Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
New Phytol ; 242(2): 744-759, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38264772

RESUMO

Angiosperms, which inhabit diverse environments across all continents, exhibit significant variation in genome sizes, making them an excellent model system for examining hypotheses about the global distribution of genome size. These include the previously proposed large genome constraint, mutational hazard, polyploidy-mediated, and climate-mediated hypotheses. We compiled the largest genome size dataset to date, encompassing 16 017 (> 5% of known) angiosperm species, and analyzed genome size distribution using a comprehensive geographic distribution dataset for all angiosperms. We observed that angiosperms with large range sizes generally had small genomes, supporting the large genome constraint hypothesis. Climate was shown to exert a strong influence on genome size distribution along the global latitudinal gradient, while the frequency of polyploidy and the type of growth form had negligible effects. In contrast to the unimodal patterns along the global latitudinal gradient shown by plant size traits and polyploid proportions, the increase in angiosperm genome size from the equator to 40-50°N/S is probably mediated by different (mostly climatic) mechanisms than the decrease in genome sizes observed from 40 to 50°N northward. Our analysis suggests that the global distribution of genome sizes in angiosperms is mainly shaped by climatically mediated purifying selection, genetic drift, relaxed selection, and environmental filtering.


Assuntos
Magnoliopsida , Magnoliopsida/genética , Tamanho do Genoma , Genoma de Planta , Poliploidia , Plantas/genética , Filogenia
2.
Am Nat ; 199(2): E57-E75, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35077279

RESUMO

AbstractSpecies vary extensively in geographic range size and climatic niche breadth. If range limits are primarily determined by climatic factors, species with broad climatic tolerances and those that track geographically widespread climates should have large ranges. However, large ranges might increase the probability of population fragmentation and adaptive divergence, potentially decoupling climatic niche breadth and range size. Conversely, ecological generalism in large-ranged species might lead to higher gene flow across climatic transitions, increasing species' cohesion and thus decreasing genetic isolation by distance (IBD). Focusing on Australia's iconic Ctenotus lizard radiation, we ask whether species range size scales with climatic niche breadth and the degree of population isolation. To this end, we infer independently evolving operational taxonomic units (OTUs), their geographic and climatic ranges, and the strength of IBD within OTUs based on genome-wide loci from 722 individuals spanning 75 taxa. Large-ranged OTUs were common and had broader climatic niches than small-ranged OTUs; thus, large ranges do not appear to simply result from passive tracking of widespread climatic zones. OTUs with larger ranges and broader climatic niches showed relatively weaker IBD, suggesting that large-ranged species might possess intrinsic attributes that facilitate genetic cohesion across large distances and varied climates. By influencing population divergence and persistence, traits that affect species cohesion may play a central role in large-scale patterns of diversification and species richness.


Assuntos
Lagartos , Animais , Austrália , Ecossistema , Fluxo Gênico , Humanos , Lagartos/genética , Filogenia
3.
Glob Chang Biol ; 28(22): 6541-6555, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36008887

RESUMO

Despite the fact that cetaceans provide significant ecological contributions to the health and stability of aquatic ecosystems, many are highly endangered with nearly one-third of species assessed as threatened with extinction. Nevertheless, to date, few studies have explicitly examined the patterns and processes of extinction risk and threats for this taxon, and even less between the two subclades (Mysticeti and Odontoceti). To fill this gap, we compiled a dataset of six intrinsic traits (active region, geographic range size, body weight, diving depth, school size, and reproductive cycle), six environmental factors relating to sea surface temperature and chlorophyll concentration, and two human-related threat indices that are commonly recognized for cetaceans. We then employed phylogenetic generalized least squares models and model selection to identify the key predictors of extinction risk in all cetaceans, as well as in the two subclades. We found that geographic range size, sea surface temperature, and human threat index were the most important predictors of extinction risk in all cetaceans and in odontocetes. Interestingly, maximum body weight was positively associated with the extinction risk in mysticetes, but negatively related to that for odontocetes. By linking seven major threat types to extinction risk, we further revealed that fisheries bycatch was the most common threat, yet the impacts of certain threats could be overestimated when considering all species rather than just threatened ones. Overall, we suggest that conservation efforts should focus on small-ranged cetaceans and species living in warmer waters or under strong anthropogenic pressures. Moreover, further studies should consider the threatened status of species when superimposing risk maps and quantifying risk severity. Finally, we emphasize that mysticetes and odontocetes should be conserved with different strategies, because their extinction risk patterns and major threat types are considerably different. For instance, large-bodied mysticetes and small-ranged odontocetes require special conservation priority.


Assuntos
Ecossistema , Extinção Biológica , Peso Corporal , Clorofila , Conservação dos Recursos Naturais , Humanos , Filogenia , Temperatura , Água
4.
Am J Bot ; 109(6): 922-938, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35446437

RESUMO

PREMISE: Biodiversity results from origination and extinction, justifying interest in identifying traits that influence this balance. Traits implicated in the success or failure of lineages include dispersal, colonization ability, and geographic range size. We investigated the impact of dispersal and range size on contemporary diversity in the Rosales. METHODS: We used the multiple-state speciation and extinction (MuSSE) method to explore the effects on genus-level diversification of two genus-level traits (geographic range size and within-genus proclivity to speciate) and two species traits (seed dispersal and growth habit) and the multiple hidden-state speciation and extinction (MuHiSSE) method for species-level associations. Finally, we conducted a PGLS (phylogenetic least-squares) analysis to distinguish between speciation within genera versus origination of new genera. RESULTS: At the species level, animal dispersal enhances diversification rate in both woody and herbaceous lineages, while woody lineages without animal dispersal have higher extinction rates than speciation rates. At the genus level, herbaceous taxa have positive diversification rates regardless of other character states. Diversification rate variation is also explained by two interactions: (1) a three-way interaction between large geographic range, animal-mediated dispersal, and high within-genus species richness, whereby genera possessing all three traits have high diversification rates, and (2) a four-way interaction by which the three-way interaction is stronger in woody genera than in herbaceous genera. CONCLUSIONS: Colonization ability may underlie the relationship between dispersal type and range size and may influence past diversification rates by decreasing extinction rates during late Cenozoic climate volatility. Thus, colonization ability could be used to predict future extinction risk to aid conservation.


Assuntos
Rosales , Dispersão de Sementes , Biodiversidade , Clima , Especiação Genética , Filogenia
5.
Am Nat ; 191(5): 553-565, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29693443

RESUMO

In 1967, Dan Janzen published "Why Mountain Passes Are Higher in the Tropics" in The American Naturalist. Janzen's seminal article has captured the attention of generations of biologists and continues to inspire theoretical and empirical work. The underlying assumptions and derived predictions are broadly synthetic and widely applicable. Consequently, Janzen's "seasonality hypothesis" has proven relevant to physiology, climate change, ecology, and evolution. To celebrate the fiftieth anniversary of this highly influential article, we highlight the past, present, and future of this work and include a unique historical perspective from Janzen himself.


Assuntos
Aclimatação , Altitude , Ecologia/história , Estações do Ano , Clima Tropical , Animais , Costa Rica , Ecossistema , Especiação Genética , Geografia , História do Século XX , Humanos
6.
Ecology ; 99(2): 322-334, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29160898

RESUMO

Geographic range size can span orders of magnitude for plant and animal species, with the study of why range sizes vary having preoccupied biogeographers for decades. In contrast, there have been few comparable studies of how range size varies across microbial taxa and what traits may be associated with this variation. We determined the range sizes of 74,134 bacterial and archaeal taxa found in settled dust collected from 1,065 locations across the United States. We found that most microorganisms have small ranges and few have large ranges, a pattern similar to the range size distributions commonly observed for macrobes. However, contrary to expectations, those microbial taxa that were locally abundant did not necessarily have larger range sizes. The observed differences in microbial range sizes were generally predictable from taxonomic identity, phenotypic traits, genomic attributes, and habitat preferences, findings that provide insight into the factors shaping patterns of microbial biogeography.


Assuntos
Archaea , Bactérias/classificação , Animais , Ecossistema , Plantas
7.
Parasitology ; 145(12): 1623-1632, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642959

RESUMO

To understand existence, patterns and mechanisms behind phylogenetic heritability in the geographic range size (GRS) of parasites, we measured phylogenetic signal (PS) in the sizes of both regional (within a region) and continental (within a continent) geographic ranges of fleas in five regions. We asked whether (a) GRS is phylogenetically heritable and (b) the manifestation of PS varies between regions. We also asked whether geographic variation in PS reflects the effects of the environment's spatiotemporal stability (e.g. glaciation disrupting geographic ranges) or is associated with time since divergence (accumulation differences among species over time). Support for the former hypothesis would be indicated by stronger PS in southern than in northern regions, whereas support for the latter hypothesis would be shown by stronger PS in regions with a large proportion of species belonging to the derived lineages than in regions with a large proportion of species belonging to the basal lineages. We detected significant PS in both regional and continental GRSs of fleas from Canada and in continental GRS of fleas from Mongolia. No PS was found in the GRS of fleas from Australia and Southern Africa. Venezuelan fleas demonstrated significant PS in regional GRS only. Local Indicators of Phylogenetic Association detected significant local positive autocorrelations of GRS in some clades even in regions in which PS has not been detected across the entire phylogeny. This was mainly characteristic of younger taxa.


Assuntos
Infestações por Pulgas/parasitologia , Sifonápteros/classificação , África Austral , Animais , Austrália , Canadá , Geografia , Humanos , Mongólia , Filogenia , Sifonápteros/genética
8.
Glob Chang Biol ; 21(6): 2169-78, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25504910

RESUMO

Geographic range size is the manifestation of complex interactions between intrinsic species traits and extrinsic environmental conditions. It is also a fundamental ecological attribute of species and a key extinction risk correlate. Past research has primarily focused on the role of biological and environmental predictors of range size, but macroecological patterns can also be distorted by human activities. Here, we analyse the role of extrinsic (biogeography, habitat state, climate, human pressure) and intrinsic (biology) variables in predicting range size of the world's terrestrial mammals. In particular, our aim is to compare the predictive ability of human pressure vs. species biology. We evaluated the ability of 19 intrinsic and extrinsic variables in predicting range size for 4867 terrestrial mammals. We repeated the analyses after excluding restricted-range species and performed separate analyses for species in different biogeographic realms and taxonomic groups. Our model had high predictive ability and showed that climatic variables and human pressures are the most influential predictors of range size. Interestingly, human pressures predict current geographic range size better than biological traits. These findings were confirmed when repeating the analyses on large-ranged species, individual biogeographic regions and individual taxonomic groups. Climatic and human impacts have determined the extinction of mammal species in the past and are the main factors shaping the present distribution of mammals. These factors also affect other vertebrate groups globally, and their influence on range size may be similar as well. Measuring climatic and human variables can allow to obtain approximate range size estimations for data-deficient and newly discovered species (e.g. hundreds of mammal species worldwide). Our results support the need for a more careful consideration of the role of climate change and human impact - as opposed to species biological characteristics - in shaping species distribution ranges.


Assuntos
Distribuição Animal , Clima , Mamíferos/fisiologia , Animais , Mudança Climática , Ecossistema , Meio Ambiente , Geografia , Fenótipo , Dinâmica Populacional
9.
Conserv Biol ; 29(3): 865-76, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25580637

RESUMO

Geographic range size is often conceptualized as a fixed attribute of a species and treated as such for the purposes of quantification of extinction risk; species occupying smaller geographic ranges are assumed to have a higher risk of extinction, all else being equal. However many species are mobile, and their movements range from relatively predictable to-and-fro migrations to complex irregular movements shown by nomadic species. These movements can lead to substantial temporary expansion and contraction of geographic ranges, potentially to levels which may pose an extinction risk. By linking occurrence data with environmental conditions at the time of observations of nomadic species, we modeled the dynamic distributions of 43 arid-zone nomadic bird species across the Australian continent for each month over 11 years and calculated minimum range size and extent of fluctuation in geographic range size from these models. There was enormous variability in predicted spatial distribution over time; 10 species varied in estimated geographic range size by more than an order of magnitude, and 2 species varied by >2 orders of magnitude. During times of poor environmental conditions, several species not currently classified as globally threatened contracted their ranges to very small areas, despite their normally large geographic range size. This finding raises questions about the adequacy of conventional assessments of extinction risk based on static geographic range size (e.g., IUCN Red Listing). Climate change is predicted to affect the pattern of resource fluctuations across much of the southern hemisphere, where nomadism is the dominant form of animal movement, so it is critical we begin to understand the consequences of this for accurate threat assessment of nomadic species. Our approach provides a tool for discovering spatial dynamics in highly mobile species and can be used to unlock valuable information for improved extinction risk assessment and conservation planning.


Assuntos
Migração Animal , Aves/fisiologia , Conservação dos Recursos Naturais , Extinção Biológica , Animais , Austrália , Mudança Climática , Clima Desértico , Modelos Biológicos , Medição de Risco
10.
J Evol Biol ; 27(10): 2035-45, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25066512

RESUMO

Biologists have long sought to understand the processes underlying disparities in clade size across the tree of life and the extent to which such clade size differences can be attributed to the evolution of particular traits. The association of certain character states with species-rich clades suggests that trait evolution can lead to increased diversification, but such a pattern could also arise due other processes, such as directional trait evolution. Recent advances in phylogenetic comparative methods have provided new statistical approaches for distinguishing between these intertwined and potentially confounded macroevolutionary processes. Here, we review the historical development of methods for detecting state-dependent diversification and explore what new methods have revealed about classic examples of traits that affect diversification, including evolutionary dead ends, key innovations and geographic traits. Applications of these methods thus far collectively suggest that trait diversity commonly arises through the complex interplay between transition, speciation and extinction rates and that long hypothesized evolutionary dead ends and key innovations are instead often cases of directional trends in trait evolution.


Assuntos
Evolução Biológica , Especiação Genética , Fenótipo , Filogenia , Teorema de Bayes , Funções Verossimilhança , Modelos Genéticos
11.
Conserv Biol ; 28(5): 1349-59, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24665927

RESUMO

Understanding how plant life history affects species vulnerability to anthropogenic disturbances and environmental change is a major ecological challenge. We examined how vegetation type, growth form, and geographic range size relate to extinction risk throughout the Brazilian Atlantic Forest domain. We used a database containing species-level information of 6,929 angiosperms within 112 families and a molecular-based working phylogeny. We used decision trees, standard regression, and phylogenetic regression to explore the relationships between species attributes and extinction risk. We found a significant phylogenetic signal in extinction risk. Vegetation type, growth form, and geographic range size were related to species extinction risk, but the effect of growth form was not evident after phylogeny was controlled for. Species restricted to either rocky outcrops or scrub vegetation on sandy coastal plains exhibited the highest extinction risk among vegetation types, a finding that supports the hypothesis that species adapted to resource-limited environments are more vulnerable to extinction. Among growth forms, epiphytes were associated with the highest extinction risk in non-phylogenetic regression models, followed by trees, whereas shrubs and climbers were associated with lower extinction risk. However, the higher extinction risk of epiphytes was not significant after correcting for phylogenetic relatedness. Our findings provide new indicators of extinction risk and insights into the mechanisms governing plant vulnerability to extinction in a highly diverse flora where human disturbances are both frequent and widespread.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Extinção Biológica , Magnoliopsida/fisiologia , Brasil , Florestas , Medição de Risco
12.
Ecol Evol ; 12(1): e8341, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127000

RESUMO

The species-range size distribution is a product of speciation, transformation of range-sizes, and extinction. Previous empirical studies showed that it has a left-skewed lognormal-like distribution. We developed a new mathematical framework to study species-range-size distributions, one in which allopatric speciation, transformation of range size, and the extinction process are explicitly integrated. The approach, which we call the gain-loss-allopatric speciation model, allows us to explore the effects of various speciation scenarios. Our model captures key dynamics thought to lead to known range-size distributions. We also fitted the model to empirical range-size distributions of birds, mammals, and beetles. Since geographic range dynamics are linked to speciation and extinction, our model provides predictions for the dynamics of species richness. When a species-range-size distribution initially evolves away from the range sizes at which the likelihood of speciation is low, it tends to cause diversification slowdown even in the absence of (bio)diversity dependence in speciation rate. Using the mathematical model developed here, we give a potential explanation for how observed range-size distributions emerge from range-size dynamics. Although the framework presented is minimalistic, it provides a starting point for examining hypotheses based on more complex mechanisms.

13.
Ecol Evol ; 11(1): 481-497, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437444

RESUMO

Understanding species-environment relationships is key to defining the spatial structure of species distributions and develop effective conservation plans. However, for many species, this baseline information does not exist. With reliable presence data, spatial models that predict geographic ranges and identify environmental processes regulating distribution are a cost-effective and rapid method to achieve this. Yet these spatial models are lacking for many rare and threatened species, particularly in tropical regions. The harpy eagle (Harpia harpyja) is a Neotropical forest raptor of conservation concern with a continental distribution across lowland tropical forests in Central and South America. Currently, the harpy eagle faces threats from habitat loss and persecution and is categorized as Near-Threatened by the International Union for the Conservation of Nature (IUCN). Within a point process modeling (PPM) framework, we use presence-only occurrences with climatic and topographical predictors to estimate current and past distributions and define environmental requirements using Ecological Niche Factor Analysis. The current PPM prediction had high calibration accuracy (Continuous Boyce Index = 0.838) and was robust to null expectations (pROC ratio = 1.407). Three predictors contributed 96% to the PPM prediction, with Climatic Moisture Index the most important (72.1%), followed by minimum temperature of the warmest month (15.6%) and Terrain Roughness Index (8.3%). Assessing distribution in environmental space confirmed the same predictors explaining distribution, along with precipitation in the wettest month. Our reclassified binary model estimated a current range size 11% smaller than the current IUCN range polygon. Paleoclimatic projections combined with the current model predicted stable climatic refugia in the central Amazon, Guyana, eastern Colombia, and Panama. We propose a data-driven geographic range to complement the current IUCN range estimate and that despite its continental distribution, this tropical forest raptor is highly specialized to specific environmental requirements.

14.
Ecol Evol ; 9(3): 1353-1363, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30805165

RESUMO

Increasingly large presence-only survey datasets are becoming available for use in conservation assessments. Potentially, these records could be used to determine spatial patterns of plant species rarity and endemism. We test the integration of a large South Korean species record database with Rabinowitz rarity classes. Rabinowitz proposed seven classes of species rarity using three variables: geographic range, habitat specificity, and local population size. We estimated the range size and local abundance of 2,215 plant species from species occurrence records and habitat specificity as the number of landcover types each species' records were found in. We classified each species into a rarity class or as common, compared species composition by class to national lists, and mapped the spatial pattern of species richness for each rarity class. Species were classed to narrow or wide geographic ranges using 315 km, the average from a range size index of all species (D max), based on maximum distance between observations. There were four classes each within the narrow and wide range groups, sorted using cutoffs of local abundance and habitat specificity. Nationally listed endangered species only appeared in the narrow-range classes, while nationally listed endemic species appeared in almost all classes. Species richness in most rarity classes was high in northeastern South Korea especially for species with narrow ranges. Policy implications. Large presence-only surveys may be able to estimate some classes of rarity better than others, but modification to include estimates of local abundance and habitat types, could greatly increase their utility. Application of the Rabinowitz rarity framework to such surveys can extend their utility beyond species distribution models and can identify areas that need further surveys and for conservation priority. Future studies should be aware of the subjectivity of the rarity classification and that regional scale implementations of the framework may differ.

15.
Evolution ; 72(10): 1978-1991, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30055007

RESUMO

The role of ecological limits in regulating the distribution and diversification of species remains controversial. Although such limits must ultimately arise from constraints on local species coexistence, this spatial context is missing from most macroevolutionary models. Here, we develop a stochastic, spatially explicit model of species diversification to explore the phylogenetic and biogeographic patterns expected when local diversity is bounded. We show how local ecological limits, by regulating opportunities for range expansion and thus rates of speciation and extinction, lead to temporal slowdowns in diversification and predictable differences in equilibrium diversity between regions. However, our models also show that even when regions have identical diversity limits, the dynamics of diversification and total number of species supported at equilibrium can vary dramatically depending on the relative size of geographic and local ecological niche space. Our model predicts that small regions with higher local ecological limits support a higher standing diversity and more balanced phylogenetic trees than large geographic areas with more stringent constraints on local coexistence. Our findings highlight how considering the spatial context of diversification can provide new insights into the role of ecological limits in driving variation in biodiversity across space, time, and clades.


Assuntos
Biodiversidade , Evolução Biológica , Características de História de Vida , Geografia , Modelos Biológicos , Filogenia
16.
Evolution ; 69(3): 621-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25639279

RESUMO

Evolutionarily distinctive host lineages might harbor fewer parasite species because they have fewer opportunities for parasite sharing than hosts having extant close relatives, or because diverse parasite assemblages promote host diversification. We evaluate these hypotheses using data from 930 species of parasites reported to infect free-living carnivores. We applied nonparametric richness estimators to estimate parasite diversity among well-sampled carnivore species and assessed how well host evolutionary distinctiveness, relative to other biological and environmental factors, explained variation in estimated parasite diversity. Species richness estimates indicate that the current published literature captures less than 50% of the true parasite diversity for most carnivores. Parasite species richness declined with evolutionary distinctiveness of carnivore hosts (i.e., length of terminal ranches of the phylogeny) and increased with host species body mass and geographic range area. We found no support for the hypothesis that hosts from more diverse lineages support a higher number of generalist parasites, but we did find evidence that parasite assemblages might have driven host lineage diversification through mechanisms linked to sexual selection. Collectively, this work provides strong support for host evolutionary history being an essential predictor of parasite diversity, and offers a simple model for predicting parasite diversity in understudied carnivore species.


Assuntos
Evolução Biológica , Carnívoros/parasitologia , Interações Hospedeiro-Parasita , Parasitos/fisiologia , Animais , Biodiversidade , Carnívoros/classificação , Parasitos/classificação
17.
Evolution ; 68(10): 2917-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25066881

RESUMO

The geographic ranges of closely related species can vary dramatically, yet we do not fully grasp the mechanisms underlying such variation. The niche breadth hypothesis posits that species that have evolved broad environmental tolerances can achieve larger geographic ranges than species with narrow environmental tolerances. In turn, plasticity and genetic variation in ecologically important traits and adaptation to environmentally variable areas can facilitate the evolution of broad environmental tolerance. We used five pairs of western North American monkeyflowers to experimentally test these ideas by quantifying performance across eight temperature regimes. In four species pairs, species with broader thermal tolerances had larger geographic ranges, supporting the niche breadth hypothesis. As predicted, species with broader thermal tolerances also had more within-population genetic variation in thermal reaction norms and experienced greater thermal variation across their geographic ranges than species with narrow thermal tolerances. Species with narrow thermal tolerance may be particularly vulnerable to changing climatic conditions due to lack of plasticity and insufficient genetic variation to respond to novel selection pressures. Conversely, species experiencing high variation in temperature across their ranges may be buffered against extinction due to climatic changes because they have evolved tolerance to a broad range of temperatures.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Variação Genética , Mimulus/classificação , Temperatura , Clima , Ecossistema , Geografia , Mimulus/genética , América do Norte
18.
Am Nat ; 166(1): 136-143, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29648471
19.
Braz. j. biol ; Braz. j. biol;62(3)Aug. 2002.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1467631

RESUMO

Rapoport effect predicts that species geographic range sizes will increase toward higher latitudes, probably reflecting adaptations to extreme climatic conditions that increase species tolerance. Recently, studies about spatial patterns in species richness and geographic range size may be associated with the geometry of species' ranges. In this context, null models can be used to search for the causal mechanisms associated with these patterns. In this paper, we analyzed Rapoport effect using a null model to evaluate how phylogenetic structure and geometric constraints simultaneously affect latitudinal extents of 40 species of South American terrestrial Carnivora. The latitudinal extents of Carnivora tended to decrease toward Southern latitudes, in the opposite direction expected under a simple Rapoport effect, but in accordance to geometric expectations of position of midpoints in the continent. Using 5000 simulations, it was possible to show that the null regression coefficients of latitudinal extents against midpoints are positively biased, reflecting the geometric constraints in the latitudinal extents. The results were equivalent in phylogenetic and non-phylogenetic analyses. The observed regression coefficient was significantly smaller (line is less inclined) than expected by chance alone, demonstrating that the geometric constraints in the latitudinal extents exist even after controlling for phylogenetic structure in data using eigenvector regressions. This suggests that the "spirit" of Rapoport effect (sensu Lyons & Willig, 1997) could be maintained, i.e., that latitudinal extents in Southern region of the continent are relatively larger than those in Northern regions, even after controlling for phylogenetic effects.


O efeito Rapoport prediz que as áreas de distribuição geográfica das espécies aumentam em direção às latitudes mais elevadas, refletindo provavelmente adaptações a condições climáticas extremas. Recentemente, os estudos sobre a variação na riqueza de espécies e em sua área de distribuição passaram a reconhecer que os padrões espaciais usualmente detectados podem estar associados à geometria dos continentes. Nesse contexto, os modelos nulos podem ser úteis para analisar os mecanismos ecológicos e evolutivos envolvidos na origem desses padrões. Neste trabalho, o efeito Rapoport foi analisado por intermédio de modelos nulos que permitem compreender simultaneamente como os efeitos filogenéticos e as restrições associadas à geometria do continente afetam a extensão latitudinal de 40 espécies de Carnivora (Mammalia) terrestres da América do Sul. Essas extensões tendem a diminuir em direção ao sul do continente, de forma oposta à esperada pelo efeito Rapoport, mas conforme esperado pelas restrições geométricas. As 5.000 simulações demonstraram que as regressões entre extensão latitudinal e ponto médio latitudinal, por espécie, são positivamente enviesadas, indicando restrição geométrica. Os resultados são coerentes nas análises filogenéticas (incluindo um autovetor filogenético no modelo de regressão) e não-filogenéticas, indicando que o coeficiente angular observado é significativamente menor do que o esperado de acordo com os modelos nulos. Assim, o "espírito" do efeito Rapoport pode ser mantido, ou seja, as extensões latitudinais nas regiões mais ao sul do continente tendem a ser relativamente maiores do que estas, indicando provavelmente maior tolerância a variações ambientais, mesmo após o controle dos efeitos filogenéticos.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA