RESUMO
Chronic pancreatitis (CP) is an etiologically and genetically heterogeneous inflammatory syndrome characterised by progressive damage to the exocrine and endocrine components of the pancreas [ 1]. The multigenic paradigm of CP has sparked research in recent years [ 2]. We aimed to expand the current knowledge of genetic susceptibility of pancreatitis in patients of Indian origin. By employing whole-exome sequencing in an Indian hospital cohort, we dissect the genetic landscape associated with CP or recurrent acute pancreatitis (RAP). Notably, all patients had at least one genetic variant identified in a pancreatitis-risk gene, and most had a co-occurrence of a second variant in an additional risk gene. Based on the presence of both acinar and ductal gene variants in individual patients, we propose a two-hit hypothesis where variants in proteins expressed in both acinar and ductal cells are critical for RAP/CP development.
RESUMO
BACKGROUND: The contribution of genetic factors to the severity of adult hemophagocytic lymphohistiocytosis (HLHa) remains unclear. OBJECTIVE: We sought to assess a potential link between HLHa outcomes and HLH-related gene variants. METHODS: Clinical characteristics of 130 HLHa patients (age ≥ 18 years and HScore ≥ 169) and genotype of 8 HLH-related genes (LYST, PRF1, UNC13-D, STX11, STXBP2, RAB27A, XIAP, and SAP) were collected. A total of 34 variants found in only 6 genes were selected on the basis of their frequency and criteria predicted to impair protein function. Severity was defined by refractory disease to HLH treatment, death, or transfer to an intensive care unit. RESULTS: HLHa-associated diseases (ADs) were neoplasia (n = 49 [37.7%]), autoimmune/inflammatory disease (n = 33 [25.4%]), or idiopathic when no AD was identified (n = 48 [36.9%]). Infectious events occurred in 76 (58.5%) patients and were equally distributed in all ADs. Severe and refractory HLHa were observed in 80 (61.5%) and 64 (49.2%) patients, respectively. HScore, age, sex ratio, AD, and infectious events showed no significant association with HLHa severity. Variants were identified in 71 alleles and were present in 56 (43.1%) patients. They were distributed as follows: 44 (34.4%), 9 (6.9%), and 3 (2.3%) patients carrying 1, 2, and 3 variant alleles, respectively. In a logistic regression model, only the number of variants was significantly associated with HLHa severity (1 vs 0: 3.86 [1.73-9.14], P = .0008; 2-3 vs 0: 29.4 [3.62-3810], P = .0002) and refractoriness (1 vs 0: 2.47 [1.17-5.34], P = .018; 2-3 vs 0: 13.2 [2.91-126.8], P = .0003). CONCLUSIONS: HLH-related gene variants may be key components to the severity and refractoriness of HLHa.
Assuntos
Linfo-Histiocitose Hemofagocítica , Adulto , Humanos , Adolescente , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/terapia , Alelos , Genótipo , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genéticaRESUMO
BACKGROUND: Deficiency of adenosine deaminase (ADA or ADA1) has broad clinical and genetic heterogeneity. Screening techniques can identify asymptomatic infants whose phenotype and prognosis are indeterminate, and who may carry ADA variants of unknown significance. OBJECTIVE: We systematically assessed the pathogenic potential of rare ADA missense variants to better define the relationship of genotype to red blood cell (RBC) total deoxyadenosine nucleotide (dAXP) content and to phenotype. METHODS: We expressed 46 ADA missense variants in the ADA-deficient SØ3834 strain of Escherichia coli and defined genotype categories (GCs) ranked I to IV by increasing expressed ADA activity. We assessed relationships among GC rank, RBC dAXP, and phenotype in 58 reference patients with 50 different genotypes. We used our GC ranking system to benchmark AlphaMissense for predicting variant pathogenicity, and we used a minigene assay to identify exonic splicing variants in ADA exon 9. RESULTS: The 46 missense variants expressed â¼0.001% to â¼70% of wild-type ADA activity (40% had <0.05% of wild-type ADA activity and 50% expressed >1%). RBC dAXP ranged from undetectable to >75% of total adenine nucleotides and correlated well with phenotype. Both RBC dAXP and clinical severity were inversely related to total ADA activity expressed by both inherited variants. Our GC scoring system performed better than AlphaMissense in assessing variant pathogenicity, particularly for less deleterious variants. CONCLUSION: For ADA deficiency, pathogenicity is a continuum and conditional, depending on the total ADA activity contributed by both inherited variants as indicated by GC rank. However, in patients with indeterminate phenotype identified by screening, RBC dAXP measured at diagnosis may have greater prognostic value than GC rank.
RESUMO
BACKGROUND: We analyzed the genetic causes of sensorineural hearing loss in racial and ethnic minorities of South Florida by reviewing demographic, phenotypic, and genetic data on 136 patients presenting to the Hereditary Hearing Loss Clinic at the University of Miami. In our retrospective chart review, of these patients, half self-identified as Hispanic, and the self-identified racial distribution was 115 (86%) White, 15 (11%) Black, and 6 (4%) Asian. Our analysis helps to reduce the gap in understanding the prevalence, impact, and genetic factors related to hearing loss among diverse populations. RESULTS: The causative gene variant or variants were identified in 54 (40%) patients, with no significant difference in the molecular diagnostic rate between Hispanics and Non-Hispanics. However, the total solve rate based on race was 40%, 47%, and 17% in Whites, Blacks, and Asians, respectively. In Non-Hispanic Whites, 16 different variants were identified in 13 genes, with GJB2 (32%), MYO7A (11%), and SLC26A4 (11%) being the most frequently implicated genes. In White Hispanics, 34 variants were identified in 20 genes, with GJB2 (22%), MYO7A (7%), and STRC-CATSPER2 (7%) being the most common. In the Non-Hispanic Black cohort, the gene distribution was evenly dispersed, with 11 variants occurring in 7 genes, and no variant was identified in 3 Hispanic Black probands. For the Asian cohort, only one gene variant was found out of 6 patients. CONCLUSION: This study demonstrates that the diagnostic rate of genetic studies in hearing loss varies according to race in South Florida, with more heterogeneity in racial and ethnic minorities. Further studies to delineate deafness gene variants in underrepresented populations, such as African Americans/Blacks from Hispanic groups, are much needed to reduce racial and ethnic disparities in genetic diagnoses.
Assuntos
Perda Auditiva Neurossensorial , Humanos , Asiático/genética , Negro ou Afro-Americano/genética , DNA/genética , Florida/epidemiologia , Perda Auditiva Neurossensorial/epidemiologia , Perda Auditiva Neurossensorial/genética , Hispânico ou Latino/genética , Peptídeos e Proteínas de Sinalização Intercelular , Estudos Retrospectivos , Brancos/genéticaRESUMO
Advances in bioinformatic tools paired with the ongoing accumulation of genetic knowledge and periodic reanalysis of genomic sequencing data have led to an improvement in genetic diagnostic rates. Candidate gene variants (CGVs) identified during sequencing or on reanalysis but not yet implicated in human disease or associated with a phenotypically distinct condition are often not revisited, leading to missed diagnostic opportunities. Here, we revisited 33 such CGVs from our previously published study and determined that 16 of them are indeed disease-causing (novel or phenotype expansion) since their identification. These results emphasize the need to focus on previously identified CGVs during sequencing or reanalysis and the importance of sharing that information with researchers around the world, including relevant functional analysis to establish disease causality.
Assuntos
Biologia Computacional , Genômica , Humanos , Sequenciamento do Exoma , Fenótipo , Genômica/métodos , Biologia Computacional/métodos , AlelosRESUMO
Mosaic variegated aneuploidy (MVA) is an autosomal recessive disorder characterized by mosaic aneuploidies, predominantly trisomies, involving multiple different chromosomes and tissues. The proportion of aneuploid cells varies, and most patients present with intrauterine growth delay, microcephaly, and a broad spectrum of congenital abnormalities. We report a patient with a distinctive type of MVA discovered in bone marrow (BM) when she was 3-month-old due to neutropenia and hypocellular bone marrow. She was followed up for more than 20 years, and different trisomic cells were repeatedly discovered in different tissues, whereas her clinical picture has never been severe. The main sign remained intermittent neutropenia, not cyclic and often not too severe, occasionally with anemia and thrombocytopenia. Retromicrognathia was the only dysmorphic sign. Unlike other patients with MVA, the trisomies in all tissues involved almost invariably chromosomes 18 and 19. Therefore, the peculiarities of our patient were the clinical and the atypical cytogenetic pictures. Nevertheless, we looked for mutations in the seven causative genes of the known types of MVA, but the results were negative. Then, we analyzed the entire exome to find out other possible causing mutations, but also this attempt failed to discover a possible cause of this distinctive form of MVA.
RESUMO
Early onset epilepsies occur in newborns and infants, and to date, genetic aberrations and variants have been identified in approximately one quarter of all patients. With technological sequencing advances and ongoing research, the genetic diagnostic yield for specific seizure disorders and epilepsies is expected to increase. Genetic variants associated with epilepsy include chromosomal abnormalities and rearrangements of various sizes as well as single gene variants. Among these variants, a distinction can be made between germline and somatic, with the latter being increasingly identified in epilepsies with focal cortical malformations in recent years. The identification of the underlying genetic mechanisms of epilepsy syndromes not only revolutionizes the diagnostic schemes but also leads to a better understanding of the diseases and their interrelationships, ultimately providing new opportunities for therapeutic targeting. At the XVI Workshop on Neurobiology of Epilepsy (WONOEP 2022, Talloires, France, July 2022), various etiologies, research models, and mechanisms of genetic early onset epilepsies were presented and discussed.
RESUMO
BACKGROUND AND AIM: A wide range of clinical manifestations and outcomes, including liver injury, have been reported in COVID-19 patients. We investigated the association of three substantial gene polymorphisms (FURIN, IFNL4, and TLR2) with COVID-19 disease susceptibility and severity to help predict prognosis. METHODS: 150 adult COVID-19-assured cases were categorized as follows: 78 patients with a non-severe presentation, 39 patients with severe disease, and 33 critically ill patients. In addition, 74 healthy controls were included. Clinical and laboratory evaluations were carried out, including complete and differential blood counts, D-dimer, lactate dehydrogenase (LDH), C-reactive protein (CRP), procalcitonin, ferritin, interleukin-6 (Il-6), and liver and kidney functions. FURIN (rs6226), IFNL4 (rs12979860), and TLR2 (rs3804099) genotyping allelic discrimination assays were conducted using real-time PCR. RESULTS: The FURIN, IFNL4, and TLR2 genotypes and their alleles differed significantly between COVID-19 patients and controls, as well as between patients with severe or critical illness and those with a non-severe presentation. According to a multivariable regression analysis, FURIN (C/T + T/T) and TLR2 (T/C + C/C) mutants were associated with COVID-19 susceptibility, with odds ratios of 3.293 and 2.839, respectively. FURIN C/C and IFNL4 T/T mutants were significantly linked to severe and critical illnesses. Multivariate regression analysis showed that FURIN (G/C + C/C) genotypes and IFNL4 T/T homozygosity were independent risk factors associated with increased mortality. CONCLUSION: FURIN, IFNL4, and TLR2 gene variants are associated with the risk of COVID-19 occurrence as well as increased severity and poor outcomes in Egyptian patients.
RESUMO
BACKGROUND: Chronic low back pain (CLBP) is a complex condition in which genetic factors play a role in its susceptibility. Catechol-O-methyltransferase (COMT) and sodium channel NaV1.7 (SCN9A) genes are implicated in pain perception. The aim is to analyze the association of COMT and SCN9A with CLBP and their interaction, in a Mexican-Mestizo population. METHODS: A case-control study was conducted. Cases corresponded to adults of both sexes with CLBP. Controls were adults with no CLBP. Variants of SCN9A and COMT were genotyped. Allelic and genotypic frequencies and Hardy-Weinberg equilibrium (HWE) were calculated. Association was tested under codominant, dominant, and recessive models. Multifactor dimensionality reduction was developed to detect epistasis. RESULTS: Gene variants were in HWE, and there was no association under different inheritance models in the whole sample. In women, in codominant and dominant models, a trend to a high risk was observed for AA of rs4680 of COMT (OR = 1.7 [0.5-5.3] and 1.6 [0.7-3.4]) and for TT of rs4633 (OR = 1.6 [0.7-3.7] and 1.6 [0.7-3.4]). In men, a trend to low risk was observed for AG genotype of rs4680 in the same models (OR = 0.6 [0.2-1.7] and 0.7 [0.3-1.7]), and for TC genotype of rs4633 in the codominant model (OR = 0.6 [0.2-1.7]). In the interaction analysis, a model of the SCN9A and COMT variants showed a CVC of 10/10; however, the TA was 0.4141. CONCLUSION: COMT and SCN9A variants are not associated with CLBP in the analyzed Mexican-Mestizo population.
Assuntos
Catecol O-Metiltransferase , Dor Lombar , Canal de Sódio Disparado por Voltagem NAV1.7 , Adulto , Feminino , Humanos , Masculino , Estudos de Casos e Controles , Catecol O-Metiltransferase/genética , Dor Lombar/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genéticaRESUMO
The incidence and mortality of chronic kidney disease (CKD) are increasing globally. Studies have demonstrated the significance of genetic risk factors in the progression of CKD. Telomerase reverse transcriptase (TERT) may be implicated in the development of CKD. This study aimed to investigate the correlation between TERT gene variants and susceptibility to CKD in the Chinese population. A total of 507 patients with CKD and 510 healthy controls were recruited for this case-control study. Four candidate loci were identified using the MassARRAY platform. Logistic regression analysis was employed to assess the association between TERT gene variants and the risk of CKD. The false positive reporting probability (FPRP) method was utilized to evaluate the validity of statistically significant associations. The multifactorial dimensionality reduction (MDR) method was used to evaluate the interaction between SNPs and the risk of CKD. Furthermore, discrepancies in the clinical features of subjects with diverse genotypes were evaluated using one-way analysis of variance (ANOVA). Our findings revealed a correlation between rs2735940 and rs4635969 and an increased risk of CKD. Stratification analysis indicated that rs4635969 was related to an increased risk of CKD in different subgroups (age ≤ 50 years and male). MDR analysis indicated that the two-site model (rs2735940 and rs4635969) was the best prediction model. Furthermore, the rs2735940 GG genotype was found to be linked to an increased level of microalbuminuria (MAU) in patients with CKD. Our study is the first to reveal a connection between TERT gene variants and susceptibility to CKD, providing new insights into the field of nephrology.
Assuntos
Insuficiência Renal Crônica , Telomerase , Humanos , Masculino , Pessoa de Meia-Idade , Estudos de Casos e Controles , China/epidemiologia , Estudos de Associação Genética , Genótipo , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , Telomerase/genéticaRESUMO
Mowat-Wilson syndrome (MWS) is a rare genetic neurodevelopmental congenital disorder associated with various defects of the zinc finger E-box binding homeobox 2 (ZEB2) gene. The ZEB2 gene is autosomal dominant and encodes six protein domains including the SMAD-binding protein, which functions as a transcriptional corepressor involved in the conversion of neuroepithelial cells in early brain development and as a mediator of trophoblast differentiation. This review summarizes reported ZEB2 gene variants, their types, and frequencies among the 10 exons of ZEB2. Additionally, we summarized their corresponding encoded protein defects including the most common variant, c.2083 C>T in exon 8, which directly impacts the homeodomain (HD) protein domain. This single defect was found in 11% of the 298 reported patients with MWS. This review demonstrates that exon 8 encodes at least three of the six protein domains and accounts for 66% (198/298) of the variants identified. More than 90% of the defects were due to nonsense or frameshift changes. We show examples of protein modeling changes that occurred as a result of ZEB2 gene defects. We also report a novel pathogenic variant in exon 8 in a 5-year-old female proband with MWS. This review further explores other genes predicted to be interacting with the ZEB2 gene and their predicted gene-gene molecular interactions with protein binding effects on embryonic multi-system development such as craniofacial, spine, brain, kidney, cardiovascular, and hematopoiesis.
Assuntos
Fácies , Doença de Hirschsprung , Deficiência Intelectual , Microcefalia , Proteínas Repressoras , Feminino , Humanos , Pré-Escolar , Proteínas Repressoras/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Deficiência Intelectual/genética , Proteínas de Homeodomínio/genética , Fatores de TranscriçãoRESUMO
The use of next-generation sequencing has provided new insights into the causes and mechanisms of congenital heart disease (CHD). Examinations of the whole exome sequence have detected detrimental gene variations modifying single or contiguous nucleotides, which are characterised as pathogenic based on statistical assessments of families and correlations with congenital heart disease, elevated expression during heart development, and reductions in harmful protein-coding mutations in the general population. Patients with CHD and extracardiac abnormalities are enriched for gene classes meeting these criteria, supporting a common set of pathways in the organogenesis of CHDs. Single-cell transcriptomics data have revealed the expression of genes associated with CHD in specific cell types, and emerging evidence suggests that genetic mutations disrupt multicellular genes essential for cardiogenesis. Metrics and units are being tracked in whole-genome sequencing studies.
Assuntos
Cardiopatias Congênitas , Humanos , Cardiopatias Congênitas/genética , Mutação , Exoma , Sequenciamento Completo do Genoma , Genômica , Variações do Número de Cópias de DNARESUMO
The pathogenic variants in the telomerase reverse transcriptase (TERT) gene have been identified in adults with idiopathic pulmonary fibrosis, while their connection to childhood diffuse lung disease has not yet been described. Within this study, we present a case of a five-month-old, previously healthy infant, with early-onset respiratory failure. The clinical suspicion of diffuse lung disease triggered by cytomegalovirus (CMV) pneumonitis was based on clinical and radiological presentation. Multiorgan involvement was not confirmed. Considering the possible connection between CMV pneumonitis and early-onset respiratory failure, clinical exome sequencing was performed and a novel variant, classified as likely pathogenic in the TERT gene (c.280A>T, p.Lys94Ter) was detected. After segregation analysis yielded negative results, the de novo status of the variant was confirmed. Respiratory support, antiviral and anti-inflammatory therapy offered modest benefits, nevertheless, eighteen months after the initial presentation of disease, an unfavourable outcome occurred. In conclusion, severe viral pneumonia has the potential to induce extremely rare early-onset diffuse lung disease accompanied by chronic respiratory insufficiency. This is linked to pathogenic variants in the TERT gene. Our comprehensive presentation of the patient contributes to valuable insights into the intricate interplay of genetic factors, clinical presentations, and therapeutic outcomes in cases of early-onset respiratory failure.
RESUMO
Alpha-1-antitrypsin (A1AT or SERPINA1) has been proposed as a putative biomarker distinguishing healthy from diseased donors throughout several proteomics studies. However, the SERPINA1 gene displays high variability of frequent occurring genotypes among the general population. These different genotypes may affect A1AT expression and serum protein concentrations, and this is often not known, ignored, and/or not reported in serum proteomics studies. Here, we address allele-specific protein serum levels of A1AT in donors carrying the normal M variants of A1AT by measuring the proteoform profiles of purified A1AT from 81 serum samples, originating from 52 donors. When focusing on heterozygous donors, our data clearly reveal a statistically relevant difference in allele-specific protein serum levels of A1AT. In donors with genotype PI*M1VM1A, the experimentally observed ratio was approximately 1:1 (M1V/M1A, 1.00:0.96 ± 0.07, n = 17). For individuals with genotype PI*M1VM2, this ratio was 1:1.28 (M1V/M2, 1.00:1.31, ±0.19, n = 7). For genotypes PI*M1VM3 and PI*M1AM3, a significant higher amount of M3 was observed compared to the M1-subtypes (M1V/M3, 1.00:1.84 ± 0.35, n = 8; M1A/M3, 1.00:1.61 ± 0.33, n = 5). We argue that these observations are important and should be considered when analyzing serum A1AT levels before proposing A1AT as a putative serum biomarker.
Assuntos
Deficiência de alfa 1-Antitripsina , Humanos , Deficiência de alfa 1-Antitripsina/genética , Alelos , alfa 1-Antitripsina/genética , Genótipo , Heterozigoto , BiomarcadoresRESUMO
Alopecia Areata (AA) is a multifactorial, dermatological disease characterized by non-scarring hair loss. Alterations in candidate genes, such as HR (Hairless), could represent a risk factor for its development. The aim of this study was to search for and analyze variants in exons 3, 15 and 17 of the HR gene in Mexican patients with AA. A total of 30 samples from both AA patients and healthy donors were analyzed in this study. Exons were amplified and sequenced using the Sanger method. Descriptive statistics and χ2 tests were used in the analysis of clinical-demographic characteristics and the comparison of allelic/genotypical frequencies between groups, respectively. The effect on protein function for the non-synonymous variants was determined with three bioinformatics servers. Three gene variants were identified in the HR gene of the evaluated patients. The benign polymorphism c.1010G > A p.(Gly337Asp) (rs12675375) had been previously reported, whereas the variants c.750G > A p.(Gln250Gln) and c.3215T > A (Val1072AGlu) have not been described in other world populations. Both non-synonymous variants proved to be significant (p ≤ 0.05). The variant c.3215T > A p.(Val1072Glu) is of particular interest due to its deleterious effect on the structure and function of the protein; therefore, it could be considered a risk factor for the development of AA.
RESUMO
Nuclear factor κB (NF-κB) activation is a deleterious molecular mechanism that drives acute kidney injury (AKI) and manifests in transplanted kidneys as delayed graft function. The TNFAIP3 gene encodes A20, a cytoplasmic ubiquitin ligase and a master negative regulator of the NF- κB signaling pathway. Common population-specific TNFAIP3 coding variants that reduce A20's enzyme function and increase NF- κB activation have been linked to heightened protective immunity and autoimmune disease, but have not been investigated in AKI. Here, we functionally identified a series of unique human TNFAIP3 coding variants linked to the autoimmune genome-wide association studies single nucleotide polymorphisms of F127C; namely F127C;R22Q, F127C;G281E, F127C;W448C and F127C;N449K that reduce A20's anti-inflammatory function in an NF- κB reporter assay. To investigate the impact of TNFAIP3 hypomorphic coding variants in AKI we tested a mouse Tnfaip3 hypomorph in a model of ischemia reperfusion injury (IRI). The mouse Tnfaip3 coding variant I325N increases NF- κB activation without overt inflammatory disease, providing an immune boost as I325N mice exhibit enhanced innate immunity to a bacterial challenge. Surprisingly, despite exhibiting increased intra-kidney NF- κB activation with inflammation in IRI, the kidney of I325N mice was protected. The I325N variant influenced the outcome of IRI by changing the dynamic expression of multiple cytoprotective mechanisms, particularly by increasing NF- κB-dependent anti-apoptotic factors BCL-2, BCL-XL, c-FLIP and A20, altering the active redox state of the kidney with a reduction of superoxide levels and the enzyme super oxide dismutase-1, and enhancing cellular protective mechanisms including increased Foxp3+ T cells. Thus, TNFAIP3 gene variants represent a kidney and population-specific molecular factor that can dictate the course of IRI.
Assuntos
Injúria Renal Aguda , NF-kappa B , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Fatores de Transcrição/genética , Ubiquitina , Estudo de Associação Genômica Ampla , Ligases , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Injúria Renal Aguda/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genéticaRESUMO
Behçet disease (BD) and familial Mediterranean fever (FMF) are two inflammatory disorders that share many features including historical background, ethnical distribution and inflammatory characteristics. Several studies suggested that BD and FMF might occur in the same individual more commonly than expected. Additionally, the pathogenic MEFV gene variants, especially p.Met694Val, activating the inflammasome complex have been shown to increase the risk for BD in regions where both FMF and BD are prevalent. Whether these variants are associated with certain disease subtypes and whether they may help in the planning of treatment need to be explored. This review provides a recent overview of the plausible association between FMF and BD and the role of MEFV variants in the pathogenesis of BD.
Assuntos
Síndrome de Behçet , Febre Familiar do Mediterrâneo , Humanos , Síndrome de Behçet/genética , Síndrome de Behçet/complicações , Pirina/genética , Febre Familiar do Mediterrâneo/genética , Febre Familiar do Mediterrâneo/complicações , MutaçãoRESUMO
Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) are produced in the heart and secreted into the circulation. As hormones, both peptides activate the guanylyl cyclase receptor A (GC-A), playing a role in blood pressure (BP) regulation. A significant role for ANP and BNP includes favorable actions in metabolic homeostasis. Sex-based high prevalence of risk factors for cardiovascular disease in males compared with females is well established, but sex-based differences on cardiometabolic protection have not been investigated in relation to ANP (NPPA) and BNP (NPPB) gene variants. We included 1,146 subjects in the general population from Olmsted County, Minnesota. Subjects were genotyped for the ANP gene variant rs5068 and BNP gene variant rs198389. Cardiometabolic parameters and medical records were reviewed. In the presence of the minor allele of rs5068, diastolic BP, creatinine, body mass index (BMI), waist measurement, insulin, and prevalence of obesity and metabolic syndrome were lower, whereas HDL was higher in males with only trends observed in females. We observed no associations of the minor allele with echocardiographic parameters in either males or females. Regarding rs198389 genotype, the minor allele was not associated with any BP, metabolic, renal, or echocardiographic parameters in either sex. In the general community, the minor allele of the ANP gene variant rs5068 is associated with a favorable metabolic phenotype in males. No associations were observed with the BNP gene variant rs198389. These studies support a protective role of the ANP pathway on metabolic function and underscore the importance of sex in relationship to natriuretic peptide responses.NEW & NOTEWORTHY Males are characterized by lower ANP and BNP with greater prevalence of cardiometabolic disease. The ANP genetic variant rs5068 was associated with less metabolic dysfunction in males, whereas no metabolic profile was related to the BNP genetic variant rs198389 in the general population. ANP may play a more biological role in metabolic homeostasis compared with BNP in the general population with greater physiological metabolic actions in males compared with females.
Assuntos
Fator Natriurético Atrial , Doenças Cardiovasculares , Masculino , Feminino , Humanos , Genótipo , Fenótipo , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Peptídeo Natriurético EncefálicoRESUMO
The objective of this work was to identify genetic variants in Mexican patients diagnosed with hypertrophic cardiomyopathy (HCM). According to world literature, the genes mainly involved are MHY7 and MYBPC3, although variants have been found in more than 50 genes related to heart disease and sudden death, and to our knowledge there are no studies in the Mexican population. These variants are reported and classified in the ClinVar (PubMed) database and only some of them are recognized in the Online Mendelian Information in Men (OMIM). The present study included 37 patients, with 14 sporadic cases and 6 familial cases, with a total of 21 index cases. Next-generation sequencing was performed on a predesigned panel of 168 genes associated with heart disease and sudden death. The sequencing analysis revealed twelve (57%) pathogenic or probably pathogenic variants, 9 of them were familial cases, managing to identify pathogenic variants in relatives without symptoms of the disease. At the molecular level, nine of the 12 variants (75%) were single nucleotide changes, 2 (17%) deletions, and 1 (8%) splice site alteration. The genes involved were MYH7 (25%), MYBPC3 (25%) and ACADVL, KCNE1, TNNI3, TPM1, SLC22A5, TNNT2 (8%). In conclusion; we found five variants that were not previously reported in public databases. It is important to follow up on the reclassification of variants, especially those of uncertain significance in patients with symptoms of the condition. All patients included in the study and their relatives received family genetic counseling.
Assuntos
Cardiomiopatia Hipertrófica , Cardiopatias , Masculino , Humanos , Cardiomiopatia Hipertrófica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Morte Súbita , Mutação , Membro 5 da Família 22 de Carreadores de Soluto/genéticaRESUMO
We report the case of two siblings with incomplete Donnai-Barrow syndrome (DBS) phenotype carrying three LRP2 variants never associated before with DBS phenotype.