometastasis, nevertheless what really occurs in the tumor microenvironment (TME), which are the main players and which are the tumor or body allies, is still unclear. The goal of this article is to discuss how the pivotal players act, which can enhance or contrast cancer progression during two important process: "Activating Invasion and Metastasis" and the "Avoiding Immune Destruction", with a particular emphasis on the interplay among GJIC, Panx-HCs, and the purinergic system in the TME without disregarding the inflammasome and cytokines thereof derived. In particular, the complex and contrasting roles of Panx1/P2X7R signalosome in tumor facilitation and/or inhibition is discussed in regard to the early/late phases of the carcinogenesis. Finally, considering this complex interplay in the TME between cancer cells, stromal cells, immune cells, and focusing on their means of communication, we should be capable of revealing harmful messages that help the cancer growth and transform them in body allies, thus designing novel therapeutic strategies to fight cancer in a personalized manner.


Assuntos
Comunicação Celular/fisiologia , Neoplasias/terapia , Microambiente Tumoral/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Comunicação Celular/imunologia , Conexinas/fisiologia , Citocinas/imunologia , Transição Epitelial-Mesenquimal/fisiologia , Junções Comunicantes/fisiologia , Humanos , Imunidade Inata , Inflamassomos/imunologia , Modelos Biológicos , Invasividade Neoplásica/patologia , Invasividade Neoplásica/fisiopatologia , Metástase Neoplásica/patologia , Metástase Neoplásica/fisiopatologia , Neoplasias/patologia , Neoplasias/fisiopatologia , Evasão Tumoral , Microambiente Tumoral/imunologia
6.
J Toxicol Environ Health B Crit Rev ; 23(6): 255-275, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32568623

RESUMO

Gap junctions in liver, as in other organs, play a critical role in tissue homeostasis. Inherently, these cellular constituents are major targets for systemic toxicity and diseases, including cancer. This review provides an overview of chemicals that compromise liver gap junctions, in particular biological toxins, organic solvents, pesticides, pharmaceuticals, peroxides, metals and phthalates. The focus in this review is placed upon the mechanistic scenarios that underlie these adverse effects. Further, the potential use of gap junctional activity as an in vitro biomarker to identify non-genotoxic hepatocarcinogenic chemicals is discussed.


Assuntos
Comunicação Celular/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , Fígado/efeitos dos fármacos , Animais , Conexinas/biossíntese , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Fígado/metabolismo , Metais/toxicidade , Peróxidos/toxicidade , Praguicidas/toxicidade , Ácidos Ftálicos/toxicidade , Medição de Risco , Solventes/toxicidade , Toxinas Biológicas/toxicidade
7.
J Appl Toxicol ; 40(12): 1592-1601, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32648282

RESUMO

An understanding of polychlorinated biphenyl (PCB) congener-specific effects on cell membrane and intercellular communication is important within the studies of PCB absorption, organ-related PCB accumulation and exertion of toxic responses. Toxic potential of PCBs is linked to various deleterious effects on human health, including neurotoxicity, immunotoxicity, reproductive toxicity and genotoxicity and, recently in 2016 International Agency for Research on Cancer (IARC) has upgraded the classification of PCBs to Group 1 "Carcinogenic to humans." Proposed mechanisms of aforementioned PCBs adverse effects at cellular membrane level are: (i) downregulation of gap junction intercellular communication and/or connexins; (ii) compromised membrane integrity; and (iii) altered tight junction barrier function. This study, based on an extensive literature survey, shows the progress in scientific research of each of these three levels with the aim of pointing out the earliest toxic events of PCBs, which can result in serious cell/tissue/organ damage.


Assuntos
Carcinógenos/toxicidade , Comunicação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Junções Intercelulares/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Animais , Membrana Celular/metabolismo , Membrana Celular/patologia , Humanos , Junções Intercelulares/metabolismo , Junções Intercelulares/patologia , Proteínas de Membrana/metabolismo , Medição de Risco , Transdução de Sinais
8.
Biochim Biophys Acta Mol Cell Res ; 1865(10): 1423-1436, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30031898

RESUMO

Chronic exposure to Arsenic pollution in ground water is one of the largest environmental health disasters in the world. The toxicity of trivalent Arsenicals primarily happens due to its interaction with sulfhydryl groups in proteins. Arsenic binding to the protein can change the conformation of the protein and alter its interactions with other proteins leading to tissue damage. Therefore, much importance has been given to the studies of Arsenic bound proteins, for the purpose of understanding the origins of toxicity and to explore therapeutics. Here we study the dynamic effect of Arsenic on Connexin 43 (Cx43), a protein that forms the gap junctions, whose alteration deeply perturbs the cell-to-cell communication vital for maintaining tissue homeostasis. In silico molecular modelling and in vitro studies comparing Arsenic treated and untreated conditions show distinct results. Gap junction communication is severely disrupted by Arsenic due to reduced availability of unaltered Cx43 in the membrane bound form. In silico and Inductively Coupled Plasma Mass Spectrometry studies revealed the interaction of Arsenic to the Cx43 preferably occurs through surface exposed cysteines, thereby capping the thiol groups that form disulfide bonds in the tertiary structure. This leads to disruption of Cx43 oligomerization, and altered Cx43 is incompetent for transportation to the membrane surface, often forming aggregates primarily localizing in the endoplasmic reticulum. Loss of functional Cx43 on the cell surface have a deleterious effect on cellular homeostasis leading to selective vulnerability to cell death and tissue damage.

9.
Amino Acids ; 51(10-12): 1515-1526, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31576457

RESUMO

Blood-retinal barrier breakdown is the main pathological characteristics of diabetic retinopathy (DR). Asymmetric dimethylarginine (ADMA) was reported to be elevated in DR patients. In this study, we observed the dynamic profile of ADMA, retinal morphology and permeability of BRB at 2, 4 or 8 week of diabetic rats induced by a single intraperitoneal injection of streptozocin (60 mg/kg) and in cultured rat retinal pericytes pretreated with D-glucose (30 mM) for 1, 3, 5 and 7 days or ADMA (3, 10, 30 µM) for 24, 48 and 72 h, trying to explore the effects of ADMA on blood-retinal barrier in DR. Gap junction intercellular communication (GJIC) and the expression of blood-retinal barrier-specific component connexin 43 (Cx43) were examined in diabetic rats or cultured retinal pericytes to elucidate whether ADMA impacted blood-retinal barrier function via damaging Cx43-GJIC. The results showed that with increasing duration of diabetes, the ultrastructure of blood-retinal barrier of diabetic rats appeared cell junction damage, apoptosis of retinal pericytes and breakdown of barrier successively. The increases in retinal permeability, ADMA levels and Cx43 expression, and abnormal GJIC were observed in diabetic rats and retinal pericytes exposed to D-glucose (30 mM). A glucose-like effect was seen using ADMA or another L-arginine analogue NG-monomethyl-L-arginine or dimethylarginine dimethylaminohydrolases (DDAHs) siRNA, implicating that ADMA aggravated the breakdown of blood-retinal barrier via damaging Cx43-GJIC.


Assuntos
Arginina/análogos & derivados , Barreira Hematorretiniana/patologia , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/patologia , Pericitos/patologia , Animais , Apoptose , Arginina/metabolismo , Barreira Hematorretiniana/metabolismo , Comunicação Celular , Permeabilidade da Membrana Celular , Células Cultivadas , Conexina 43/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/induzido quimicamente , Retinopatia Diabética/metabolismo , Junções Comunicantes/patologia , Glucose/metabolismo , Masculino , Pericitos/metabolismo , Ratos , Ratos Sprague-Dawley , Estreptozocina/administração & dosagem , Estreptozocina/toxicidade
10.
Int J Mol Sci ; 20(13)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269652

RESUMO

Growing evidence suggests dietary antioxidants reduce the risk of several cancers. Grape seeds extracts (GSE) are a rich source of polyphenols known to have antioxidant, chemopreventive and anticancer properties. Herein, we investigated the in vitro effects and putative action mechanisms of a grape seed extract (GSE) on human breast cancer cells (MCF-7). The effects of GSE were evaluated on cell proliferation, apoptosis and gap-junction-mediated cell-cell communications (GJIC), as basal mechanism involved in the promotion stage of carcinogenesis. GSE (0.05-100 µg/mL) caused a significant dose- and time-dependent inhibition of MCF-7 viability and induced apoptotic cell death, as detected by Annexin-V/Propidium Iodide. Concurrently, GSE induced transient but significant enhancement of GJIC in non-communicating MCF-7 cells, as demonstrated by the scrape-loading/dye-transfer (SL/DT) assay and an early and dose-dependent re-localization of the connexin-43 (Cx43) proteins on plasma membranes, as assayed by immunocytochemistry. Finally, real-time-PCR has evidenced a significant increase in cx43 mRNA expression. The results support the hypothesis that the proliferation inhibition and pro-apoptotic effect of GSE against this breast cancer cell model are mediated by the GJIC improvement via re-localization of Cx43 proteins and up-regulation of cx43 gene, and provide further insight into the action mechanisms underlying the health-promoting action of dietary components.


Assuntos
Anticarcinógenos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/prevenção & controle , Extrato de Sementes de Uva/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Comunicação Celular/efeitos dos fármacos , Conexina 43/genética , Conexina 43/metabolismo , Feminino , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Humanos , Células MCF-7 , Regulação para Cima/efeitos dos fármacos
11.
Toxicol Appl Pharmacol ; 344: 13-22, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29458137

RESUMO

In ovarian follicles, cumulus cells communicate with the oocyte through gap junction intercellular communication (GJIC), to nurture the oocyte and control its meiosis arrest and division. Bisphenol A (BPA) is a monomer found in polycarbonate-made containers that can induce functional alterations, including impaired oocyte meiotic division and reduced molecule transfer in GJIC. However, how BPA alters oocyte meiotic division is unclear. We investigated whether BPA effects on oocyte meiotic division were correlated with reduced transfer in GJIC. Cumulus cell-oocyte complexes (COCs) isolated from mouse preovulatory follicles were cultured with 0, 0.22, 2.2, 22, 220, and 2200 nM BPA for 2 h. An additional 16-h incubation with epidermal growth factor (EGF) was performed to promote the occurrence of meiotic resumption and progression to metaphase II. Without EGF stimulus, BPA treatment increased the percentage of oocytes undergoing meiotic resumption, decreased GJIC in the COCs, and did not modify GJIC gene (Cx43 and Cx37) and protein (CX43) expression. Following EGF stimulus, BPA increased the percentage of oocytes that remained at the anaphase and telophase stages, and decreased the percentage of oocytes reaching the metaphase II stage. Concomitantly, BPA reduced the expansion of cumulus cells. Carbenoxolone (a GJIC inhibitor) and 6-diazo-5-oxo-l-norleucine (a cumulus cell-expansion inhibitor) exerted effects on meiotic division similar to those exerted by BPA. These data suggest that BPA accelerates meiotic progression, leading to impaired prophase I-to-metaphase II transition, and that this adverse effect is correlated with reduced bidirectional communication in the COC.


Assuntos
Compostos Benzidrílicos/toxicidade , Células do Cúmulo/fisiologia , Estrogênios não Esteroides/toxicidade , Junções Comunicantes/fisiologia , Oócitos/fisiologia , Oogênese/fisiologia , Fenóis/toxicidade , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Células do Cúmulo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Junções Comunicantes/efeitos dos fármacos , Meiose/efeitos dos fármacos , Meiose/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos
12.
BMC Cancer ; 18(1): 221, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29482519

RESUMO

BACKGROUND: Cancer cell aggregation is a key process involved in the formation of clusters of circulating tumor cells. We previously reported that cell-cell adhesion proteins, such as E-cadherin, and desmosomal proteins are involved in cell aggregation to form clusters independently of cell migration or matrix adhesion. Here, we investigated the involvement of gap junction intercellular communication (GJIC) during anchorage-independent clustering of MCF7 breast adenocarcinoma cells. METHODS: We used live cell image acquisition and analysis to monitor the kinetics of MCF7 cell clustering in the presence/absence of GJIC pharmacological inhibitors and to screen a LOPAC® bioactive compound library. We also used a calcein transfer assay and flow cytometry to evaluate GJIC involvement in cancer cell clustering. RESULTS: We first demonstrated that functional GJIC are established in the early phase of cancer cell aggregation. We then showed that pharmacological inhibition of GJIC using tonabersat and meclofenamate delayed MCF7 cell clustering and reduced calcein transfer. We also found that brefeldin A, an inhibitor of vesicular trafficking, which we identified by screening a small compound library, and latrunculin A, an actin cytoskeleton-disrupting agent, both impaired MCF7 cell clustering and calcein transfer. CONCLUSIONS: Our results demonstrate that GJIC are involved from the earliest stages of anchorage-independent cancer cell aggregation. They also give insights into the regulatory mechanisms that could modulate the formation of clusters of circulating tumor cells.


Assuntos
Adenocarcinoma/fisiopatologia , Neoplasias da Mama/fisiopatologia , Comunicação Celular , Junções Comunicantes , Adenocarcinoma/metabolismo , Antígenos CD , Neoplasias da Mama/metabolismo , Caderinas , Adesão Celular , Movimento Celular , Feminino , Humanos , Células MCF-7
13.
Exp Eye Res ; 146: 103-106, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26738943

RESUMO

Connexin 43 (Cx43) downregulation promotes apoptosis in retinal vascular cells of diabetic animal models; however, its relevance to human diabetic retinopathy has not been established. In this study, we investigated whether diabetes alters Cx43 expression and promotes retinal vascular lesions in human retinas. Diabetic human eyes (aged 64-94 years) and non-diabetic human eyes (aged 61-90 years) were analyzed in this study. Retinal protein samples and retinal capillary networks were assessed for Cx43 level by Western blot (WB) analysis and immunostaining. In parallel, retinal capillary networks were stained with hematoxylin and periodic acid Schiff to determine the extent of pericyte loss (PL) and acellular capillaries (AC) in these retinas. Cx43 protein expression was significantly reduced in the diabetic retinas compared to non-diabetic retinas as indicated by WB analysis (81 ± 11% of control). Additionally, a significant decrease in the number of Cx43 plaques per unit length of vessel was observed in the diabetic retinas compared to those of non-diabetic retinas (62 ± 10% of control; p < 0.005). Importantly, a strong inverse relationship was noted between Cx43 expression and the relative number of AC (r = -0.89; p < 0.0005), and between Cx43 expression and number of pericyte loss (r = -0.88; p < 0.0005). Overall, these results show that Cx43 expression is reduced in the human diabetic retinas and Cx43 reduction is associated with increased vascular cell death. These findings suggest that diabetes decreases retinal Cx43 expression and that the development of PL and AC is associated with reduced Cx43 expression in human diabetic retinopathy.


Assuntos
Conexina 43/genética , Retinopatia Diabética/metabolismo , Regulação da Expressão Gênica , RNA/genética , Vasos Retinianos/metabolismo , Apoptose , Western Blotting , Conexina 43/biossíntese , Retinopatia Diabética/patologia , Regulação para Baixo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Humanos , Vasos Retinianos/patologia
14.
Biochem Biophys Res Commun ; 465(2): 281-6, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26260322

RESUMO

Large magnitudes of mechanical strain applied to tendon cells induce catabolic and inflammatory responses, whereas a moderate level of strain promotes anabolism. Gap junction intercellular communication (GJIC) plays an essential role in these responses, however direct regulation of GJIC by mechanical loading has not been characterised in detail. Here, we show that the GJIC between tenocytes are enhanced or inhibited depending on the magnitude of the tensile strain. The GJIC was analysed using fluorescence loss in photobleaching (FLIP), combined with a molecular diffusion model. Intercellular and intracellular transport of fluorescence tracer molecules, calcein, across multiple cells through the gap junctions was evaluated by determining the intercellular and intracellular diffusion coefficients of calcein. It was demonstrated that the intercellular diffusion coefficient was significantly higher when the cells were subjected to a physiological static tensile strain (4%) for 1 h, but significantly lower when subjected to a strain with non-physiological amplitude (8%). The intracellular diffusion coefficient was not altered by the application of static strain at any level. Connexin 43 proteins were localised within cytoplasm and at cell-cell boundaries in no strained state and were also localised near cell nuclei by the 4% strain, but the localisation was reduced by the 8% strain. The findings suggest that the increase in GJIC in response to 4% strain involves opening of gap junction pores via mechanotransduction events of tenocytes, whereas the inhibition in response to 8% strain involves mechanical disruption of the junctions.


Assuntos
Conexina 43/metabolismo , Fibroblastos/metabolismo , Junções Comunicantes/metabolismo , Mecanotransdução Celular , Tendões/metabolismo , Animais , Transporte Biológico , Comunicação Celular , Conexina 43/genética , Difusão , Fibroblastos/citologia , Fluoresceínas , Recuperação de Fluorescência Após Fotodegradação , Corantes Fluorescentes , Junções Comunicantes/ultraestrutura , Expressão Gênica , Masculino , Coelhos , Tendões/citologia , Resistência à Tração/fisiologia
15.
Mol Carcinog ; 54(5): 351-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24249418

RESUMO

Benzo[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE), a major metabolite of benzo[a]pyrene, has been reported to function as a human carcinogen. However, the molecular mechanism of how B[a]PDE regulates signaling pathways during tumor promotion remains unclear. In this study, we investigated the effects of B[a]PDE on the regulation of gap junction intercellular communication (GJIC), one of the major carcinogenic processes, and its main regulatory signaling pathways using WB-F344 rat liver epithelial (WB-F344 RLE) cells. Treatment of benzo[a]pyrene or B[a]PDE resulted in GJIC inhibition, and B[a]PDE was more active at lower concentrations than benzo[a]pyrene in the suppression of GJIC. This suggests that B[a]PDE is a stronger GJIC inhibitor. B[a]PDE at 1 µM reversibly inhibited GJIC in WB-F344 RLE cells, which was attributable to hyperphosphorylation of connexin43 (Cx43) via phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase (ERK). We found that B[a]PDE induced phosphorylation of tumor progression locus 2 (Tpl2), a direct upstream regulator of MEK. Tpl2 inhibitor recovered B[a]PDE-induced GJIC inhibition and attenuated B[a]PDE-induced MEK/ERK phosphorylation in WB-F344 RLE cells. Collectively, our results suggest that B[a]PDE suppresses GJIC by activating Tpl2 and subsequently the MEK/ERK pathway and Cx43 phosphorylation in WB-F344 RLE cells. These results outline the potential importance of Tpl2 as a novel therapeutic target for B[a]PDE-induced GJIC inhibition during cancer promotion.


Assuntos
7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , Apoptose/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Junções Comunicantes/efeitos dos fármacos , Fígado/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Western Blotting , Carcinógenos/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Conexina 43/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Transdução de Sinais
16.
Bioelectromagnetics ; 36(4): 287-93, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25846808

RESUMO

The present study focused on gap junctional intercellular communication (GJIC) as a target for biological effects of extremely low-frequency (ELF) magnetic field (MF) exposure. Fluorescence recovery after photobleaching microscopy (FRAP) was used to visualize diffusion of a fluorescent dye between NIH3T3 fibroblasts through gap junctions. The direct effect of 24 h exposure to 50 Hz MF at 0.4 or 1 mT on GJIC function was assessed in one series of experiments. The potential synergism of MF with an inhibitor of GJIC, phorbol ester (TPA), was studied in another series by observing FRAP when NIH3T3 cells were incubated with TPA for 1 h following 24 h exposure to MF. In contrast to other reports of ELF-MF effects on GJIC, under our experimental conditions we observed neither direct inhibition of GJIC nor synergism with TPA-induced inhibition from 50 Hz MF exposures.


Assuntos
Comunicação Celular , Junções Comunicantes , Campos Magnéticos , Animais , Corantes Fluorescentes/metabolismo , Cinética , Camundongos , Células NIH 3T3
17.
Genesis ; 52(6): 503-14, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24753065

RESUMO

A central unresolved question in the molecular cascade that drives establishment of left-right (LR) asymmetry in vertebrates are the mechanisms deployed to relay information between the midline site of symmetry-breaking and the tissues which will execute a program of asymmetric morphogenesis. The cells located between these two distant locations must provide the medium for signal relay. Of these, the gut endoderm is an attractive candidate tissue for signal transmission since it comprises the epithelium that lies between the node, where asymmetry originates, and the lateral plate, where asymmetry can first be detected. Here, focusing on the mouse as a model, we review our current understanding and entertain open questions concerning the relay of LR information from its origin.


Assuntos
Padronização Corporal/fisiologia , Trato Gastrointestinal/embriologia , Animais , Desenvolvimento Embrionário/fisiologia , Endoderma/embriologia , Gástrula/embriologia , Humanos , Camundongos , Morfogênese/fisiologia , Transdução de Sinais
18.
J Mol Cell Cardiol ; 72: 350-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24780238

RESUMO

The transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is a promising strategy to treat myocardial infarction and reverse heart failure, but to date the contractile benefit in most studies remains modest. We have previously shown that the nucleotide 2-deoxyadenosine triphosphate (dATP) can substitute for ATP as the energy substrate for cardiac myosin, and increasing cellular dATP content by globally overexpressing ribonucleotide reductase (R1R2) can dramatically enhance cardiac contractility. Because dATP is a small molecule, we hypothesized that it would diffuse readily between cells via gap junctions and enhance the contractility of neighboring coupled wild type cells. To test this hypothesis, we performed studies with the goals of (1) validating gap junction-mediated dATP transfer in vitro and (2) investigating the use of R1R2-overexpressing hPSC-CMs in vivo as a novel strategy to increase cardiac function. We first performed intracellular dye transfer studies using dATP conjugated to fluorescein and demonstrated rapid gap junction-mediated transfer between cardiomyocytes. We then cocultured wild type cardiomyocytes with either cardiomyocytes or fibroblasts overexpressing R1R2 and saw more than a twofold increase in the extent and rate of contraction of wild type cardiomyocytes. Finally, we transplanted hPSC-CMs overexpressing R1R2 into healthy uninjured rat hearts and noted an increase in fractional shortening from 41±4% to 53±5% just five days after cell transplantation. These findings demonstrate that dATP is an inotropic factor that spreads between cells via gap junctions. Our data suggest that transplantation of dATP-producing hPSC-CMs could significantly increase the effectiveness of cardiac cell therapy.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Nucleotídeos de Desoxiadenina/farmacologia , Junções Comunicantes/efeitos dos fármacos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/transplante , Animais , Animais Recém-Nascidos , Transporte Biológico , Diferenciação Celular , Técnicas de Cocultura , Fibroblastos/citologia , Fibroblastos/metabolismo , Junções Comunicantes/metabolismo , Expressão Gênica , Coração/fisiologia , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Humanos , Masculino , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Cultura Primária de Células , Ratos , Ratos Nus , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Transplante Heterólogo
19.
Exp Cell Res ; 319(20): 3065-80, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24120736

RESUMO

Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of ß-catenin, α-catenin and ZO-2, it decreased nuclear levels of ß-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, ß-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, ß-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering ß-catenin away from nucleus.


Assuntos
Conexina 43/genética , Conexina 43/metabolismo , Neoplasias/genética , beta Catenina/metabolismo , Perfilação da Expressão Gênica , Humanos , Células MCF-7 , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Células Tumorais Cultivadas , beta Catenina/genética
20.
Theriogenology ; 225: 33-42, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38788627

RESUMO

The in vitro maturation (IVM) quality of oocytes is directly related to the subsequent developmental potential of embryos and a fundamental of in vitro embryo production. However, conventional IVM methods fail to maintain the gap-junction intercellular communication (GJIC) between cumulus-oocyte complexes (COCs), which leads to insufficient oocyte maturation. Herein, we investigated the effects of three different three-dimensional (3D) culture methods on oocyte development in vitro, optimized of the alginate-hydrogel embedding method, and assessed the effects of the alginate-hydrogel embedding method on subsequent embryonic developmental potential of oocytes after IVM and parthenogenetic activation (PA). The results showed that Matrigel embedding and alginate-hydrogel embedding benefited the embryonic developmental potential of oocytes after IVM and PA. With the further optimization of alginate-hydrogel embedding, including crosslinking and decrosslinking of parameters, we established a 3D culture system that can significantly increase oocyte maturation and the blastocyst rate of embryos after PA (27.2 ± 1.5 vs 36.7 ± 2.8, P < 0.05). This 3D culture system produced oocytes with markedly increased mitochondrial intensity and membrane potential, which reduced the abnormalities of spindle formation and cortical granule distribution. The alginate-hydrogel embedding system can also remarkably enhance the GJIC between COCs. In summary, based on alginate-hydrogel embedding, we established a 3D culture system that can improve the IVM quality of porcine oocytes, possibly by enhancing GJIC.


Assuntos
Alginatos , Hidrogéis , Técnicas de Maturação in Vitro de Oócitos , Oócitos , Animais , Técnicas de Maturação in Vitro de Oócitos/veterinária , Técnicas de Maturação in Vitro de Oócitos/métodos , Alginatos/farmacologia , Oócitos/fisiologia , Suínos , Técnicas de Cultura de Células em Três Dimensões/métodos , Ácido Glucurônico/farmacologia , Partenogênese , Ácidos Hexurônicos/farmacologia , Feminino , Técnicas de Cultura Embrionária/veterinária , Técnicas de Cultura Embrionária/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA