Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 788
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Clin Infect Dis ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361017

RESUMO

BACKGROUND: The advent of short-course, curative treatment with direct-acting antivirals (DAA) has given promise for the global elimination of hepatitis C virus (HCV) infections by 2030. Virological failure occurs in 2%-12% of persons receiving curative DAA treatment and may be presaged by pre-existing polymorphisms or result from selection of drug resistant variants during therapy. METHODS: We conducted a systematic review to assess the prevalence of HCV resistance associated substitutions (RAS) among individuals with chronic hepatitis C infection who had virological failure following initial or re-treatment with pan-genotypic DAA regimens. We included 34 and 22 studies assessing RAS in people with virological failure published between January 2014 and July 2023. Pooled RAS prevalence was estimated using random-effects meta-analysis. RESULTS: The pooled prevalence of RAS in people with virological failure following initial DAA treatment was 78.0% (95% confidence interval [CI]: 62.0-92.0) for sofosbuvir/velpatasvir, 81.0% (95% CI: 67.0-93.0) for sofosbuvir/daclatasvir, and 79.0% (95% CI: 70.0-87.0) for glecaprevir/pibrentasvir, with a high prevalence of resistance to the NS5A inhibitors. Among those with virological failure following re-treatment regimens, RAS were present in 93.0% (95% CI: 83.0-99.0) for sofosbuvir/velpatasvir/voxilepravir and in 100% (95% CI: 92.0-100) for glecaprevir/pibrentasvir, with resistance driven by RAS to NS5A inhibitors. DISCUSSION: At least 1 RAS is present in a high proportion of the few individuals with virological failure following initial or re-treatment with pan-genotypic DAA regimens. There is a need for ongoing surveillance for DAA-associated resistance, to assess risk factors for their development and clinical impact to inform best practice strategies for re-treatment.

2.
Mol Genet Genomics ; 299(1): 12, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381232

RESUMO

The bacterium Burkholderia pseudomallei is typically resistant to gentamicin but rare susceptible strains have been isolated in certain regions, such as Thailand and Sarawak, Malaysia. Recently, several amino acid substitutions have been reported in the amrB gene (a subunit of the amrAB-oprA efflux pump gene) that confer gentamicin susceptibility. However, information regarding the mechanism of the substitutions conferring the susceptibility is lacking. To understand the mechanism of amino acid substitution that confers susceptibility, this study identifies the corresponding mutations in clinical gentamicin-susceptible B. pseudomallei isolates from the Malaysian Borneo (n = 46; Sarawak: 5; Sabah: 41). Three phenotypically confirmed gentamicin-susceptible (GENs) strains from Sarawak, Malaysia, were screened for mutations in the amrB gene using gene sequences of gentamicin-resistant (GENr) strains (QEH 56, QEH 57, QEH20, and QEH26) and publicly available sequences (AF072887.1 and BX571965.1) as the comparator. The effect of missense mutations on the stability of the AmrB protein was determined by calculating the average energy change value (ΔΔG). Mutagenesis analysis identified a polymorphism-associated mutation, g.1056 T > G, a possible susceptible-associated in-frame deletion, Delta V412, and a previously confirmed susceptible-associated amino acid substitution, T368R, in each of the three GENs isolates. The contribution of Delta V412 needs further confirmation by experimental mutagenesis analysis. The mechanism by which T368R confers susceptibility, as elucidated by in silico mutagenesis analysis using AmrB-modeled protein structures, is proposed to be due to the location of T368R in a highly conserved region, rather than destabilization of the AmrB protein structure.

3.
Fungal Genet Biol ; 172: 103891, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621582

RESUMO

Candida glabrata (Nakaseomyces glabrata) is an emergent and opportunistic fungal pathogen that colonizes and persists in different niches within its human host. In this work, we studied five clinical isolates from one patient (P7), that have a clonal origin, and all of which come from blood cultures except one, P7-3, obtained from a urine culture. We found phenotypic variation such as sensitivity to high temperature, oxidative stress, susceptibility to two classes of antifungal agents, and cell wall porosity. Only isolate P7-3 is highly resistant to the echinocandin caspofungin while the other four isolates from P7 are sensitive. However, this same isolate P7-3, is the only one that displays susceptibility to fluconazole (FLC), while the rest of the isolates are resistant to this antifungal. We sequenced the PDR1 gene which encodes a transcription factor required to induce the expression of several genes involved in the resistance to FLC and found that all the isolates encode for the same Pdr1 amino acid sequence except for the last isolate P7-5, which contains a single amino acid change, G1099C in the putative Pdr1 transactivation domain. Consistent with the resistance to FLC, we found that the CDR1 gene, encoding the main drug efflux pump in C. glabrata, is highly overexpressed in the FLC-resistant isolates, but not in the FLC-sensitive P7-3. In addition, the resistance to FLC observed in these isolates is dependent on the PDR1 gene. Additionally, we found that all P7 isolates have a different proportion of cell wall carbohydrates compared to our standard strains CBS138 and BG14. In P7 isolates, mannan is the most abundant cell wall component, whereas ß-glucan is the most abundant component in our standard strains. Consistently, all P7 isolates have a relatively low cell wall porosity compared to our standard strains. These data show phenotypic and genotypic variability between clonal isolates from different niches within a single host, suggesting microevolution of C. glabrata during an infection.


Assuntos
Antifúngicos , Candida glabrata , Farmacorresistência Fúngica , Proteínas Fúngicas , Testes de Sensibilidade Microbiana , Candida glabrata/genética , Candida glabrata/efeitos dos fármacos , Antifúngicos/farmacologia , Humanos , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fluconazol/farmacologia , Parede Celular/genética , Parede Celular/efeitos dos fármacos , Candidíase/microbiologia , Caspofungina/farmacologia , Evolução Molecular , Estresse Oxidativo/genética , Equinocandinas/farmacologia , Fatores de Transcrição/genética
4.
New Phytol ; 242(3): 1348-1362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38407427

RESUMO

Asexual organisms often differ in their geographic distributions from their sexual relatives. This phenomenon, termed geographic parthenogenesis, has long been known, but the underlying factors behind its diverse patterns have been under dispute. Particularly problematic is an association between asexuality and polyploidy in most taxa. Here, we present a new system of geographic parthenogenesis on the tetraploid level, promising new insights into this complex topic. We used flow cytometric seed screen and microsatellite genotyping to characterise the patterns of distribution of sexuals and apomicts and genotypic distributions in Rubus ser. Glandulosi across its range. Ecological modelling and local-scale vegetation and soil analyses were used to test for niche differentiation between the reproductive groups. Apomicts were detected only in North-western Europe, sexuals in the rest of the range in Europe and West Asia, with a sharp borderline stretched across Central Europe. Despite that, we found no significant differences in ecological niches. Genotypic richness distributions suggested independence of the reproductive groups and a secondary contact. We argue that unless a niche differentiation (resulting from polyploidy and/or hybridity) evolves, the main factors behind the patterns of geographic parthenogenesis in plants are phylogeographic history and neutral microevolutionary processes, such as clonal turnover.


Assuntos
Apomixia , Rubus , Partenogênese/genética , Ploidias , Poliploidia
5.
Mol Ecol ; : e17522, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215462

RESUMO

Gene expression can be highly plastic in response to environmental variation. However, we know little about how expression plasticity is shaped by natural selection and evolves in wild and domesticated species. We used genotypic selection analysis to characterize selection on drought-induced plasticity of over 7,500 leaf transcripts of 118 rice accessions (genotypes) from different environmental conditions grown in a field experiment. Gene expression plasticity was neutral for most gradually plastic transcripts, but transcripts with discrete patterns of expression showed stronger selection on expression plasticity. Whether plasticity was adaptive and co-gradient or maladaptive and counter-gradient varied among varietal groups. No transcripts that experienced selection for plasticity across environments showed selection against plasticity within environments, indicating a lack of evidence for costs of adaptive plasticity that may constrain its evolution. Selection on expression plasticity was influenced by degree of plasticity, transcript length and gene body methylation. We observed positive selection on plasticity of co-expression modules containing transcripts involved in photosynthesis, translation and responsiveness to abiotic stress. Taken together, these results indicate that patterns of selection on expression plasticity were context-dependent and likely associated with environmental conditions of varietal groups, but that the evolution of adaptive plasticity would likely not be constrained by opposing patterns of selection on plasticity within compared to across environments. These results offer a genome-wide view of patterns of selection and ecological constraints on gene expression plasticity and provide insights into the interplay between plastic and evolutionary responses to drought at the molecular level.

6.
Plant Cell Environ ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101376

RESUMO

Ozone (O3) is one of the most harmful and widespread air pollutants, affecting crop yield and plant health worldwide. There is evidence that O3 reduces the major limiting factor of photosynthesis, namely CO2 mesophyll conductance (gm), but there is little quantitative information of O3-caused changes in key leaf anatomical traits and their impact on gm. We exposed two O3-responsive clones of the economically important tree species Populus × canadensis Moench to 120 ppb O3 for 21 days. An anatomical diffusion model within the leaf was used to analyse the entire CO2 diffusion pathway from substomatal cavities to carboxylation sites and determine the importance of each structural and subcellular component as a limiting factor. gm decreased substantially under O3 and was found to be the most important limitation of photosynthesis. This decrease was mostly driven by an increased cell wall thickness and length of subcellular diffusion pathway caused by altered interchloroplast spacing and chloroplast positioning. By contrast, the prominent leaf integrative trait leaf dry mass per area was neither affected nor related to gm under O3. The observed relationship between gm and anatomy, however, was clone-dependent, suggesting that mechanisms regulating gm may differ considerably between closely related plant lines. Our results confirm the need for further studies on factors constraining gm under stress conditions.

7.
J Exp Bot ; 75(11): 3412-3430, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38400803

RESUMO

There is a need to generate improved crop varieties adapted to the ongoing changes in the climate. We studied durum wheat canopy and central metabolism of six different photosynthetic organs in two yield-contrasting varieties. The aim was to understand the mechanisms associated with the water stress response and yield performance. Water stress strongly reduced grain yield, plant biomass, and leaf photosynthesis, and down-regulated C/N-metabolism genes and key protein levels, which occurred mainly in leaf blades. By contrast, higher yield was associated with high ear dry weight and lower biomass and ears per area, highlighting the advantage of reduced tillering and the consequent improvement in sink strength, which promoted C/N metabolism at the whole plant level. An improved C metabolism in blades and ear bracts and N assimilation in all photosynthetic organs facilitated C/N remobilization to the grain and promoted yield. Therefore, we propose that further yield gains in Mediterranean conditions could be achieved by considering the source-sink dynamics and the contribution of non-foliar organs, and particularly N assimilation and remobilization during the late growth stages. We highlight the power of linking phenotyping with plant metabolism to identify novel traits at the whole plant level to support breeding programmes.


Assuntos
Grão Comestível , Nitrogênio , Fotossíntese , Triticum , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/fisiologia , Nitrogênio/metabolismo , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Água/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Biomassa
8.
Am J Med Genet A ; : e63843, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39205479

RESUMO

Pathogenic variants in the cyclin-dependent kinase-like 5 (CDKL5) gene are associated with CDKL5 deficiency disorder (CDD), a severe X-linked developmental and epileptic encephalopathy. Deletions affecting the 5' untranslated region (UTR) of CDKL5, which involve the noncoding exon 1 and/or alternatively spliced first exons (exons 1a-e), are uncommonly reported. We describe genetic and phenotypic characteristics for 15 individuals with CDKL5 partial gene deletions affecting the 5' UTR. All individuals presented characteristic features of CDD, including medically refractory infantile-onset epilepsy, global developmental delay, and visual impairment. We performed RNA sequencing on fibroblast samples from three individuals with small deletions involving exons 1 and/or 1a/1b only. Results demonstrated reduced CDKL5 mRNA expression with no evidence of expression from alternatively spliced first exons. Our study broadens the genotypic spectrum for CDD by adding to existing evidence that deletions affecting the 5' UTR of the CDKL5 gene are associated with the disorder. We propose that smaller 5' UTR deletions may require additional molecular testing approaches such as RNA sequencing to determine pathogenicity.

9.
Arch Microbiol ; 206(10): 409, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302440

RESUMO

The widespread spread of bacterial antimicrobial resistance (AMR) and multidrug-resistant bacteria poses a significant threat to global public health. Traditional methods for detecting bacterial AMR are simple, reproducible, and intuitive, requiring long time incubation and high labor intensity. To quickly identify and detect bacterial AMR is urgent for clinical treatment to reduce mortality rate, and many new methods and technologies were required to be developed. This review summarizes the current phenotypic and genotypic detection methods for bacterial AMR. Phenotypic detection methods mainly include antimicrobial susceptibility tests, while genotypic detection methods have higher sensitivity and specificity and can detect known or even unknown drug resistance genes. However, most of the current tests are either genotypic or phenotypic and rarely combined. Combining the advantages of phenotypic and genotypic methods, combined with the joint application of multiple rapid detection methods may be the trend for future AMR testing. Driven by rapid diagnostic technology, big data analysis, and artificial intelligence, detection methods of bacterial AMR are expected to constantly develop and innovate. Adopting rational detection methods and scientific data analysis can better address the challenges of bacterial AMR and ensure human health and social well-being.


Assuntos
Antibacterianos , Bactérias , Farmacorresistência Bacteriana , Genótipo , Testes de Sensibilidade Microbiana , Saúde Única , Fenótipo , Humanos , Antibacterianos/farmacologia , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Farmacorresistência Bacteriana/genética , Infecções Bacterianas/microbiologia , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/genética
10.
Ann Bot ; 134(1): 179-190, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38642143

RESUMO

BACKGROUND AND AIMS: Plants have adapted to acquire phosphorus (P) primarily through advantageous root morphologies, responsive physiological pathways and associations with mycorrhizal fungi. Yet, to date, little information exists on how variation in arbuscular mycorrhizal (AM) colonization is coordinated with root morphological and physiological traits to enhance P acquisition. METHODS: Thirteen root functional traits associated with P acquisition were characterized at full bloom stage in pot cultures under low soil P availability conditions for 13 soybean genotypes contrasting in AM colonization. KEY RESULTS: Significant variation in root functional traits was observed in response to low P stress among the 13 tested soybean genotypes contrasting in AM colonization. Genotypes with low AM colonization exhibited greater root proliferation but with less advantageous root physiological characteristics for P acquisition. In contrast, genotypes with high AM colonization exhibited less root growth but higher phosphatase activities and carboxylate content in the rhizosheath. Root dry weights, and contents of carbon and P were positively correlated with root morphological traits of different root orders and whole root systems, and were negatively correlated with AM colonization of fine roots and whole root systems, as well as rhizosheath phosphatase activities and carboxylate contents. These results taken in combination with a significant positive correlation between plant P content and root morphological traits indicate that root morphological traits play a primary role in soybean P acquisition. CONCLUSIONS: The results suggest that efficient P acquisition involves tradeoffs among carbon allocation to root proliferation, mycorrhizal symbiosis or P-mobilizing exudation. Complementarity and complexity in the selection of P acquisition strategies was notable among soybean genotypes contrasting in AM colonization, which is closely related to plant C budgeting.


Assuntos
Genótipo , Glycine max , Micorrizas , Fósforo , Raízes de Plantas , Glycine max/microbiologia , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Glycine max/fisiologia , Glycine max/anatomia & histologia , Micorrizas/fisiologia , Fósforo/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Solo/química , Carbono/metabolismo
11.
Am J Bot ; 111(1): e16270, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38156528

RESUMO

PREMISE: Changes in habitat suitability due to climate change are causing range shifts, with new habitat potentially available at cold range edges. We must predict these range shifts, but forecasters have limited knowledge of how genetic differences in plant physiological tolerances influence range shifts. Here, we focus on a major determinant of species ranges-physiological tolerance to extreme cold-to ask how warming over recent decades and genetic variation shape expansion across complex landscapes. METHODS: We examined how genotypes vary in maximum cold tolerance from 9 years of cold hardiness data across 18 genotypes from 13 sites, using winegrapes (Vitis vinifera subsp. vinifera) as a case study. Combining a Bayesian hierarchical dose-response model with gridded climate data, we then project changes in climatic suitability near winegrapes' current cold range-edge between 1949 and 2016. RESULTS: Plants increased maximum cold hardiness non-linearly with decreasing air temperature (maximum cold hardiness: -23.6°C), but with substantial (by 2°C) variation across genotypes. Our results suggest, since the 1980s, decreasing freeze injury risk has made conditions more favorable for all genotypes at the cold range-edge, but conditions remained more favorable for more cold hardy genotypes and in warmer areas. There was substantial spatial variation in habitat suitability, with the majority of suitably warm habitat located in a narrow north-south oriented strip. CONCLUSIONS: We highlight the importance of genotypic differences in physiological tolerances when assessing range shift potential with climate change. Habitat improvements were unevenly distributed over the spatially complex landscape, though, emphasizing the importance of dispersal in range expansion.


Assuntos
Temperatura Baixa , Vitis , Teorema de Bayes , Temperatura , Congelamento , Ecossistema , Mudança Climática , Genótipo , Vitis/genética
12.
Cost Eff Resour Alloc ; 22(1): 11, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321475

RESUMO

INTRODUCTION: The treatment of hepatitis C has entered the pan-genotypic era, but the effectiveness is not good for the genotype 3b patients who have a large proportion in China. The guidelines for hepatitis C recommend the use of gene-specific regimens when the regional 3b prevalence rate greater than 5%. This study is to explore rationality of this proportion and the cost-effectiveness to implement pan-genotypic regimens in China. METHODS: A decision Markov model was developed from the health system perspective to evaluate the effectiveness and cost-effectiveness between pan-genotypic and gene-specific treatment regimens for hepatitis C patients. Additionally, we set a regional genotype 3b patient proportion of 0-100% to explore at which proportion it is necessary to perform genotype identification and typing therapy on patients. Model parameters were derived from published literature and public databases. Effectiveness was measured by cured patient numbers, newly diagnosed cases of decompensated cirrhosis, hepatocellular carcinoma, need for liver transplantation, and quality-adjusted life years (QALYs). Cost-effectiveness outcomes included costs and the incremental cost-effectiveness ratio (ICER). The 1-3 times 2022 Chinese per capita gross domestic product was used as the willingness-to-pay threshold. One-way and probabilistic sensitivity analyses were performed to assess the uncertainty of the model parameters. RESULTS: Compared with gene-specific regimens, pan-genotypic regimens resulted in an additional 0.13 QALYs and an incremental cost of $165, the ICER was $1,268/QALY. From the view of efficacy, the pan-genotypic regimens cured 5,868 more people per 100,000 patients than gene-specific regimens, avoiding 86.5% of DC cases, 64.6% of HCC cases, and 78.2% of liver transplant needs. Identifying 3b patients before treatment was definitely cost-effectiveness when their prevalence was 12% or higher. The results remained robust in sensitivity analyses. CONCLUSIONS: In China, the prioritized recommendation of pan-genotypic therapeutics proves to be both cost-effective and efficacious. But, in regions where the prevalence of genotype 3b exceeds 12%, it is necessary to identify them to provision of more suitable therapies.

13.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38925648

RESUMO

AIMS: Urinary tract infections are the most common hospital-acquired infection, 80% of which are associated with catheterization. Diagnostic methods may influence the reported identities of these pathogens, and phenotypic testing under laboratory conditions may not reflect infection phenotypes. This study aimed to evaluate the efficacy of diagnostic methods and whether medium composition alters phenotypes by characterizing catheter-associated urinary tract infection isolates from a UK hospital. METHODS AND RESULTS: We compared five bacterial identification methods, including biochemical testing, matrix-assisted laser desorption/ionization biotyping, and genome sequencing, finding differences in genus- or species-level identifications. Antibiotic susceptibility comparisons between phenotypic assays and genomic predictions showed high agreement only in multidrug-resistant strains. To determine whether growth rate and biofilm formation were affected by medium composition, strains were grown in both planktonic and biofilm states. Low planktonic growth and significant biofilm formation were observed in artificial urine compared to rich laboratory media, underscoring the importance of assay design. CONCLUSIONS: This study highlights the risks of relying on a single diagnostic method for species identification, advocating for whole-genome sequencing for accuracy. It emphasizes the continued importance of phenotypic methods in understanding antibiotic resistance in clinical settings and the need for characterization conditions that mirror those encountered by pathogens in the body.


Assuntos
Bactérias , Biofilmes , Infecções Relacionadas a Cateter , Fenótipo , Infecções Urinárias , Infecções Urinárias/microbiologia , Humanos , Infecções Relacionadas a Cateter/microbiologia , Biofilmes/crescimento & desenvolvimento , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/efeitos dos fármacos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Genótipo , Sequenciamento Completo do Genoma , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
J Endocrinol Invest ; 47(1): 67-77, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37270749

RESUMO

PURPOSE: To evaluate the genotypic and phenotypic relationship in a large cohort of OI patients and to compare the differences between eastern and western OI cohorts. METHODS: A total of 671 OI patients were included. Pathogenic mutations were identified, phenotypic information was collected, and relationships between genotypes and phenotypes were analyzed. Literature about western OI cohorts was searched, and differences were compared between eastern and western OI cohorts. RESULTS: A total of 560 OI patients were identified as carrying OI pathogenic mutations, and the positive detection rate of disease-causing gene mutations was 83.5%. Mutations in 15 OI candidate genes were identified, with COL1A1 (n = 308, 55%) and COL1A2 (n = 164, 29%) being the most common mutations, and SERPINF1 and WNT1 being the most common biallelic variants. Of the 414 probands, 48.8, 16.9, 29.2 and 5.1% had OI types I, III, IV and V, respectively. Peripheral fracture was the most common phenotype (96.6%), and femurs (34.7%) were most commonly affected. Vertebral compression fracture was observed in 43.5% of OI patients. Biallelic or COL1A2 mutation led to more bone deformities and poorer mobility than COL1A1 mutation (all P < 0.05). Glycine substitution of COL1A1 or COL1A2 or biallelic variants led to more severe phenotypes than haploinsufficiency of collagen type I α chains, which induced the mildest phenotypes. Although the gene mutation spectrum varied among countries, the fracture incidence was similar between eastern and western OI cohorts. CONCLUSION: The findings are valuable for accurate diagnosis and treatment of OI, mechanism exploration and prognosis judgment. Genetic profiles of OI may vary among races, but the mechanism needs to be explored.


Assuntos
Doenças Ósseas Metabólicas , Fraturas por Compressão , Osteogênese Imperfeita , Fraturas da Coluna Vertebral , Humanos , Osteogênese Imperfeita/genética , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo I/genética , Genótipo , Fenótipo , Mutação
15.
BMC Pediatr ; 24(1): 72, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254053

RESUMO

Color vision deficiency is a common X-linked genetic disorder affecting the day-to-day lives of individuals, in which school-aged children's academic performance can be negatively affected. The aim of this study was to evaluate the prevalence and genotypic frequency of congenital color vision defects (CVD), among primary schoolchildren in Adama, Ethiopia. A school-based cross-sectional study design was used. Students were purposively selected based on their ethnicity but were randomly selected from their sections, resulting in a final sample size estimated at 846 schoolchildren who had received informed consent from their families. Data was gathered using the Ishihara color vision test, 38-plate edition. The result of the study revealed that the total prevalence of CVD was much higher (5.6%) among the male children than that of the females, which was only about 1.79%. The prevalence rates of CVD among the targeted ethnic groups were found to be the highest among Amhara (7.45%) > Oromo (5.00%) > Gurage (2.13%) children, respectively, in descending order. 62.76% of the study subjects were homozygous dominant (AA), followed by those with a heterozygous genotype (Aa) (32.51%), and the remaining 4.73% had recessive (aa) genes.


Assuntos
Doenças Cardiovasculares , Defeitos da Visão Cromática , Criança , Feminino , Humanos , Masculino , Defeitos da Visão Cromática/epidemiologia , Defeitos da Visão Cromática/genética , Etiópia/epidemiologia , Estudos Transversais , Prevalência , Genótipo
16.
Orthod Craniofac Res ; 27(2): 237-243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37642979

RESUMO

INTRODUCTION: Cranio-cervical anomalies are significant complications of osteogenesis imperfecta (OI), a rare bone fragility disorder that is usually caused by mutations in collagen type I encoding genes. OBJECTIVE: To assess cranio-cervical anomalies and associated clinical findings in patients with moderate-to-severe OI using 3D cone beam computed tomography (CBCT) scans. METHODS: Cross-sectional analysis of CBCT scans in 52 individuals with OI (age 10-37 years; 32 females) and 40 healthy controls (age 10-32 years; 26 females). Individuals with a diagnosis of OI type III (severe, n = 11), type IV (moderate, n = 33) and non-collagen OI (n = 8) were recruited through the Brittle Bone Disorders Consortium. Controls were recruited through the orthodontic clinic of the University of Missouri-Kansas City (UMKC). RESULTS: OI and control groups were similar in mean age (OI: 18.4 [SD: 7.2] years, controls: 18.1 [SD: 6.3] years). The cranial base angle was increased in the OI group (OI: mean 148.6° [SD: 19.3], controls: mean 130.4° [SD: 5.7], P = .001), indicating a flatter cranial base. Protrusion of the odontoid process into the foramen magnum (n = 7, 14%) and abnormally located odontoid process (n = 19, 37%) were observed in the OI group but not in controls. Low stature, expressed as height z-score (P = .01), presence of DI (P = .04) and being male (P = .04) were strong predictors of platybasia, whereas height z-score (P = .049) alone was found as positive predictor for basilar impression as per the Chamberlain measurement. CONCLUSION: The severity of the phenotype in OI, as expressed by the height z-score, correlates with the severity of cranial base anomalies such as platybasia and basilar impression in moderate-to-severe OI. Screening for cranial base anomalies is advisable in individuals with moderate-to-severe OI, with special regards to the individuals with a shorter stature and DI.


Assuntos
Osteogênese Imperfeita , Platibasia , Feminino , Humanos , Masculino , Adolescente , Criança , Adulto Jovem , Adulto , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/complicações , Platibasia/complicações , Estudos Transversais , Genótipo , Fenótipo , Mutação , Colágeno Tipo I/genética
17.
Parasitol Res ; 123(4): 183, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622363

RESUMO

Dientamoeba fragilis and Blastocystis sp. are single-celled protozoan parasites of humans and animals. Although they are found in the intestines of healthy hosts, the pathogenicity of them is still unclear. To date, there is no report on D. fragilis and only two studies (without subtyping) on the occurrence of Blastocystis sp. in Musca domestica. In this study, fly samples were collected from livestock farms and their surroundings in the Kirsehir province (Central Anatolia Region) of Türkiye from May to August 2023. A total of 150 microscopically identified M. domestica samples were analyzed for the detection of D. fragilis and Blastocystis sp. molecularly. The overall prevalence of Blastocystis sp. and D. fragilis in M. domestica was determined to be 3.3% (5/150) and 8.0% (12/150), respectively. The SSU rRNA gene sequences of the isolates indicated genotype 1 of D. fragilis. Eleven isolates were identical and represented a single isolate (KAU-Dfrag1). BLAST analysis of KAU-Dfrag1 indicated identity with the isolates reported from humans, cattle, sheep, and budgerigars. The other isolate (KAU-Dfrag2) was polymorphic at two nucleotides from KAU-Dfrag1 and three nucleotides from known genotypes from GenBank and represented a variant of genotype 1. The Blastocystis sp. isolates were found to be identical and represent a single genotype (KAU-Blast1). BLAST analysis revealed that the KAU-Blast1 genotype belonged to the potentially zoonotic subtype 5 (ST5) and exhibited the highest genetic identity (ranging from 99.4 to 99.6%) with pigs, cattle, and sheep from different countries. Our study provides the first data on the molecular prevalence, epidemiology, and genotypic characterization of D. fragilis and Blastocystis sp. in M. domestica.


Assuntos
Infecções por Blastocystis , Blastocystis , Moscas Domésticas , Muscidae , Humanos , Animais , Ovinos , Bovinos , Suínos , Dientamoeba , Infecções por Blastocystis/epidemiologia , Infecções por Blastocystis/veterinária , Infecções por Blastocystis/parasitologia , Genótipo , Fezes/parasitologia , Prevalência , Nucleotídeos
18.
Plant Dis ; 108(8): 2454-2461, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38537139

RESUMO

Wheat yellow (stripe) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat worldwide. Pst populations are composed of multiple genetic groups, each carrying one or more races characterized by different avirulence/virulence combinations. Since the severe epidemics in 2017, yellow rust has become the most economically important wheat foliar disease in Uruguay. A set of 124 Pst isolates collected from wheat fields in Uruguay between 2017 and 2021 were characterized phenotypically, and 27 of those isolates were subsequently investigated in-depth by additional molecular genotyping and race phenotyping analyses. Three genetic groups were identified, PstS7, PstS10, and PstS13, with the latter being the most prevalent. Two races previously reported in Europe, Warrior (PstS7) and Benchmark (PstS10), were detected in four and two isolates, respectively. A third race, known as Triticale2015 (PstS13), that was first detected in Europe in 2015 and in Argentina in 2017 was detected at several locations. Additional virulence to Yr3, Yr17, Yr25, Yr27, or Yr32 was detected in three new race variants within PstS13. The identification of these new races, which have not been reported outside South America, provides strong evidence of the local evolution of virulence in Pst during the recent epidemic years.


Assuntos
Doenças das Plantas , Puccinia , Triticum , Virulência/genética , Doenças das Plantas/microbiologia , Puccinia/patogenicidade , Puccinia/genética , Triticum/microbiologia , Uruguai , Genótipo , Evolução Biológica , Fenótipo , Basidiomycota/genética , Basidiomycota/patogenicidade , Basidiomycota/classificação , Basidiomycota/fisiologia
19.
Foodborne Pathog Dis ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39234784

RESUMO

Staphylococcus aureus and a few species of coagulase negative are frequently associated with food poisoning. Raw milk and dairy products are among the foods usually associated with outbreaks due to staphylococcal intoxication. This study aimed to determine phenotypic and genotypic antimicrobial resistance profiles to beta-lactam drugs in Staphylococcus coagulase positive (CoPS) and negative (CoNS) isolates. A total of 58 CoPS and 45 CoNS isolates recovered from raw milk and artisanal cheese from Santa Catarina were analyzed. All isolates (n = 103) were subjected to antimicrobial susceptibility testing. High levels of resistance to penicillin (41% of CoPS and 31% of CoNS), amoxicillin (40% CoPS), ampicillin (36% CoPS), and sulfamethoxazole-trimethoprim (35% CoNS) were observed. Twenty six percent of the isolates (18 CoPS and 9 CoNS) exhibited multiresistance profile; which means, they were resistant to at least three different classes of the antimicrobial drugs. Detection of resistance genes (mecA, mecC, and blaZ) was performed using multiplex polymerase chain reaction. Twelve isolates (9 CoPS and 3 CoNS) were positive for mecA, whereas 10 strains (4 CoPS and 6 CoNS) were positive for blaZ. The detection of resistant and multidrug resistant isolates emphasizes the necessity to develop strategies to better comply with good manufacturing practices and health care guidelines.

20.
New Microbiol ; 47(1): 116-122, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38700893

RESUMO

Management of virological failure in heavily treatment-experienced people with multidrug-resistant (MDR) HIV infection is a serious clinical challenge. New drugs with novel mechanisms of action have recently been approved, and their use has improved the outcome of subjects with limited treatment options (LTO). In this setting, the choice of antiretroviral therapy (ART) should be tailored based on the pattern of resistance, treatment history and patients' individual characteristics. While genotypic resistance testing is the reference method for analysing residual drug susceptibility, phenotypic resistance testing can provide additional support when facing LTO. Herein, we present the case of a patient with MDR HIV-1 infection on virological failure enrolled in the PRESTIGIO Registry. The salvage ART regimen, which included drugs with novel mechanisms of action (MoA), was tailored to the patient's clinical characteristics and on the resistance pattern explored with genotypic and phenotypic investigation, allowing the achievement of viro-immunological success. The use of recently approved drugs with novel MoA, combined with an optimized background regimen, may also achieve virological suppression in people with LTO.


Assuntos
Fármacos Anti-HIV , Cobicistat , Farmacorresistência Viral Múltipla , Genótipo , Infecções por HIV , HIV-1 , Compostos Heterocíclicos com 3 Anéis , Piperazinas , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Masculino , HIV-1/efeitos dos fármacos , HIV-1/genética , Pessoa de Meia-Idade , Fármacos Anti-HIV/uso terapêutico , Fármacos Anti-HIV/farmacologia , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Farmacorresistência Viral Múltipla/genética , Piperazinas/uso terapêutico , Cobicistat/uso terapêutico , Cobicistat/administração & dosagem , Sulfato de Atazanavir/uso terapêutico , Rilpivirina/uso terapêutico , Piridonas/uso terapêutico , Oxazinas/uso terapêutico , Testes de Sensibilidade Microbiana , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA