Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2402314, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708815

RESUMO

Topology serves as a blueprint for the construction of reticular structures such as metal-organic frameworks, especially for those based on building blocks with highly symmetrical shapes. However, it remains a challenge to predict the topology of the frameworks from less symmetrical units, because their corresponding vertex figures are largely deformed from the perfect geometries with no "default" net embedding. Furthermore, vertices involving flexible units may have multiple shape choices, and the competition among their designated topologies makes the structure prediction in large uncertainty. Herein, the deformation index is proposed to characterize the symmetry loss of the vertex figure by comparing it with its ideal geometry. The mathematical index is employed to predict the shapes of two in situ formed Co-based metalloligands (pseudo-tetrahedron and pseudo-square), which further dictate the framework topology (flu and scu) when they are joined with the [Zr6O8]-based cuboid units. The two frameworks with very similar constituents provide an ideal platform to investigate how the pore shapes and interconnectivity influence the gas separation. The net with cylindrical channels outperforms the other with discreate cages in C3H8/C2H6/CH4 separation, benefiting from the facile accessibility of its interaction sites to the guests imposed by the specific framework topology.

2.
Small ; : e2400746, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678492

RESUMO

Porous ionic polymers with unique features have exhibited high performance in various applications. However, the fabrication of functional porous ionic polymers with custom functionality and porosity for efficient removal of low-concentration SO2 remains challenging. Herein, a novel nitrogen-enriched porous ionic polymer NH2Py-PIP is prepared featuring high-content nitrogen sites (15.9 wt.%), adequate ionic sites (1.22 mmol g-1), and a hierarchical porous structure. The proposed construction pathway relies on a tailored nitrogen-functionalized cross-linker NH2Py, which effectively introduces abundant functional sites and improves the porosity of porous ionic polymers. NH2Py-PIP with a well-engineered SO2-affinity environment achieves excellent SO2/CO2 selectivity (1165) and high SO2 adsorption capacity (1.13 mmol g-1 at 0.002 bar), as well as enables highly efficient and reversible dynamic separation performance. Modeling studies further elucidate that the nitrogen sites and bromide anions collaboratively promote preferential adsorption of SO2. The unique design in this work provides new insights into constructing functional porous ionic polymers for high-efficiency separations.

3.
Small ; 20(20): e2309409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38368263

RESUMO

Translating carbon molecular sieve (CMS) membranes into highly scalable hollow fiber geometry with ultra-thin selective layer (<1 µm) for gas separation remains as great challenge. The porous support layer of precursor hollow fiber membranes is prone to collapse during pyrolysis, which induces thick skin layer (15-50 µm) of CMS hollow fiber membranes. Here, a novel strategy is present to obtain an ultra-thin selective skin layer by carbonization of hollow fiber membranes with porous skin. P84-based defect-free CMS hollow fiber membranes with ultra-thin selective skin layer (0.9 µm) for gas separation are prepared without any coating or complex chemical pretreatment. Compared with the carbon membranes derived from defect-free fibers, the H2 permeance (93.9 GPU) of CMS membranes derived from the porous fibers increases ≈1353% with comparable selectivity of H2/CH4 (143) and higher H2/N2 (120). Furthermore, the porous fibers are pre-aged near the Tg in N2 conditions before carbonization, and the H2 permeance of the derived CMS hollow fiber membranes reached 147 GPU (increased 2180%). It is a new facile way to prepare CMS hollow fiber membranes with ultra-thin selective layer by porous fibers, demonstrating its versatile potential in gas separation or organic liquids separation.

4.
Macromol Rapid Commun ; : e2400296, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058043

RESUMO

A series of poly(ethylene glycol)-block-poly(propylene glycol) (PEG/PPG)- and 5,6-di(9H-carbazol-9-yl)isoindoline-1,3-dione (2CZPImide)-based crosslinked rubbery polymer membranes, denoted as PEG/PPG-2CZPImide (x:y), are prepared from the norbornene-functionalized PEG/PPG oligomer (NB-PEG/PPG-NB) and 2-(bicyclo[2.2.1]hept-5-en-2-ylmethyl)-5,6-di(9H-carbazol-9-yl)isoindoline-1,3-dione (2CZPImide-NB) via ring-opening metathesis polymerization (ROMP). The molar ratio (x:y) of the NB-PEG/PPG-NB (x) to 2CZPImide-NB (y) monomers is varied from 10:1 to 6:1. X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), and pure gas permeability studies reveal that the comonomer 2CZPImide-NB successfully increases the d-spacing among the crystalline PEG/PPG segments, hence enhancing the diffusivity of gases through the membranes. The synthesized membranes exhibit good CO2 separation performance, with CO2 permeabilities ranging from 311.1 to 418.1 Barrer and CO2/N2 and CO2/CH4 selectivities of 39.4-52.0 and 13.4-16.0, respectively, approaching the 2008 Robeson upper bound. Moreover, PEG/PPG-2CZPImide (6:1), displaying optimal CO2 permeability and CO2/N2 and CO2/CH4 selectivities, shows long-term stability against physical aging and plasticization resistance up to 20 days and 10 atm, respectively.

5.
Environ Res ; 252(Pt 3): 118953, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636643

RESUMO

Gas separation membranes are critical in a variety of environmental research and industrial applications. These membranes are designed to selectively allow some gases to flow while blocking others, allowing for the separation and purification of gases for a variety of applications. Therefore, the demand for fast and energy-efficient gas separation techniques is of central interest for many chemical and energy production diligences due to the intensified levels of greenhouse and industrial gases. This encourages the researchers to innovate techniques for capturing and separating these gases, including membrane separation techniques. Polymeric membranes play a significant role in gas separations by capturing gases from the fuel combustion process, purifying chemical raw material used for plastic production, and isolating pure and noncombustible gases. Polyurethane-based membrane technology offers an excellent knack for gas separation applications and has also been considered more energy-efficient than conventional phase change separation methodologies. This review article reveals a thorough delineation of the current developments and efforts made for PU membranes. It further explains its uses for the separation of valuable gases such as carbon dioxide (CO2), hydrogen (H2), nitrogen (N2), methane (CH4), or a mixture of gases from a variety of gas spillages. Polyurethane (PU) is an excellent choice of material and a leading candidate for producing gas-separating membranes because of its outstanding chemical chemistry, good mechanical abilities, higher permeability, and variable microstructure. The presence of PU improves several characteristics of gas-separating membranes. Selectivity and separation efficiency of PU-centered membranes are enhanced through modifications such as blending with other polymers, use of nanoparticles (silica, metal oxides, alumina, zeolite), and interpenetrating polymer networks (IPNs) formation. This manuscript critically analyzes the various gas transport methods and selection criteria for the fabrication of PU membranes. It also covers the challenges facing the development of PU-membrane-based separation procedures.


Assuntos
Gases , Membranas Artificiais , Poliuretanos , Poliuretanos/química , Gases/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química
6.
J Environ Manage ; 356: 120588, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518497

RESUMO

In the agricultural sector, ruminants are the largest methane (CH4) emission source and many efforts have been undertaken to reduce these greenhouse gas emissions, while compromising animal health and physiology. On the other hand, ruminal CH4, which is biomethane, is in high demand, especially in its liquid form (LBM) that can be used as high energy density fuel. However, CH4 released from a ruminant is immediately mixed with air and highly diluted (<0.1%), challenging CH4 capture technologies. Here we aimed to construct a cryogenic pilot system to capture and liquefy enteric CH4 released from dairy cows kept in respiration chambers. To approach this aim, the outlet air from the chambers was directed through a two-step cooling trap to capture CO2 (-120 to -130 °C) as a solid in the first and CH4 and O2 as liquids in the second cooler (-160 to -180 °C). Warming the second cooler resulted in the evaporation of O2, thereby separating O2 and CH4. LBM purity was in average 90% and was lowest at warming rates higher than 0.88 °C/min. The mean CH4 capture efficiency was 92% and found to be independent of sequestration time and flow rate. However, an increase in CH4 concentration to 0.6%, as it occurs directly at the muzzle of a cow, reduced the sequestration time for CH4. These results show that cryogenic technology can be used to obtain LBM from the air containing ultra-low CH4 concentrations as it is found in cattle barns with high efficiency and purity.


Assuntos
Metano , Leite , Feminino , Bovinos , Animais , Leite/química , Projetos Piloto , Metano/análise , Ruminantes , Agricultura , Dieta/veterinária , Lactação
7.
Angew Chem Int Ed Engl ; 63(16): e202401706, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38419479

RESUMO

Rigid three-dimensional (3D) polycyclic propellanes have garnered interest due to their unique conformational spaces, which display great potential use in selectivity, separation and as models to study through-space electronic interactions. Herein we report the synthesis of a novel rigid propellane, trinaphtho[3.3.3]propellane triimide, which comprises three imide groups embedded on a trinaphtho[3.3.3]propellane. This propellane triimide exhibits large bathochromic shift, amplified molar absorptivity, enhanced fluorescence, and lower reduction potential when compared to the subunits. Computational and experimental studies reveal that the effective through-space π-orbitals interacting (homoconjugation) occurs between the subunits. Single-crystal XRD analysis reveals that the propellane triimide has a highly quasi-D3h symmetric skeleton and readily crystallizes into different superstructures by changing alkyl chains at the imide positions. In particular, the porous 3D superstructure with S-shaped channels is promising for taking up ethane (C2H6) with very good selectivity over ethylene (C2H4), which can purify C2H4 from C2H6/C2H4 in a single separation step. This work showcases a new class of rare 3D polycyclic propellane with intriguing electronic and supramolecular properties.

8.
Angew Chem Int Ed Engl ; 63(29): e202403698, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720517

RESUMO

Trigonal planar M3(O/OH) trimers are among the most important clusters in inorganic chemistry and are the foundational features of multiple high-impact MOF platforms. Here we introduce a concept called isoreticular cluster series and demonstrate that M3(O/OH), as the first member of a supertrimer series, can be combined with a higher hierarchical member (double-deck trimer here) to advance isoreticular chemistry. We report here an isoreticular series of pore-space-partitioned MOFs called M3M6 pacs made from co-assembly between M3 single-deck trimer and M3x2 double-deck trimer. Important factors were identified on this multi-modular MOF platform to guide optimization of each module, which enables the phase selection of M3M6 pacs by overcoming the formation of previously-always-observed same-cluster phases. The new pacs materials exhibit high surface area and high uptake capacity for CO2 and small hydrocarbons, as well as selective adsorption properties relevant to separation of industrially important mixtures such as C2H2/CO2 and C2H2/C2H4. Furthermore, new M3M6 pacs materials show electrocatalytic properties with high activity.

9.
Angew Chem Int Ed Engl ; 63(24): e202405676, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38606914

RESUMO

Metal-organic framework (MOF) membranes with rich functionality and tunable pore system are promising for precise molecular separation; however, it remains a challenge to develop defect-free high-connectivity MOF membrane with high water stability owing to uncontrollable nucleation and growth rate during fabrication process. Herein, we report on a confined-coordination induced intergrowth strategy to fabricate lattice-defect-free Zr-MOF membrane towards precise molecular separation. The confined-coordination space properties (size and shape) and environment (water or DMF) were regulated to slow down the coordination reaction rate via controlling the counter-diffusion of MOF precursors (metal cluster and ligand), thereby inter-growing MOF crystals into integrated membrane. The resulting Zr-MOF membrane with angstrom-sized lattice apertures exhibits excellent separation performance both for gas separation and water desalination process. It was achieved H2 permeance of ~1200 GPU and H2/CO2 selectivity of ~67; water permeance of ~8 L ⋅ m-2 ⋅ h-1 ⋅ bar-1 and MgCl2 rejection of ~95 %, which are one to two orders of magnitude higher than those of state-of-the-art membranes. The molecular transport mechanism related to size-sieving effect and transition energy barrier differential of molecules and ions was revealed by density functional theory calculations. Our work provides a facile approach and fundamental insights towards developing precise molecular sieving membranes.

10.
Angew Chem Int Ed Engl ; 63(31): e202405969, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38760324

RESUMO

High-silica CHA zeolite membranes are highly desired for natural gas upgrading because of their separation performance in combination with superior mechanical and chemical stability. However, the narrow synthesis condition range significantly constrains scale-up preparation. Herein, we propose a facile interzeolite conversion approach using the FAU zeolite to prepare SSZ-13 zeolite seeds, featuring a shorter induction and a longer crystallization period of the membrane synthesis on hollow fiber substrates. The membrane thickness was constant at ~3 µm over a wide span of synthesis time (24-96 h), while the selectivity (separation efficiency) was easily improved by extending the synthesis time without compromising permeance (throughput). At 0.2 MPa feed pressure and 303 K, the membranes showed an average CO2 permeance of (5.2±0.5)×10-7 mol m-2 s-1 Pa-1 (1530 GPU), with an average CO2/CH4 mixture selectivity of 143±7. Minimal defects ensure a high selectivity of 126 with a CO2 permeation flux of 0.4 mol m-2 s-1 at 6.1 MPa feed pressure, far surpassing requirements for industrial applications. The feasibility for successful scale-up of our approach was further demonstrated by the batch synthesis of 40 cm-long hollow fiber SSZ-13 zeolite membranes exhibiting CO2/CH4 mixture selectivity up to 400 (0.2 MPa feed pressure and 303 K) without using sweep gas.

11.
Angew Chem Int Ed Engl ; 63(30): e202400823, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38735839

RESUMO

Separating acetylene from carbon dioxide is important but highly challenging due to their similar molecular shapes and physical properties. Adsorptive separation of carbon dioxide from acetylene can directly produce pure acetylene but is hardly realized because of relatively polarizable acetylene binds more strongly. Here, we reverse the CO2 and C2H2 separation by adjusting the pore structures in two isoreticular ultramicroporous metal-organic frameworks (MOFs). Under ambient conditions, copper isonicotinate (Cu(ina)2), with relatively large pore channels shows C2H2-selective adsorption with a C2H2/CO2 selectivity of 3.4, whereas its smaller-pore analogue, copper quinoline-5-carboxylate (Cu(Qc)2) shows an inverse CO2/C2H2 selectivity of 5.6. Cu(Qc)2 shows compact pore space that well matches the optimal orientation of CO2 but is not compatible for C2H2. Neutron powder diffraction experiments confirmed that CO2 molecules adopt preferential orientation along the pore channels during adsorption binding, whereas C2H2 molecules bind in an opposite fashion with distorted configurations due to their opposite quadrupole moments. Dynamic breakthrough experiments have validated the separation performance of Cu(Qc)2 for CO2/C2H2 separation.

12.
Angew Chem Int Ed Engl ; : e202411270, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048536

RESUMO

Ionic liquids (ILs) are prized for their selective dissolution of carbon dioxide (CO2), leading to their widespread use in ionogel membranes for gas separation. Despite their advantages, creating sustainable ionogel membranes with high IL contents poses challenges due to limited mechanical strength, leakage risks, and poor recyclability. Herein, we leverage copolymerized and supramolecularly bound ILs to develop ionogel membranes with high mechanical strength, zero leakage, and excellent self-healing and recycling capabilities. These membranes exhibit superior ideal selectivity for gas separation compared to other reported ionogel membranes, achieving a CO2/nitrogen selectivity of 61.7 and a CO2/methane selectivity of 24.6, coupled with an acceptable CO2 permeability of 186.4 Barrer. Additionally, these gas separation ionogel membranes can be upcycled into ionic skins for sensing applications, further enhancing their utility. This research outlines a strategic approach to molecularly engineer ionogel membranes, offering a promising pathway for developing sustainable, high-performance materials for advanced gas separation technologies.

13.
Angew Chem Int Ed Engl ; 63(27): e202319674, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634325

RESUMO

n-C4H10 and iso-C4H10 are both important petrochemical raw materials. Considering the coexistence of the isomers in the production process, it is necessary to achieve their efficient separation through an economical way. However, to obtain high-purity n-C4H10 and iso-C4H10 in one-step separation process, developing iso-C4H10-exclusion adsorbents with high n-C4H10 adsorption capacity is crucial. Herein, we report a cage-like MOF (SIFSIX-Cu-TPA) with small windows and large cavities which can selectively allow smaller n-C4H10 enter the pore and accommodate a large amount of n-C4H10 simultaneously. Adsorption isotherms reveal that SIFSIX-Cu-TPA not only completely excludes iso-C4H10 in a wide temperature range, but also exhibits a very high n-C4H10 adsorption capacity of 94.2 cm3 g-1 at 100 kPa and 298 K, which is the highest value among iso-C4H10-exclusion-type adsorbents. Breakthrough experiments show that SIFSIX-Cu-TPA has excellent n/iso-C4H10 separation performance and can achieve a record-high productivity of iso-C4H10 (3.2 mol kg-1) with high purity (>99.95 %) as well as 3.0 mol kg-1 of n-C4H10 (>99 %) in one separation circle. More importantly, SIFSIX-Cu-TPA can realize the efficient separation of butanes at different flow rates, temperatures, as well as under high humid condition, which indicates that SIFSIX-Cu-TPA can be deemed as an ideal platform for industrial butane isomers separation.

14.
Angew Chem Int Ed Engl ; 63(26): e202318844, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38785268

RESUMO

The quest for effective technologies to reduce SO2 pollution is crucial due to its adverse effects on the environment and human health. Markedly, removing a ppm level of SO2 from CO2-containing waste gas is a persistent challenge, and current technologies suffer from low SO2/CO2 selectivity and energy-intensive regeneration processes. Here using the molecular building blocks approach and theoretical calculation, we constructed two porous organic polymers (POPs) encompassing pocket-like structures with exposed imidazole groups, promoting preferential interactions with SO2 from CO2-containing streams. Markedly, the evaluated POPs offer outstanding SO2/CO2 selectivity, high SO2 capacity, and an easy regeneration process, making it one of the best materials for SO2 capture. To gain better structural insights into the notable SO2 selectivity of the POPs, we used dynamic nuclear polarization NMR spectroscopy (DNP) and molecular modelling to probe the interactions between SO2 and POP adsorbents. The newly developed materials are poised to offer an energy-efficient and environment-friendly SO2 separation process while we are obliged to use fossil fuels for our energy needs.

15.
Angew Chem Int Ed Engl ; 63(26): e202404734, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38635373

RESUMO

The development of porous materials with flexible-robust characteristics shows some unique advantages to target high performance for gas separation, but remains a daunting challenge to achieve so far. Herein, we report a carboxyl-based hydrogen-bonded organic framework (ZJU-HOF-8a) with flexible-robust porosity for efficient purification of natural gas. ZJU-HOF-8a features a four-fold interpenetrated structure with dia topology, wherein abundant supramolecular entanglements are formed between the adjacent subnetworks through weak intermolecular hydrogen bonds. This structural configuration could not only stabilize the whole framework to establish the permanent porosity, but also enable the framework to show some flexibility due to its weak intermolecular interactions (so-called flexible-robust framework). The flexible-robust porosity of ZJU-HOF-8a was exclusively confirmed by gas sorption isotherms and single-crystal X-ray diffraction studies, showing that the flexible pore pockets can be opened by C3H8 and n-C4H10 molecules rather by C2H6 and CH4. This leads to notably higher C3H8 and n-C4H10 uptakes with enhanced selectivities than C2H6 over CH4 under ambient conditions, affording one of the highest n-C4H10/CH4 selectivities. The gas-loaded single-crystal structures coupled with theoretical simulations reveal that the loading of n-C4H10 can induce an obvious framework expansion along with pore pocket opening to improve n-C4H10 uptake and selectivity, while not for C2H6 adsorption. This work suggests an effective strategy of designing flexible-robust HOFs for improving gas separation properties.

16.
Angew Chem Int Ed Engl ; 63(24): e202400474, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38590031

RESUMO

Metal-organic framework (MOF)-based mixed matrix membranes (MMMs) have shown great promises to overcome the performance upper limit of polymeric membranes for various gas separation processes. However, the gas separation properties of the MMMs largely depend on the MOF-polymer interfacial compatibility which is a metric difficult to quantify. In most cases, whether a MOF filler and a polymer matrix make a good pair is not revealed until the gas transport experiments are performed. This is because there is a lack of characterization techniques to directly probe the MOF-polymer interfacial compatibility. In this work, we demonstrate a self-sorting method to rank the interface compatibility among several MOF-polymer pairs. By mixing one MOF with two polymers in an MMM, the demixing of two polymers will form two polymer domains. The MOF particles will preferably partition into the "preferred" polymer domain due to their higher interfacial affinity. By scanning different polymer pairs, a rank of MOF-polymer interfacial compatibility from high to low can be obtained. Moreover, based on this ranking, it was also found that a highly compatible MOF-polymer pair suggested by this method also corresponds to a more predictable MMM gas separation performance.

17.
Angew Chem Int Ed Engl ; 63(8): e202317864, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38189768

RESUMO

Nanoparticles can suppress asymmetric precursor support collapse during pyrolysis to create carbon molecular sieve (CMS) membranes. This advance allows elimination of standard sol-gel support stabilization steps. Here we report a simple but surprisingly important thermal soaking step at 400 °C in the pyrolysis process to obtain high performance CMS membranes. The composite CMS membranes show CO2 /CH4 (50 : 50) mixed gas feed with an attractive CO2 /CH4 selectivity of 134.2 and CO2 permeance of 71 GPU at 35 °C. Furthermore, a H2 /CH4 selectivity of 663 with H2 permeance of 240 GPU was achieved for promising green energy resource-H2 separation processes.

18.
Angew Chem Int Ed Engl ; : e202411150, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136333

RESUMO

The first wide-view image of multiple structural and phase transformations for MOFs from crystal state transformations further to the extreme limit approaching liquid/glass phase, was presented based on a square-layer framework of [Co2(pybz)2(CH3COO)2]·DMF (Co2). The process involves i) an initial crystalline transformation brings to a 3-fold interpenetrated and ordered vacancies contained framework [Co(pybz)2(CH3OH)2]·2CH3OH (CoM) due to in-situ disassemble-reassemble, ii) thermal induced departure of a pair of cis-form coordinated methanol in CoM leads to amorphous framework (a-dCoM), iii) glass transition (Tg = 566 K) to super-cooled liquid (scl-dCoM, spanning 38 K), iv) obtaining MOF glass g-dCoM upon quenching the super-cooled liquid, and v) re-crystallization of super-cooled liquid to six-fold interpenetrated dia-net framework [Co(pybz)2]6n (rec-dCoM) under heating above 604 K. The access to glass from CoM, provides a new self-perturbation strategy to create more MOF glasses without melting. The wider pore size distribution in amorphous/glassy MOFs than crystalline precursor realized the first time selective hydrocarbon gas separation by breakthrough experiments, which bring efficient separation of 1:99 C2H2/C2H4 by either a-dCoM or g-dCoM and produce polymer grade C2H4 with purity ≥ 99.5% after a single adsorption process. Furthermore, the mixture of 50:50 C3H6/C3H8 can be separated by a-dCoM.

19.
Angew Chem Int Ed Engl ; : e202407840, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953248

RESUMO

Noble gas xenon (Xe) is an excellent anesthetic gas, but its rarity, high cost and constrained production prohibits wide use in medicine. Here, we have developed a closed-circuit anesthetic Xe recovery and reusage process with highly effective CO2-specific adsorbent CUPMOF-5 that is promising to solve the anesthetic Xe supply problem. CUPMOF-5 possesses spacious cage cavities interconnected in four directions by confinement throat apertures of ~3.4 Å, which makes it an ideal molecular sieving of CO2 from Xe, O2, N2 with the benchmark selectivity and high uptake capacity of CO2. In situ single-crystal X-ray diffraction (SCXRD) and computational simulation solidly revealed the vital sieving role of the confined throat and the sorbent-sorbate induced-fit strengthening binding interaction to CO2. CUPMOF-5 can remove 5 % CO2 even from actual moist exhaled anesthetic gases, and achieves the highest Xe recovery rate (99.8 %) so far, as verified by breakthrough experiments. This endows CUPMOF-5 great potential for the on-line CO2 removal and Xe recovery from anesthetic closed-circuits.

20.
Angew Chem Int Ed Engl ; 63(27): e202401817, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652758

RESUMO

Glass metal-organic framework (MOF) films can be fabricated from their crystalline counterparts through a melt-quenching process and are prospective candidates for gas separation because of the elimination of the grain boundaries in crystalline MOF films. However, current techniques are limited to producing glass MOF films with a thickness of tens of micrometers, which leads to ultralow gas permeances. Here, we report a novel cathodic deposition-assisted synthesis of glass ZIF-62 films with a thickness as low as ~1 µm. Electrochemical analyses and deposition experiments suggest that the cathodic deposition can lead to pure crystalline ZIF-62 films with a controllable thickness of ~2 µm to ~15 µm. Accordingly, glass ZIF-62 films with a thickness of ~1 µm to ~10 µm can be obtained after a thermal treatment. The fabricated defect-free glass ZIF-62 film measuring 2 µm in thickness shows a remarkable CO2/N2 and CO2/CH4 selectivity of 31.4 and 33.4, respectively, with a CO2 permeance which is over 30 times higher than the best-performing glass ZIF-62 films in literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA