Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cell Rev Rep ; 19(5): 1540-1553, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36971904

RESUMO

BACKGROUND: RAP1 interacting factor 1 (Rif1) is highly expressed in mice embryos and mouse embryonic stem cells (mESCs). It plays critical roles in telomere length homeostasis, DNA damage, DNA replication timing and ERV silencing. However, whether Rif1 regulates early differentiation of mESC is still unclear. METHODS: In this study, we generated a Rif1 conditional knockout mouse embryonic stem (ES) cell line based on Cre-loxP system. Western blot, flow cytometry, quantitative real-time polymerase chain reaction (qRT-PCR), RNA high-throughput sequencing (RNA-Seq), chromatin immunoprecipitation followed high-throughput sequencing (ChIP-Seq), chromatin immunoprecipitation quantitative PCR (ChIP-qPCR), immunofluorescence, and immunoprecipitation were employed for phenotype and molecular mechanism assessment. RESULTS: Rif1 plays important roles in self-renewal and pluripotency of mESCs and loss of Rif1 promotes mESC differentiation toward the mesendodermal germ layers. We further show that Rif1 interacts with histone H3K27 methyltransferase EZH2, a subunit of PRC2, and regulates the expression of developmental genes by directly binding to their promoters. Rif1 deficiency reduces the occupancy of EZH2 and H3K27me3 on mesendodermal gene promoters and activates ERK1/2 activities. CONCLUSION: Rif1 is a key factor in regulating the pluripotency, self-renewal, and lineage specification of mESCs. Our research provides new insights into the key roles of Rif1 in connecting epigenetic regulations and signaling pathways for cell fate determination and lineage specification of mESCs.


Assuntos
Fibrinogênio , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Fibrinogênio/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Camadas Germinativas/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
2.
Biol Open ; 12(8)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37530863

RESUMO

The mesodermal precursor populations for different internal organ systems are specified during gastrulation by the combined activity of extracellular signaling systems such as BMP, Wnt, Nodal and FGF. The BMP, Wnt and Nodal signaling requirements for the differentiation of specific mesoderm subtypes in mammals have been mapped in detail, but how FGF shapes mesodermal cell type diversity is not precisely known. It is also not clear how FGF signaling integrates with the activity of other signaling systems involved in mesoderm differentiation. Here, we address these questions by analyzing the effects of targeted signaling manipulations in differentiating stem cell populations at single-cell resolution. We identify opposing functions of BMP and FGF, and map FGF-dependent and -independent mesodermal lineages. Stimulation with exogenous FGF boosts the expression of endogenous Fgf genes while repressing Bmp ligand genes. This positive autoregulation of FGF signaling, coupled with the repression of BMP signaling, may contribute to the specification of reproducible and coherent cohorts of cells with the same identity via a community effect, both in the embryo and in synthetic embryo-like systems.


Assuntos
Fatores de Crescimento de Fibroblastos , Gastrulação , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Diferenciação Celular/genética , Mesoderma , Células-Tronco Embrionárias/metabolismo , Mamíferos/metabolismo
3.
Cell Stem Cell ; 30(6): 851-866.e7, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37192616

RESUMO

The emergence of the three germ layers and the lineage-specific precursor cells orchestrating organogenesis represent fundamental milestones during early embryonic development. We analyzed the transcriptional profiles of over 400,000 cells from 14 human samples collected from post-conceptional weeks (PCW) 3 to 12 to delineate the dynamic molecular and cellular landscape of early gastrulation and nervous system development. We described the diversification of cell types, the spatial patterning of neural tube cells, and the signaling pathways likely involved in transforming epiblast cells into neuroepithelial cells and then into radial glia. We resolved 24 clusters of radial glial cells along the neural tube and outlined differentiation trajectories for the main classes of neurons. Lastly, we identified conserved and distinctive features across species by comparing early embryonic single-cell transcriptomic profiles between humans and mice. This comprehensive atlas sheds light on the molecular mechanisms underlying gastrulation and early human brain development.


Assuntos
Gastrulação , Camadas Germinativas , Humanos , Camundongos , Animais , Gastrulação/genética , Diferenciação Celular , Organogênese , Encéfalo
4.
Biotechnol Prog ; 37(4): e3143, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33683823

RESUMO

The utilization of human-induced pluripotent stem cells (hiPSCs) in cell therapy has a tremendous potential but faces many practical challenges, including costs associated with cell culture media and growth factors. There is an immediate need to establish an optimized culture platform to direct the differentiation of hiPSCs into germ layers in a defined nutritional microenvironment to generate cost-effective and robust therapeutics. The aim of this study was to identify the optimal nutritional environment by mimicking the in vivo concentrations of three key factors (glucose, pyruvate, and oxygen) during the spontaneous differentiation of hiPSCs derived from cord blood, which greatly differ from the in vitro expansion and differentiation scenarios. Moreover, we hypothesized that the high glucose, pyruvate, and oxygen concentrations found in typical growth media could inhibit the differentiation of certain lineages. A design of experiments was used to investigate the interaction between these three variables during the spontaneous differentiation of hiPSCs. We found that lower oxygen and glucose concentrations enhance the expression of mesodermal (Brachyury, KIF1A) and ectodermal (Nestin, ß-Tubulin) markers. Our findings present a novel approach for efficient directed differentiation of hiPSCs through the manipulation of media components while simultaneously avoiding the usage of growth factors thus reducing costs.


Assuntos
Diferenciação Celular , Meios de Cultura , Células-Tronco Pluripotentes Induzidas , Células Cultivadas , Glucose , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Oxigênio , Ácido Pirúvico
5.
Elife ; 62017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28296635

RESUMO

The complexity of gene regulatory networks that lead multipotent cells to acquire different cell fates makes a quantitative understanding of differentiation challenging. Using a statistical framework to analyze single-cell transcriptomics data, we infer the gene expression dynamics of early mouse embryonic stem (mES) cell differentiation, uncovering discrete transitions across nine cell states. We validate the predicted transitions across discrete states using flow cytometry. Moreover, using live-cell microscopy, we show that individual cells undergo abrupt transitions from a naïve to primed pluripotent state. Using the inferred discrete cell states to build a probabilistic model for the underlying gene regulatory network, we further predict and experimentally verify that these states have unique response to perturbations, thus defining them functionally. Our study provides a framework to infer the dynamics of differentiation from single cell transcriptomics data and to build predictive models of the gene regulatory networks that drive the sequence of cell fate decisions during development.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , Animais , Citometria de Fluxo , Perfilação da Expressão Gênica , Camundongos , Análise de Célula Única
6.
Elife ; 62017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28332977

RESUMO

A combination of single-cell techniques and computational analysis enables the simultaneous discovery of cell states, lineage relationships and the genes that control developmental decisions.


Assuntos
Células-Tronco Embrionárias , Análise de Célula Única , Diferenciação Celular , Linhagem da Célula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA