RESUMO
What specific features should visual neurons encode, given the infinity of real-world images and the limited number of neurons available to represent them? We investigated neuronal selectivity in monkey inferotemporal cortex via the vast hypothesis space of a generative deep neural network, avoiding assumptions about features or semantic categories. A genetic algorithm searched this space for stimuli that maximized neuronal firing. This led to the evolution of rich synthetic images of objects with complex combinations of shapes, colors, and textures, sometimes resembling animals or familiar people, other times revealing novel patterns that did not map to any clear semantic category. These results expand our conception of the dictionary of features encoded in the cortex, and the approach can potentially reveal the internal representations of any system whose input can be captured by a generative model.
Assuntos
Rede Nervosa/fisiologia , Lobo Temporal/fisiologia , Percepção Visual/fisiologia , Algoritmos , Animais , Córtex Cerebral/fisiologia , Macaca mulatta/fisiologia , Masculino , Neurônios/metabolismo , Neurônios/fisiologiaRESUMO
Recent studies have extensively used deep learning algorithms to analyze gene expression to predict disease diagnosis, treatment effectiveness, and survival outcomes. Survival analysis studies on diseases with high mortality rates, such as cancer, are indispensable. However, deep learning models are plagued by overfitting owing to the limited sample size relative to the large number of genes. Consequently, the latest style-transfer deep generative models have been implemented to generate gene expression data. However, these models are limited in their applicability for clinical purposes because they generate only transcriptomic data. Therefore, this study proposes ctGAN, which enables the combined transformation of gene expression and survival data using a generative adversarial network (GAN). ctGAN improves survival analysis by augmenting data through style transformations between breast cancer and 11 other cancer types. We evaluated the concordance index (C-index) enhancements compared with previous models to demonstrate its superiority. Performance improvements were observed in nine of the 11 cancer types. Moreover, ctGAN outperformed previous models in seven out of the 11 cancer types, with colon adenocarcinoma (COAD) exhibiting the most significant improvement (median C-index increase of ~15.70%). Furthermore, integrating the generated COAD enhanced the log-rank p-value (0.041) compared with using only the real COAD (p-value = 0.797). Based on the data distribution, we demonstrated that the model generated highly plausible data. In clustering evaluation, ctGAN exhibited the highest performance in most cases (89.62%). These findings suggest that ctGAN can be meaningfully utilized to predict disease progression and select personalized treatments in the medical field.
Assuntos
Aprendizado Profundo , Humanos , Análise de Sobrevida , Algoritmos , Neoplasias/genética , Neoplasias/mortalidade , Perfilação da Expressão Gênica/métodos , Redes Neurais de Computação , Biologia Computacional/métodos , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Feminino , Regulação Neoplásica da Expressão GênicaRESUMO
Chloroplast is a crucial site for photosynthesis in plants. Determining the location and distribution of proteins in subchloroplasts is significant for studying the energy conversion of chloroplasts and regulating the utilization of light energy in crop production. However, the prediction accuracy of the currently developed protein subcellular site predictors is still limited due to the complex protein sequence features and the scarcity of labeled samples. We propose DaDL-SChlo, a multi-location protein subchloroplast localization predictor, which addresses the above problems by fusing pre-trained protein language model deep learning features with traditional handcrafted features and using generative adversarial networks for data augmentation. The experimental results of cross-validation and independent testing show that DaDL-SChlo has greatly improved the prediction performance of protein subchloroplast compared with the state-of-the-art predictors. Specifically, the overall actual accuracy outperforms the state-of-the-art predictors by 10.7% on 10-fold cross-validation and 12.6% on independent testing. DaDL-SChlo is a promising and efficient predictor for protein subchloroplast localization. The datasets and codes of DaDL-SChlo are available at https://github.com/xwanggroup/DaDL-SChlo.
Assuntos
Cloroplastos , Idioma , Transporte Proteico , Cloroplastos/metabolismo , Projetos de PesquisaRESUMO
BACKGROUND: Accurately deciphering clonal copy number substructure can provide insights into the evolutionary mechanism of cancer, and clustering single-cell copy number profiles has become an effective means to unmask intra-tumor heterogeneity (ITH). However, copy numbers inferred from single-cell DNA sequencing (scDNA-seq) data are error-prone due to technically confounding factors such as amplification bias and allele-dropout, and this makes it difficult to precisely identify the ITH. RESULTS: We introduce a hybrid model called scGAL to infer clonal copy number substructure. It combines an autoencoder with a generative adversarial network to jointly analyze independent single-cell copy number profiles and gene expression data from same cell line. Under an adversarial learning framework, scGAL exploits complementary information from gene expression data to relieve the effects of noise in copy number data, and learns latent representations of scDNA-seq cells for accurate inference of the ITH. Evaluation results on three real cancer datasets suggest scGAL is able to accurately infer clonal architecture and surpasses other similar methods. In addition, assessment of scGAL on various simulated datasets demonstrates its high robustness against the changes of data size and distribution. scGAL can be accessed at: https://github.com/zhyu-lab/scgal . CONCLUSIONS: Joint analysis of independent single-cell copy number and gene expression data from a same cell line can effectively exploit complementary information from individual omics, and thus gives more refined indication of clonal copy number substructure.
Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Neoplasias/genética , Neoplasias/patologia , Algoritmos , Linhagem Celular Tumoral , Análise da Expressão Gênica de Célula ÚnicaRESUMO
Multimodal magnetic resonance imaging (MRI) provides complementary information for investigating brain structure and function; for example, an in vivo microstructure-sensitive proxy can be estimated using the ratio between T1- and T2-weighted structural MRI. However, acquiring multiple imaging modalities is challenging in patients with inattentive disorders. In this study, we proposed a comprehensive framework to provide multiple imaging features related to the brain microstructure using only T1-weighted MRI. Our toolbox consists of (i) synthesizing T2-weighted MRI from T1-weighted MRI using a conditional generative adversarial network; (ii) estimating microstructural features, including intracortical covariance and moment features of cortical layer-wise microstructural profiles; and (iii) generating a microstructural gradient, which is a low-dimensional representation of the intracortical microstructure profile. We trained and tested our toolbox using T1- and T2-weighted MRI scans of 1,104 healthy young adults obtained from the Human Connectome Project database. We found that the synthesized T2-weighted MRI was very similar to the actual image and that the synthesized data successfully reproduced the microstructural features. The toolbox was validated using an independent dataset containing healthy controls and patients with episodic migraine as well as the atypical developmental condition of autism spectrum disorder. Our toolbox may provide a new paradigm for analyzing multimodal structural MRI in the neuroscience community and is openly accessible at https://github.com/CAMIN-neuro/GAN-MAT.
Assuntos
Transtorno do Espectro Autista , Conectoma , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem Multimodal , Processamento de Imagem Assistida por Computador/métodosRESUMO
Quantitative susceptibility mapping (QSM) is frequently employed in investigating brain iron related to brain development and diseases within deep gray matter (DGM). Nonetheless, the acquisition of whole-brain QSM data is time-intensive. An alternative approach, focusing the QSM specifically on areas of interest such as the DGM by reducing the field-of-view (FOV), can significantly decrease scan times. However, severe susceptibility value underestimations have been reported during QSM reconstruction with a limited FOV, largely attributable to artifacts from incorrect background field removal in the boundary region. This presents a considerable barrier to the clinical use of QSM with small spatial coverages using conventional methods alone. To mitigate the propagation of these errors, we proposed a harmonic field extension method based on a physics-informed generative adversarial network. Both quantitative and qualitative results demonstrate that our method outperforms conventional methods and delivers results comparable to those obtained with full FOV. Furthermore, we demonstrate the versatility of our method by applying it to data acquired prospectively with limited FOV and to data from patients with Parkinson's disease. The method has shown significant improvements in local field results, with QSM outcomes. In a clear illustration of its feasibility and effectiveness in real clinical environments, our proposed method addresses the prevalent issue of susceptibility underestimation in QSM with small spatial coverage.
Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodosRESUMO
OBJECTIVE: The conventional methods for interpreting tau PET imaging in Alzheimer's disease (AD), including visual assessment and semi-quantitative analysis of fixed hallmark regions, are insensitive to detect individual small lesions because of the spatiotemporal neuropathology's heterogeneity. In this study, we proposed a latent feature-enhanced generative adversarial network model for the automatic extraction of individual brain tau deposition regions. METHODS: The latent feature-enhanced generative adversarial network we propose can learn the distribution characteristics of tau PET images of cognitively normal individuals and output the abnormal distribution regions of patients. This model was trained and validated using 1131 tau PET images from multiple centres (with distinct races, i.e., Caucasian and Mongoloid) with different tau PET ligands. The overall quality of synthetic imaging was evaluated using structural similarity (SSIM), peak signal to noise ratio (PSNR), and mean square error (MSE). The model was compared to the fixed templates method for diagnosing and predicting AD. RESULTS: The reconstructed images archived good quality, with SSIM = 0.967 ± 0.008, PSNR = 31.377 ± 3.633, and MSE = 0.0011 ± 0.0007 in the independent test set. The model showed higher classification accuracy (AUC = 0.843, 95 % CI = 0.796-0.890) and stronger correlation with clinical scales (r = 0.508, P < 0.0001). The model also achieved superior predictive performance in the survival analysis of cognitive decline, with a higher hazard ratio: 3.662, P < 0.001. INTERPRETATION: The LFGAN4Tau model presents a promising new approach for more accurate detection of individualized tau deposition. Its robustness across tracers and races makes it a potentially reliable diagnostic tool for AD in practice.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/patologia , Tomografia por Emissão de Pósitrons/métodosRESUMO
BACKGROUND: The wide heterogeneity in the appearance of breast lesions and normal breast structures can confuse computerized detection algorithms. Our purpose was therefore to develop a Lesion Highlighter (LH) that can improve the performance of computer-aided detection algorithms for detecting breast cancer on screening mammograms. METHODS: We hypothesized that a Cycle-GAN based Lesion Remover (LR) could act as an LH, which can improve the performance of lesion detection algorithms. We used 10,310 screening mammograms from 4,832 women that included 4,942 recalled lesions (BI-RADS 0) and 5,368 normal results (BI-RADS 1). We divided the dataset into Train:Validate:Test folds with the ratios of 0.64:0.16:0.2. We segmented image patches (400 × 400 pixels) from either lesions marked by MQSA radiologists or normal tissue in mammograms. We trained a Cycle-GAN to develop two GANs, where each GAN transferred the style of one image to another. We refer to the GAN transferring the style of a lesion to normal breast tissue as the LR. We then highlighted the lesion by color-fusing the mammogram after applying the LR to its original. Using ResNet18, DenseNet201, EfficientNetV2, and Vision Transformer as backbone architectures, we trained three deep networks for each architecture, one trained on lesion highlighted mammograms (Highlighted), another trained on the original mammograms (Baseline), and Highlighted and Baseline combined (Combined). We conducted ROC analysis for the three versions of each deep network on the test set. RESULTS: The Combined version of all networks achieved AUCs ranging from 0.963 to 0.974 for identifying the image with a recalled lesion from a normal breast tissue image, which was statistically improved (p-value < 0.001) over their Baseline versions with AUCs that ranged from 0.914 to 0.967. CONCLUSIONS: Our results showed that a Cycle-GAN based LR is effective for enhancing lesion conspicuity and this can improve the performance of a detection algorithm.
Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Mamografia/métodos , Mama/diagnóstico por imagem , Mama/patologia , Algoritmos , Curva ROCRESUMO
Functional magnetic resonance imaging (fMRI) is currently one of the most popular technologies for measuring brain activity in both research and clinical contexts. However, clinical constraints often result in short fMRI scan durations, limiting the diagnostic performance for brain disorders. To address this limitation, we developed an end-to-end frequency-specific dual-attention-based adversarial network (FDAA-Net) to extend the time series of existing blood oxygen level-dependent (BOLD) data, enhancing their diagnostic utility. Our approach leverages the frequency-dependent nature of fMRI signals using variational mode decomposition (VMD), which adaptively tracks brain activity across different frequency bands. We integrated the generative adversarial network (GAN) with a spatial-temporal attention mechanism to fully capture relationships among spatially distributed brain regions and temporally continuous time windows. We also introduced a novel loss function to estimate the upward and downward trends of each frequency component. We validated FDAA-Net on the Human Connectome Project (HCP) database by comparing the original and predicted time series of brain regions in the default mode network (DMN), a key network activated during rest. FDAA-Net effectively overcame linear frequency-specific challenges and outperformed other popular prediction models. Test-retest reliability experiments demonstrated high consistency between the functional connectivity of predicted outcomes and targets. Furthermore, we examined the clinical applicability of FDAA-Net using short-term fMRI data from individuals with autism spectrum disorder (ASD) and major depressive disorder (MDD). The model achieved a maximum predicted sequence length of 40% of the original scan durations. The prolonged time series improved diagnostic performance by 8.0% for ASD and 11.3% for MDD compared with the original sequences. These findings highlight the potential of fMRI time series prediction to enhance diagnostic power of brain disorders in short fMRI scans.
Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Conectoma/métodos , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiologia , Oxigênio/sangue , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Redes Neurais de ComputaçãoRESUMO
OBJECTIVE: Designing physiologically adequate microvascular trees is of crucial relevance for bioengineering functional tissues and organs. Yet, currently available methods are poorly suited to replicate the morphological and topological heterogeneity of real microvascular trees because the parameters used to control tree generation are too simplistic to mimic results of the complex angiogenetic and structural adaptation processes in vivo. METHODS: We propose a method to overcome this limitation by integrating a conditional deep convolutional generative adversarial network (cDCGAN) with a local fractal dimension-oriented constrained constructive optimization (LFDO-CCO) strategy. The cDCGAN learns the patterns of real microvascular bifurcations allowing for their artificial replication. The LFDO-CCO strategy connects the generated bifurcations hierarchically to form microvascular trees with a vessel density corresponding to that observed in healthy tissues. RESULTS: The generated artificial microvascular trees are consistent with real microvascular trees regarding characteristics such as fractal dimension, vascular density, and coefficient of variation of diameter, length, and tortuosity. CONCLUSIONS: These results support the adoption of the proposed strategy for the generation of artificial microvascular trees in tissue engineering as well as for computational modeling and simulations of microcirculatory physiology.
Assuntos
Simulação por Computador , Microcirculação , Microvasos , Microvasos/fisiologia , Microvasos/anatomia & histologia , Humanos , Microcirculação/fisiologia , Modelos Cardiovasculares , FractaisRESUMO
Despite recent advances, the adoption of computer vision methods into clinical and commercial applications has been hampered by the limited availability of accurate ground truth tissue annotations required to train robust supervised models. Generating such ground truth can be accelerated by annotating tissue molecularly using immunofluorescence (IF) staining and mapping these annotations to a post-IF hematoxylin and eosin (H&E) (terminal H&E) stain. Mapping the annotations between IF and terminal H&E increases both the scale and accuracy by which ground truth could be generated. However, discrepancies between terminal H&E and conventional H&E caused by IF tissue processing have limited this implementation. We sought to overcome this challenge and achieve compatibility between these parallel modalities using synthetic image generation, in which a cycle-consistent generative adversarial network was applied to transfer the appearance of conventional H&E such that it emulates terminal H&E. These synthetic emulations allowed us to train a deep learning model for the segmentation of epithelium in terminal H&E that could be validated against the IF staining of epithelial-based cytokeratins. The combination of this segmentation model with the cycle-consistent generative adversarial network stain transfer model enabled performative epithelium segmentation in conventional H&E images. The approach demonstrates that the training of accurate segmentation models for the breadth of conventional H&E data can be executed free of human expert annotations by leveraging molecular annotation strategies such as IF, so long as the tissue impacts of the molecular annotation protocol are captured by generative models that can be deployed prior to the segmentation process.
RESUMO
Predicting disease progression in the initial stage to implement early intervention and treatment can effectively prevent the further deterioration of the condition. Traditional methods for medical data analysis usually fail to perform well because of their incapability for mining the correlation pattern of pathogenies. Therefore, many calculation methods have been excavated from the field of deep learning. In this study, we propose a novel method of influence hypergraph convolutional generative adversarial network (IHGC-GAN) for disease risk prediction. First, a hypergraph is constructed with genes and brain regions as nodes. Then, an influence transmission model is built to portray the associations between nodes and the transmission rule of disease information. Third, an IHGC-GAN method is constructed based on this model. This method innovatively combines the graph convolutional network (GCN) and GAN. The GCN is used as the generator in GAN to spread and update the lesion information of nodes in the brain region-gene hypergraph. Finally, the prediction accuracy of the method is improved by the mutual competition and repeated iteration between generator and discriminator. This method can not only capture the evolutionary pattern from early mild cognitive impairment (EMCI) to late MCI (LMCI) but also extract the pathogenic factors and predict the deterioration risk from EMCI to LMCI. The results on the two datasets indicate that the IHGC-GAN method has better prediction performance than the advanced methods in a variety of indicators.
Assuntos
Disfunção Cognitiva , Encéfalo , Disfunção Cognitiva/genética , Diagnóstico por Imagem , Progressão da Doença , HumanosRESUMO
Phage therapy has become one of the most promising alternatives to antibiotics in the treatment of bacterial diseases, and identifying phage-host interactions (PHIs) helps to understand the possible mechanism through which a phage infects bacteria to guide the development of phage therapy. Compared with wet experiments, computational methods of identifying PHIs can reduce costs and save time and are more effective and economic. In this paper, we propose a PHI prediction method with a generative adversarial network (GAN)-based data augmentation and sequence-based feature fusion (PHIAF). First, PHIAF applies a GAN-based data augmentation module, which generates pseudo PHIs to alleviate the data scarcity. Second, PHIAF fuses the features originated from DNA and protein sequences for better performance. Third, PHIAF utilizes an attention mechanism to consider different contributions of DNA/protein sequence-derived features, which also provides interpretability of the prediction model. In computational experiments, PHIAF outperforms other state-of-the-art PHI prediction methods when evaluated via 5-fold cross-validation (AUC and AUPR are 0.88 and 0.86, respectively). An ablation study shows that data augmentation, feature fusion and an attention mechanism are all beneficial to improve the prediction performance of PHIAF. Additionally, four new PHIs with the highest PHIAF score in the case study were verified by recent literature. In conclusion, PHIAF is a promising tool to accelerate the exploration of phage therapy.
Assuntos
Bacteriófagos , Processamento de Imagem Assistida por Computador , Bacteriófagos/genética , Processamento de Imagem Assistida por Computador/métodosRESUMO
Identifying disease-related microRNAs (miRNAs) assists the understanding of disease pathogenesis. Existing research methods integrate multiple kinds of data related to miRNAs and diseases to infer candidate disease-related miRNAs. The attributes of miRNA nodes including their family and cluster belonging information, however, have not been deeply integrated. Besides, the learning of neighbor topology representation of a pair of miRNA and disease is a challenging issue. We present a disease-related miRNA prediction method by encoding and integrating multiple representations of miRNA and disease nodes learnt from the generative and adversarial perspective. We firstly construct a bilayer heterogeneous network of miRNA and disease nodes, and it contains multiple types of connections among these nodes, which reflect neighbor topology of miRNA-disease pairs, and the attributes of miRNA nodes, especially miRNA-related families and clusters. To learn enhanced pairwise neighbor topology, we propose a generative and adversarial model with a convolutional autoencoder-based generator to encode the low-dimensional topological representation of the miRNA-disease pair and multi-layer convolutional neural network-based discriminator to discriminate between the true and false neighbor topology embeddings. Besides, we design a novel feature category-level attention mechanism to learn the various importance of different features for final adaptive fusion and prediction. Comparison results with five miRNA-disease association methods demonstrated the superior performance of our model and technical contributions in terms of area under the receiver operating characteristic curve and area under the precision-recall curve. The results of recall rates confirmed that our model can find more actual miRNA-disease associations among top-ranked candidates. Case studies on three cancers further proved the ability to detect potential candidate miRNAs.
Assuntos
MicroRNAs , Algoritmos , Biologia Computacional/métodos , Humanos , MicroRNAs/genética , Redes Neurais de Computação , Curva ROCRESUMO
RNA modification, N4-acetylcytidine (ac4C), is enzymatically catalyzed by N-acetyltransferase 10 (NAT10) and plays an essential role across tRNA, rRNA, and mRNA. It influences various cellular functions, including mRNA stability and rRNA biosynthesis. Wet-lab detection of ac4C modification sites is highly resource-intensive and costly. Therefore, various machine learning and deep learning techniques have been employed for computational detection of ac4C modification sites. The known ac4C modification sites are limited for training an accurate and stable prediction model. This study introduces GANSamples-ac4C, a novel framework that synergizes transfer learning and generative adversarial network (GAN) to generate synthetic RNA sequences to train a better ac4C modification site prediction model. Comparative analysis reveals that GANSamples-ac4C outperforms existing state-of-the-art methods in identifying ac4C sites. Moreover, our result underscores the potential of synthetic data in mitigating the issue of data scarcity for biological sequence prediction tasks. Another major advantage of GANSamples-ac4C is its interpretable decision logic. Multi-faceted interpretability analyses detect key regions in the ac4C sequences influencing the discriminating decision between positive and negative samples, a pronounced enrichment of G in this region, and ac4C-associated motifs. These findings may offer novel insights for ac4C research. The GANSamples-ac4C framework and its source code are publicly accessible at http://www.healthinformaticslab.org/supp/.
Assuntos
Citidina/análogos & derivados , Aprendizado de Máquina , RNA , Estabilidade de RNARESUMO
BACKGROUNDS: Cycle-consistent generative adversarial network (CycleGAN) is a deep neural network model that performs image-to-image translations. We generated virtual indigo carmine (IC) chromoendoscopy images of gastric neoplasms using CycleGAN and compared their diagnostic performance with that of white light endoscopy (WLE). METHODS: WLE and IC images of 176 patients with gastric neoplasms who underwent endoscopic resection were obtained. We used 1,633 images (911 WLE and 722 IC) of 146 cases in the training dataset to develop virtual IC images using CycleGAN. The remaining 30 WLE images were translated into 30 virtual IC images using the trained CycleGAN and used for validation. The lesion borders were evaluated by 118 endoscopists from 22 institutions using the 60 paired virtual IC and WLE images. The lesion area concordance rate and successful whole-lesion diagnosis were compared. RESULTS: The lesion area concordance rate based on the pathological diagnosis in virtual IC was lower than in WLE (44.1% vs. 48.5%, p < 0.01). The successful whole-lesion diagnosis was higher in the virtual IC than in WLE images; however, the difference was insignificant (28.2% vs. 26.4%, p = 0.11). Conversely, subgroup analyses revealed a significantly higher diagnosis in virtual IC than in WLE for depressed morphology (41.9% vs. 36.9%, p = 0.02), differentiated histology (27.6% vs. 24.8%, p = 0.02), smaller lesion size (42.3% vs. 38.3%, p = 0.01), and assessed by expert endoscopists (27.3% vs. 23.6%, p = 0.03). CONCLUSIONS: The diagnostic ability of virtual IC was higher for some lesions, but not completely superior to that of WLE. Adjustments are required to improve the imaging system's performance.
Assuntos
Aprendizado Profundo , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/cirurgia , Endoscopia/métodos , Índigo CarmimRESUMO
Two-dimensional Layered double hydroxides (LDHs) are highly used in the biomedical domain due to their biocompatibility, biodegradability, controlled drug loading and release capabilities, and improved cellular permeability. The interaction of LDHs with biological systems could facilitate targeted drug delivery and make them an attractive option for various biomedical applications. Rheumatoid Arthritis (RA) requires targeted drug delivery for optimum therapeutic outcomes. In this study, stacked double hydroxide nanocomposites with dextran sulphate modification (LDH-DS) were developed while exhibiting both targeting and pH-sensitivity for rheumatological conditions. This research examines the loading, release kinetics, and efficiency of the therapeutics of interest in the LDH-based drug delivery system. The mean size of LDH-DS particles (300.1 ± 8.12 nm) is -12.11 ± 0.4 mV. The encapsulation efficiency was 48.52%, and the loading efficacy was 16.81%. In vitro release tests indicate that the drug's discharge is modified more rapidly in PBS at pH 5.4 compared to pH 5.6, which later reached 7.3, showing the case sensitivity to pH. A generative adversarial network (GAN) is used to analyze the drug delivery system in rheumatology. The GAN model achieved high accuracy and classification rates of 99.3% and 99.0%, respectively, and a validity of 99.5%. The second and third administrations resulted in a significant change with p-values of 0.001 and 0.05, respectively. This investigation unequivocally demonstrated that LDH functions as a biocompatible drug delivery matrix, significantly improving delivery effectiveness.
Assuntos
Nanocompostos , Reumatologia , Hidróxidos/química , Sistemas de Liberação de Medicamentos/métodos , Nanocompostos/química , NanotecnologiaRESUMO
The rapid growth of cloud computing has led to the widespread adoption of heterogeneous virtualized environments, offering scalable and flexible resources to meet diverse user demands. However, the increasing complexity and variability in workload characteristics pose significant challenges in optimizing energy consumption. Many scheduling algorithms have been suggested to address this. Therefore, a self-attention-based progressive generative adversarial network optimized with Dwarf Mongoose algorithm adopted Energy and Deadline Aware Scheduling in heterogeneous virtualized cloud computing (SAPGAN-DMA-DAS-HVCC) is proposed in this paper. Here, a self-attention based progressive generative adversarial network (SAPGAN) is proposed to schedule activities in a cloud environment with an objective function of makespan and energy consumption. Then Dwarf Mongoose algorithm is proposed to optimize the weight parameters of SAPGAN. Outcome of proposed approach SAPGAN-DMA-DAS-HVCC contains 32.77%, 34.83% and 35.76% higher right skewed makespan, 31.52%, 33.28% and 29.14% lower cost when analysed to the existing models, like task scheduling in heterogeneous cloud environment utilizing mean grey wolf optimization approach, energy and performance-efficient task scheduling in heterogeneous virtualized Energy and Performance Efficient Task Scheduling Algorithm, energy and make span aware scheduling of deadline sensitive tasks on the cloud environment, respectively.
RESUMO
Due to the massive growth in Internet of Things (IoT) devices, it is necessary to properly identify, authorize, and protect against attacks the devices connected to the particular network. In this manuscript, IoT Device Type Identification based on Variational Auto Encoder Wasserstein Generative Adversarial Network optimized with Pelican Optimization Algorithm (IoT-DTI-VAWGAN-POA) is proposed for Prolonging IoT Security. The proposed technique comprises three phases, such as data collection, feature extraction, and IoT device type detection. Initially, real network traffic dataset is gathered by distinct IoT device types, like baby monitor, security camera, etc. For feature extraction phase, the network traffic feature vector comprises packet sizes, Mean, Variance, Kurtosis derived by Adaptive and concise empirical wavelet transforms. Then, the extracting features are supplied to VAWGAN is used to identify the IoT devices as known or unknown. Then Pelican Optimization Algorithm (POA) is considered to optimize the weight factors of VAWGAN for better IoT device type identification. The proposed IoT-DTI-VAWGAN-POA method is implemented in Python and proficiency is examined under the performance metrics, like accuracy, precision, f-measure, sensitivity, Error rate, computational complexity, and RoC. It provides 33.41%, 32.01%, and 31.65% higher accuracy, and 44.78%, 43.24%, and 48.98% lower error rate compared to the existing methods.
Assuntos
Algoritmos , Segurança Computacional , Internet das Coisas , Redes Neurais de Computação , HumanosRESUMO
The integration of IoT and cloud services enhances communication and quality of life, while predictive analytics powered by AI and deep learning enables proactive healthcare. Deep learning, a subset of machine learning, efficiently analyzes vast datasets, offering rapid disease prediction. Leveraging recurrent neural networks on electronic health records improves accuracy for timely intervention and preventative care. In this manuscript, Internet of Things and Cloud Computing-based Disease Diagnosis using Optimized Improved Generative Adversarial Network in Smart Healthcare System (IOT-CC-DD-OICAN-SHS) is proposed. Initially, an Internet of Things (IoT) device collects diabetes, chronic kidney disease, and heart disease data from patients via wearable devices and intelligent sensors and then saves the patient's large data in the cloud. These cloud data are pre-processed to turn them into a suitable format. The pre-processed dataset is sent into the Improved Generative Adversarial Network (IGAN), which reliably classifies the data as disease-free or diseased. Then, IGAN was optimized using the Flamingo Search optimization algorithm (FSOA). The proposed technique is implemented in Java using Cloud Sim and examined utilizing several performance metrics. The proposed method attains greater accuracy and specificity with lower execution time compared to existing methodologies, IoT-C-SHMS-HDP-DL, PPEDL-MDTC and CSO-CLSTM-DD-SHS respectively.