Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Environ Geochem Health ; 46(9): 339, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073464

RESUMO

Irrigation management controls biogeochemical cycles in rice production. Under flooded paddy conditions, arsenic becomes plant-available as iron-reducing conditions ensue, while oxic conditions lead to increased plant availability of Cd in acidic soils. Because Cd enters rice through Mn transporters, we hypothesized that irrigation resulting in intermediate redox could simultaneously limit both As and Cd in rice grain due to As retention in soil and Mn competition for Cd uptake. In a 2 year field study, we used 6 irrigation managements that varied in extent and frequency of inundation, and we observed strong effects of irrigation management on porewater chemistry, soil redox potentials, plant As and Cd concentrations, plant nutrient concentrations, and methane emissions. Plant As decreased with drier irrigation management, but in the grain this effect was stronger for organic As than for inorganic As. Grain organic As, but not inorganic As, was strongly and positively correlated with cumulative methane emissions. Conversely, plant Cd increased under more aerobic irrigation management and grain Cd was negatively correlated with porewater Mn. A hazard index approach showed that in the tested soil with low levels of As and Cd (5.4 and 0.072 mg/kg, respectively), irrigation management could not simultaneously decrease grain As and Cd. Many soil properties, such as reducible As, available Cd, soil pH, available S, and soil organic matter should be considered when attempting to optimize irrigation management when the goal is decreasing the risk of As and Cd in rice grain.


Assuntos
Irrigação Agrícola , Arsênio , Cádmio , Oryza , Poluentes do Solo , Solo , Irrigação Agrícola/métodos , Cádmio/metabolismo , Poluentes do Solo/análise , Arsênio/análise , Solo/química , Oxirredução , Metano
2.
Kidney Int Rep ; 9(6): 1860-1875, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899224

RESUMO

Introduction: Men are vulnerable to ambient heat-related kidney disease burden; however, limited evidence exists on how vulnerable women are when exposed to high ambient heat. We evaluated the sex-specific association between ambient temperature and urine electrolytes, and 24-hour urine total protein, and volume. Methods: We pooled a longitudinal 5624 person-visits data of 1175 participants' concentration and 24-hour excretion of urine electrolytes and other biomarkers (24-hour urine total protein and volume) from southwest coastal Bangladesh (Khulna, Satkhira, and Mongla districts) during November 2016 to April 2017. We then spatiotemporally linked ambient temperature data from local weather stations to participants' health outcomes. For evaluating the relationships between average ambient temperature and urine electrolytes and other biomarkers, we plotted confounder-adjusted restricted cubic spline (RCS) plots using participant-level, household-level, and community-level random intercepts. We then used piece-wise linear mixed-effects models for different ambient temperature segments determined by inflection points in RCS plots and reported the maximum likelihood estimates and cluster robust standard errors. By applying interaction terms for sex and ambient temperature, we determined the overall significance using the Wald test. Bonferroni correction was used for multiple comparisons. Results: The RCS plots demonstrated nonlinear associations between ambient heat and urine biomarkers for males and females. Piecewise linear mixed-effects models suggested that sex did not modify the relationship of ambient temperature with any of the urine parameters after Bonferroni correction (P < 0.004). Conclusion: Our findings suggest that women are as susceptible to the effects of high ambient temperature exposure as men.

3.
Trop Med Infect Dis ; 8(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37104325

RESUMO

Novel approaches to geohealth data analysis offer major benefits to neglected tropical disease control by identifying how social, economic and environmental elements of place interact to influence disease outcomes. However, a lack of timely and accurate geohealth data poses substantial risks to the accuracy of risk identification and challenges to the development of suitably targeted disease control programs. Scabies is one of many skin-related NTDs that is nominated as a priority for global disease control by the World Health Organization, but for which there remains a lack of baseline geospatial data on disease distribution. In this opinion paper, we consider lessons on impediments to geohealth data availability for other skin-related NTDs before outlining challenges specific to the collection of scabies-related geohealth data. We illustrate the importance of a community-centred approach in this context using a recent initiative to develop a community-led model of scabies surveillance in remote Aboriginal communities in Australia.

4.
Earth Space Sci ; 9(5): e2021EA002157, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35846575

RESUMO

GeoHealth research both characterizes and predicts problems at the nexus of earth and human systems like climate change, pollution, and natural hazards. While GeoHealth excels in the area of integrated science, there is a need to improve coordinated and networked efforts to produce open science to enable environmental justice. There is a need to resource and empower frontline populations that are disproportionately marginalized by environmental injustice (i.e., the unequal protection from environmental harms and lack of access and meaningful engagement in decision making for a healthy environment; EPA, 2022, https://www.epa.gov/environmentaljustice). GeoHealth practice has the opportunity to advance environmental justice or the "fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income" with respect to how research and collaboration of GeoHealth professionals supports the "development, implementation, and enforcement of environmental laws, regulations, and policies" that produce equal protection from environmental and health hazards and access to the decision making for a health environment (EPA, 2022, https://www.epa.gov/environmentaljustice). Here we highlight barriers and opportunities to apply an equity-centered ICON framework to the field of GeoHealth to advance environmental justice and health equity.

5.
Geohealth ; 6(8): e2022GH000675, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35949255

RESUMO

The editorial focuses on four major themes contextualized in a virtual GeoHealth workshop that occurred from June 14 to 16, 2021. Topics in that workshop included drinking water and chronic chemical exposure, environmental injustice, public health and drinking water policy, and the fate, transport, and human impact of aqueous contaminants in the context of climate change. The intent of the workshop was to further define the field of GeoHealth. This workshop emphasized on chemical toxicants that drive human health. The major calls for action emerged from the workshop include enhancing community engagement, advocating for equity and justice, and training the next generation.

6.
Geohealth ; 5(10): e2021GH000436, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34712882

RESUMO

The GLOBE Program's GLOBE Observer application is a free citizen science mobile data collection and visualization tool compatible with iOS and Android operating systems. Citizen scientists armed with the app can report the mosquito larval habitats they identify using the GLOBE Mosquito Habitat Mapper tool. This data can complement the climate, weather, and land cover data obtained from satellite measurements by scientists who develop risk models for mosquito-borne diseases. Public participation in mosquito surveillance research provides the opportunity to obtain the volume, velocity and variety of data needed to fight the threat of vector-borne diseases, especially in under-resourced communities with minimal to no municipal surveillance and mitigation services. GLOBE Mosquito Habitat Mappers document and describe potential and active mosquito larval habitats in and around their homes and communities. An easy-to-use pictorial interface enables users to geolocate and describe oviposition sites encountered, count and identify mosquito larvae, and when appropriate, eliminate the larval habitats. During Mosquito Habitat Mapper's first 3 years of use, over 24,000 data observations have been reported throughout the world. This technical report summarizes GLOBE Mosquito Habitat Mapper data reported by GLOBE citizen scientists from three regions: Africa, Asia and the Pacific Islands, and Latin America and the Caribbean. Localized mosquito larvae distribution patterns were examined by comparing data collected in three cities in Senegal-Dakar, Touba, and Thilmakha. The Senegal data show habitat and genera differences among mosquitoes identified by citizen scientists in the cities and illustrates the potential of the app for community-based surveillance and research.

7.
Appl Spat Anal Policy ; 14(4): 1025-1040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33942015

RESUMO

Globally, geospatial concepts are becoming increasingly important in epidemiological and public health research. Individual level linked population-based data afford researchers with opportunities to undertake complex analyses unrivalled by other sources. However, there are significant challenges associated with using such data for impactful geohealth research. Issues range from extracting, linking and anonymising data, to the translation of findings into policy whilst working to often conflicting agendas of government and academia. Innovative organisational partnerships are therefore central to effective data use. To extend and develop existing collaborations between the institutions, in June 2019, authors from the Leeds Institute for Data Analytics and the Alan Turing Institute, London, visited the Geohealth Laboratory based at the University of Canterbury, New Zealand. This paper provides an overview of insight shared during a two-day workshop considering aspects of linked population-based data for impactful geohealth research. Specifically, we discuss both the collaborative partnership between New Zealand's Ministry of Health (MoH) and the University of Canterbury's GeoHealth Lab and novel infrastructure, and commercial partnerships enabled through the Leeds Institute for Data Analytics and the Alan Turing Institute in the UK. We consider the New Zealand Integrated Data Infrastructure as a case study approach to population-based linked health data and compare similar approaches taken by the UK towards integrated data infrastructures, including the ESRC Big Data Network centres, the UK Biobank, and longitudinal cohorts. We reflect on and compare the geohealth landscapes in New Zealand and the UK to set out recommendations and considerations for this rapidly evolving discipline.

8.
Geohealth ; 5(5): e2021GH000412, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34084984

RESUMO

From the heated debates over the airborne transmission of the novel coronavirus to the abrupt Earth system changes caused by the sudden lockdowns, the dire circumstances resulting from the coronavirus disease 2019 (COVID-19) pandemic have brought the field of GeoHealth to the forefront of visibility in science and policy. The pandemic has inadvertently provided an opportunity to study how human response has impacted the Earth system, how the Earth system may impact the pandemic, and the capacity of GeoHealth to inform real-time policy. The lessons learned throughout our responses to the COVID-19 pandemic are shaping the future of GeoHealth.

9.
Geohealth ; 5(12): e2021GH000496, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938931

RESUMO

GeoHealth as a research paradigm offers the opportunity to re-evaluate common research engagement models and science training practices. GeoHealth challenges are often wicked problems that require both transdisciplinary approaches and the establishment of intimate and long-term partnerships with a range of community members. We examine four common modes of community engagement and explore how research projects are launched, who has the power in these relationships, and how projects evolve to become truly transformative for everyone involved.

10.
Geohealth ; 4(7): e2020GH000265, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32671314

RESUMO

The American Geophysical Union (AGU) issues position statements reflecting the state of the science and scientific consensus. AGU position statements can be used to support public and institutional policy development, conversations with peers and policymakers, and formal and informal education. The recent climate change position statement, "Society Must Address the Growing Climate Crisis now," provides important baseline information but lacks detail on critical climate and health impacts and actions for AGU and members. This commentary shares feedback from the AGU's GeoHealth Section and encourages members to use the AGU statement and engage in the comment process for other statements.

11.
Geohealth ; 4(11): e2020GH000263, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33283125

RESUMO

We combined 71,930 short-term (median duration 4 days) home radon test results with 1:24,000-scale bedrock geologic map coverage of Kentucky to produce a statewide geologically based indoor-radon potential map. The test results were positively skewed with a mean of 266 Bq/m3, median of 122 Bq/m3, and 75th percentile of 289 Bq/m3. We identified 106 formations with ≥10 test results. Analysis of results from 20 predominantly monolithologic formations showed indoor-radon concentrations to be positively skewed on a formation-by-formation basis, with a proportional relationship between sample means and standard deviations. Limestone (median 170 Bq/m3) and dolostone (median 130 Bq/m3) tended to have higher indoor-radon concentrations than siltstones and sandstones (median 67 Bq/m3) or unlithified surficial deposits (median 63 Bq/m3). Individual shales had median values ranging from 67 to 189 Bq/m3; the median value for all shale values was 85 Bq/m3. Percentages of values falling above the U.S. Environmental Protection Agency (EPA) action level of 148 Bq/m3 were sandstone and siltstone: 24%, unlithified clastic: 21%, dolostone: 46%, limestone: 55%, and shale: 34%. Mississippian limestones, Ordovician limestones, and Devonian black shales had the highest indoor-radon potential values in Kentucky. Indoor-radon test mean values for the selected formations were also weakly, but statistically significantly, correlated with mean aeroradiometric uranium concentrations. To produce a map useful to nonspecialists, we classified each of the 106 formations into five radon-geologic classes on the basis of their 75th percentile radon concentrations. The statewide map is freely available through an interactive internet map service.

12.
Sci Total Environ ; 688: 1216-1227, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31726552

RESUMO

Northwest India suffers from severe water scarcity issues due to a combination of over-exploitation and climate effects. Along with concerns over water availability, endemic water quality issues are critical and affect the usability of available water and potential human health risks. Here we present data from 243 groundwater wells, representing nine aquifer lithologies in 4 climate regions that were collected from the Northwestern Indian state of Rajasthan. Rajasthan is India's largest state by area, and has a significant groundwater reliant population due to a general lack of surface water accessibility. We show that the groundwater, including water that is used for drinking without any treatment, contains multiple inorganic contaminants in levels that exceed both Indian and World Health Organization (WHO) drinking water guidelines. The most egregious of these violations were for fluoride, nitrate, and uranium; 76% of all water samples in this study had contaminants levels that exceed the WHO guidelines for at least one of these species. In addition, we show that much of the groundwater contains high concentrations of dissolved organic carbon (DOC) and halides, both of which are risk factors for the formation of disinfectant byproducts in waters that are treated with chemical disinfectants such as chlorine. By using geochemical and isotopic (oxygen, hydrogen, carbon, strontium, and boron isotopes) data, we show that the water quality issues derive from both geogenic (evapotranspiration, water-rock interactions) and anthropogenic (agriculture, domestic sewage) sources, though in some cases anthropogenic activities, such as infiltration of organic- and nitrate-rich water, may contribute to the persistence and enhanced mobilization of geogenic contaminants. The processes affecting Rajasthan's groundwater quality are common in many other worldwide arid areas, and the lessons learned from evaluation of the mechanisms that affect the groundwater quality are universal and should be applied for other parts of the world.

13.
Parasite Epidemiol Control ; 4: e00084, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30701206

RESUMO

Ecosystem Health, Conservation Medicine, EcoHealth, One Health, Planetary Health and GeoHealth are inter-related disciplines that underpin a shared understanding of the functional prerequisites of health, sustainable vitality and wellbeing. All of these are based on recognition that health interconnects species across the planet, and they offer ways to more effectively tackle complex real-world challenges. Herein we present a bibliometric analysis to document usage of a subset of such terms by journals over time. We also provide examples of parasitic and vector-borne diseases, including malaria, toxoplasmosis, baylisascariasis, and Lyme disease. These and many other diseases have persisted, emerged or re-emerged, and caused great harm to human and animal populations in developed and low income, biodiverse nations around the world, largely because of societal drivers that undermined natural processes of disease prevention and control, which had developed through co-evolution over millennia. Shortcomings in addressing drivers has arisen from a lack or coordinated efforts among researchers, health stewards, societies at large, and governments. Fortunately, specialists collaborating under transdisciplinary and socio-ecological health umbrellas are increasingly integrating established and new techniques for disease modeling, prediction, diagnosis, treatment, control, and prevention. Such approaches often emphasize conservation of biodiversity for health protection, and they provide novel opportunities to increase the efficiency and probability of success.

14.
Geohealth ; 1(1): 2-3, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32158976

RESUMO

The 21st century presents unprecedented challenges if society is to continue to provide abundant energy, water, and food, and high quality housing and medical care to a growing global population. Deforestation and aquifer depletion are at unsustainable rates, and use of fossil fuels is leading to unprecedented climate change. Geoscientists can confront these challenges by expanding partnerships with other disciplines. "Convergence," the integration of engineering, physical sciences, computation, and life sciences to benefit health, energy, and the environment, has been successfully developed for biomedical research. It is time for the geosciences to embrace convergence, as our future depends upon it.

15.
Rev. Inst. Adolfo Lutz (Online) ; (77): 1-8, 2018. mapas
Artigo em Inglês | SES-SP, LILACS, SESSP-ACVSES, SESSP-IALPROD, SES-SP, SESSP-IALACERVO | ID: biblio-1118059

RESUMO

Implementation of a geospatial surveillance and response system data resource for vector borne disease in the Americas (GeoHealth) will be tested using NASA satellite data, geographic information systems and ecological niche modeling to characterize the environmental suitability and potential for spread of endemic and epizootic vector borne diseases. The initial focus is on developing prototype geospatial models for visceral leishmaniasis, an expanding endemic disease in Latin America, and geospatial models for dengue and other Aedes aegypti borne arboviruses (zika, chikungunya), emerging arboviruses with potential for epizootic spread from Latin America and the Caribbean and establishment in North America. Geospatial surveillance and response system open resource data bases and models will be made available, with training courses, to other investigators interested in mapping and modeling other vector borne diseases in the western hemisphere and contributing brokered data to an expanding GeoHealth data resource as part of the NASA AmeriGEOSS initiative.(AU)


A implementação de uma fonte de dados de vigilância e um sistema de resposta geoespacial para doenças transmitidas por vetores nas Américas (GeoHealth) será testada utilizando dados provenientes de satélites da NASA, sistemas de informações geográficas e modelagem do nicho ecológico, para caracterizar a suceptibilidade ambiental e o potencial de dispersão de doenças endêmicas e epizooticas transmitidas por vetores vetores. O foco inicial será o desenvolvimento de protótipos de modelos geoespaciais para a leishmaniose visceral, uma doença endêmica e em expansão na América Latina, e modelos geoespaciais para dengue e outros transmitidos pelo Aedes aegypti (zika, chikungunya), arbovírus emergentes com potencial para disseminação epizoótica pela América Latina e Caribe e estabelecimento na América do Norte. Sistemas de vigilância e resposta geoespacial e modelos de recursos em bases de dados abertas serão diponibilizados, com cursos de treinamento, para outros pesquisadores interessados em mapear e modelar outras doenças transmitidas por vetores no hemisfério ocidental e contribuir intermediando dados para uma fonte de dados GeoHealth em expansão, como parte da Iniciativa AmeriGEOSS, da NASA. (AU)


Assuntos
América , Estudos Epidemiológicos , Aedes , Mapeamento Geográfico , Febre de Chikungunya , Zika virus , Doenças Transmitidas por Vetores , Leishmaniose Visceral
16.
Rev. Inst. Adolfo Lutz (Online) ; 77: e1760, 2018. map
Artigo em Português | LILACS, VETINDEX | ID: biblio-1489587

RESUMO

Implementation of a geospatial surveillance and response system data resource for vector borne disease in the Americas (GeoHealth) will be tested using NASA satellite data, geographic information systems and ecological niche modeling to characterize the environmental suitability and potential for spread of endemic and epizootic vector borne diseases. The initial focus is on developing prototype geospatial models for visceral leishmaniasis, an expanding endemic disease in Latin America, and geospatial models for dengue and other Aedes aegypti borne arboviruses (zika, chikungunya), emerging arboviruses with potential for epizootic spread from Latin America and the Caribbean and establishment in North America. Geospatial surveillance and response system open resource data bases and models will be made available, with training courses, to other investigators interested in mapping and modeling other vector borne diseases in the western hemisphere and contributing brokered data to an expanding GeoHealth data resource as part of the NASA AmeriGEOSS initiative.


A implementação de uma fonte de dados de vigilância e um sistema de resposta geoespacial para doenças transmitidas por vetores nas Américas (GeoHealth) será testada utilizando dados provenientes de satélites da NASA, sistemas de informações geográficas e modelagem do nicho ecológico, para caracterizar a suceptibilidade ambiental e o potencial de dispersão de doenças endêmicas e epizooticas transmitidas por vetores vetores. O foco inicial será o desenvolvimento de protótipos de modelos geoespaciais para a leishmaniose visceral, uma doença endêmica e em expansão na América Latina, e modelos geoespaciais para dengue e outros transmitidos pelo Aedes aegypti (zika, chikungunya), arbovírus emergentes com potencial para disseminação epizoótica pela América Latina e Caribe e estabelecimento na América do Norte. Sistemas de vigilância e resposta geoespacial e modelos de recursos em bases de dados abertas serão diponibilizados, com cursos de treinamento, para outros pesquisadores interessados em mapear e modelar outras doenças transmitidas por vetores no hemisfério ocidental e contribuir intermediando dados para uma fonte de dados GeoHealth em expansão, como parte da Iniciativa AmeriGEOSS, da NASA.


Assuntos
Leishmaniose Visceral/prevenção & controle , Mapeamento Geográfico , Sistemas de Informação Geográfica , Aedes , América , Estados Unidos , United States National Aeronautics and Space Administration , Zika virus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA