Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(14): 7824-7830, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32193349

RESUMO

Mounting experimental evidence suggests a role for the spatial organization of chromatin in crucial processes of the cell nucleus such as transcription regulation. Chromosome conformation capture techniques allow us to characterize chromatin structure by mapping contacts between chromosomal loci on a genome-wide scale. The most widespread modality is to measure contact frequencies averaged over a population of cells. Single-cell variants exist, but suffer from low contact numbers and have not yet gained the same resolution as population methods. While intriguing biological insights have already been garnered from ensemble-averaged data, information about three-dimensional (3D) genome organization in the underlying individual cells remains largely obscured because the contact maps show only an average over a huge population of cells. Moreover, computational methods for structure modeling of chromatin have mostly focused on fitting a single consensus structure, thereby ignoring any cell-to-cell variability in the model itself. Here, we propose a fully Bayesian method to infer ensembles of chromatin structures and to determine the optimal number of states in a principled, objective way. We illustrate our approach on simulated data and compute multistate models of chromatin from chromosome conformation capture carbon copy (5C) data. Comparison with independent data suggests that the inferred ensembles represent the underlying sample population faithfully. Harnessing the rich information contained in multistate models, we investigate cell-to-cell variability of chromatin organization into topologically associating domains, thus highlighting the ability of our approach to deliver insights into chromatin organization of great biological relevance.


Assuntos
Teorema de Bayes , Cromatina/ultraestrutura , Cromossomos/ultraestrutura , Genoma Humano/genética , Cromatina/genética , Cromossomos/genética , Humanos , Conformação Molecular
2.
Proc Natl Acad Sci U S A ; 113(12): E1663-72, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26951677

RESUMO

Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm the presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization.


Assuntos
Cromossomos/ultraestrutura , Imageamento Tridimensional/métodos , Metagenômica/métodos , Animais , Evolução Biológica , Linhagem Celular , Centrômero/ultraestrutura , Cromatina/genética , Cromatina/ultraestrutura , Posicionamento Cromossômico , Cromossomos/genética , Cromossomos Humanos/genética , Cromossomos Humanos/ultraestrutura , Diploide , Genoma Humano , Heterocromatina/ultraestrutura , Humanos , Hibridização in Situ Fluorescente , Funções Verossimilhança , Linfócitos/ultraestrutura , Primatas/genética , Análise de Célula Única , Processos Estocásticos , Tomografia por Raios X/métodos
3.
Structure ; 30(1): 24-36, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34963059

RESUMO

New technological advances in integrated imaging, sequencing-based assays, and computational analysis have revolutionized our view of genomes in terms of their structure and dynamics in space and time. These advances promise a deeper understanding of genome functions and mechanistic insights into how the nucleus is spatially organized and functions. These wide arrays of complementary data provide an opportunity to produce quantitative integrative models of nuclear organization. In this article, we highlight recent key developments and discuss the outlook for these fields.


Assuntos
Núcleo Celular/genética , Cromossomos Humanos/química , Núcleo Celular/química , Genoma Humano , Humanos , Modelos Moleculares , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA