Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cell ; 187(8): 1955-1970.e23, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38503282

RESUMO

Characterizing somatic mutations in the brain is important for disentangling the complex mechanisms of aging, yet little is known about mutational patterns in different brain cell types. Here, we performed whole-genome sequencing (WGS) of 86 single oligodendrocytes, 20 mixed glia, and 56 single neurons from neurotypical individuals spanning 0.4-104 years of age and identified >92,000 somatic single-nucleotide variants (sSNVs) and small insertions/deletions (indels). Although both cell types accumulate somatic mutations linearly with age, oligodendrocytes accumulated sSNVs 81% faster than neurons and indels 28% slower than neurons. Correlation of mutations with single-nucleus RNA profiles and chromatin accessibility from the same brains revealed that oligodendrocyte mutations are enriched in inactive genomic regions and are distributed across the genome similarly to mutations in brain cancers. In contrast, neuronal mutations are enriched in open, transcriptionally active chromatin. These stark differences suggest an assortment of active mutagenic processes in oligodendrocytes and neurons.


Assuntos
Envelhecimento , Encéfalo , Neurônios , Oligodendroglia , Humanos , Envelhecimento/genética , Envelhecimento/patologia , Cromatina/genética , Cromatina/metabolismo , Mutação , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Análise da Expressão Gênica de Célula Única , Sequenciamento Completo do Genoma , Encéfalo/metabolismo , Encéfalo/patologia , Polimorfismo de Nucleotídeo Único , Mutação INDEL , Bancos de Espécimes Biológicos , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia
2.
Int J Mol Sci ; 25(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39201639

RESUMO

Gliomas present a complex challenge in neuro-oncology, often accompanied by the debilitating complication of epilepsy. Understanding the biological interaction and common pathways between gliomagenesis and epileptogenesis is crucial for improving the current understanding of tumorigenesis and also for developing effective management strategies. Shared genetic and molecular mechanisms, such as IDH mutations and dysregulated glutamate signaling, contribute to both tumor progression and seizure development. Targeting these pathways, such as through direct inhibition of mutant IDH enzymes or modulation of glutamate receptors, holds promise for improving patient outcomes. Additionally, advancements in surgical techniques, like supratotal resection guided by connectomics, offer opportunities for maximally safe tumor resection and enhanced seizure control. Advanced imaging modalities further aid in identifying epileptogenic foci and tailoring treatment approaches based on the tumor's metabolic characteristics. This review aims to explore the complex interplay between gliomagenesis, epileptogenesis, and neural circuit remodeling, offering insights into shared molecular pathways and innovative treatment strategies to improve outcomes for patients with gliomas and associated epilepsy.


Assuntos
Neoplasias Encefálicas , Epilepsia , Glioma , Humanos , Glioma/patologia , Glioma/metabolismo , Glioma/genética , Epilepsia/patologia , Epilepsia/metabolismo , Epilepsia/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Animais , Gradação de Tumores
3.
Ideggyogy Sz ; 77(1-2): 27-37, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38321856

RESUMO

Background and purpose:

Glioblastoma (GBM), a highly aggressive form of brain tumors, has been extensively studied using OMICS methods, and the most characteristic molecular determinants have been incorporated into the histopathological diagnosis. Research data, nevertheless, only partially have been adopted in clinical practice. Here we aimed to present results of our epige­no­mic GBM profiling to better understand early and late determinants of these tumors, and to share main elements of our findings with practicing professionals.

. Methods:

GBM specimens were surgically obtained after first diagnosis (GBM1) and at recurrence (GBM2). DNA was extracted from 24 sequential pairs of formalin-fixed, paraffin-embedded tumor tissues. The Reduced Representation Bisulfite Sequencing kit was used for library preparation. Pooled libraries were sequenced on an Illumina NextSeq 550 instrument. Methylation controls (MC) were obtained from a publicly available database. Bioinformatic analyses were performed to identify differentially methylated pathways and their elements in cohorts of MC, GBM1 and GBM2.

. Results:

Several differentially methylated pathways involved in basic intracellular and brain tissue developmental processes were identified in the GBM1 vs. MC and GBM2 vs. MC comparisons. Among differentially me­thylated pathways, those involved in immune regulation, neurotransmitter (particularly dopaminergic, noradrenergic and glutaminergic) responses and regulation of stem cell differentiation and proliferation stood out in the GBM2 vs. GBM1 comparisons.

. Conclusion:

Our study revealed biological complexity of early and late gliomagenesis encompassing mechanisms from basic intracellular through distorted neurodevelopmental processes to more specific immune and highjacked neurotransmitter pathways in the tumor microenvironment. These findings may offer considerations for therapeutic approaches.

.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Epigenômica , Metilação de DNA , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Neurotransmissores , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
4.
Neuropathology ; 43(5): 391-395, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36786200

RESUMO

Pilocytic astrocytoma (PA), a central nervous system (CNS) World Health Organization grade 1 tumor, is mainly seen in children or young adults aged 5-19. Surgical resection often provides excellent outcomes, but residual tumors may still remain. This low-grade tumor is well recognized for its classic radiological and morphological features; however, some unique molecular findings have been unveiled by the application of next-generation sequencing (NGS). Among the genetic abnormalities identified in this low-grade tumor, increasing evidence indicates that BRAF alterations, especially BRAF fusions, play an essential role in PA tumorigenesis. Among the several fusion partner genes identified in PAs, KIAA1549-BRAF fusion is notably the most common detectable genetic alteration, especially in the cerebellar PAs. Here, we report a case of a young adult patient with a large, right-sided posterior fossa cerebellar and cerebellopontine angle region mass consistent with a PA. Of note, NGS detected a novel GNAI3-BRAF fusion, which results in an in-frame fusion protein containing the kinase domain of BRAF. This finding expands the knowledge of BRAF fusions in the tumorigenesis of PAs, provides an additional molecular signature for diagnosis, and a target for future therapy.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Criança , Adulto Jovem , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Astrocitoma/diagnóstico por imagem , Astrocitoma/genética , Astrocitoma/metabolismo , Neoplasias do Sistema Nervoso Central/genética , Mutação , Carcinogênese , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo
5.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269752

RESUMO

Glioblastoma (GBM) is the most common and malignant tumour of the central nervous system. Recent appreciation of the heterogeneity amongst these tumours not only changed the WHO classification approach, but also created the need for developing novel and personalised therapies. This systematic review aims to highlight recent advancements in understanding the molecular pathogenesis of the GBM and discuss related novel treatment targets. A systematic search of the literature in the PubMed library was performed following the PRISMA guidelines for molecular pathogenesis and therapeutic advances. Original and meta-analyses studies from the last ten years were reviewed using pre-determined search terms. The results included articles relevant to GBM development focusing on the aberrancy in cell signaling pathways and intracellular events. Theragnostic targets and vaccination to treat GBM were also explored. The molecular pathophysiology of GBM is complex. Our systematic review suggests targeting therapy at the stemness, p53 mediated pathways and immune modulation. Exciting novel immune therapy involving dendritic cell vaccines, B-cell vaccines and viral vectors may be the future of treating GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/terapia , Glioblastoma/tratamento farmacológico , Glioblastoma/terapia , Humanos , Transdução de Sinais
6.
Artigo em Inglês, Russo | MEDLINE | ID: mdl-36534630

RESUMO

The problem of current treatment approaches to brain gliomas is short-term life expectancy in these patients. Apparently, it is required to change treatment approach via analysis of glioma stem cells rather cells with overexpression of marker genes. This review is devoted to similarities and differences between neurogenesis and neuro-oncogenesis characterized with molecular markers (CD133 as an example). The role of tumor stem cells and their relationship with neural stem cells are considered regarding development of glioma. The authors analyzed CD133 as a marker of glioma stem cells. In the future, stem cells will be important target for eradication during target therapy. A single molecular marker cannot characterize tumor stem cells as supported by CD133 studies. A set of molecular markers specific for certain cell type is required, and their combination will provide more accurate establishment of tumor stem cells.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Neoplasias Encefálicas/genética , Antígenos CD/genética , Antígenos CD/metabolismo , Carcinogênese
7.
Development ; 145(23)2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30327326

RESUMO

Stem cells reside in specialized microenvironments, called niches, that regulate their development and the development of their progeny. However, the development and maintenance of niches are poorly understood. In the Drosophila brain, cortex glial cells provide a niche that promotes self-renewal and proliferation of neural stem cell-like cells (neuroblasts). In the central brain, neuroblasts and their progeny control post-embryonic morphogenesis of cortex glia through PDGF-like ligands, and this PDGFR receptor tyrosine kinase (RTK) signaling in cortex glia is required for expression of DE-cadherin, which sustains neuroblasts. Thus, through an RTK-dependent feed-forward loop, neuroblasts and their glial niche actively maintain each other. When the EGFR RTK is constitutively activated in cortex glia, they overexpress PDGF orthologs to stimulate autocrine PDGFR signaling, which uncouples their growth and survival from neuroblasts, and drives neoplastic glial transformation and elimination of neuroblasts. These results provide fundamental insights into glial development and niche regulation, and show that niche-neural stem cell feed-forward signaling becomes hijacked to drive neural tumorigenesis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Embrião não Mamífero/citologia , Morfogênese , Células-Tronco Neurais/citologia , Neuroglia/citologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Comunicação Autócrina , Encéfalo/crescimento & desenvolvimento , Proliferação de Células , Sobrevivência Celular , Drosophila melanogaster/enzimologia , Embrião não Mamífero/enzimologia , Testes Genéticos , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo
8.
Brain ; 143(11): 3294-3307, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-33278823

RESUMO

For decades, it has been known that gliomas follow a non-random spatial distribution, appearing more often in some brain regions (e.g. the insula) compared to others (e.g. the occipital lobe). A better understanding of the localization patterns of gliomas could provide clues to the origins of these types of tumours, and consequently inform treatment targets. Following hypotheses derived from prior research into neuropsychiatric disease and cancer, gliomas may be expected to localize to brain regions characterized by functional hubness, stem-like cells, and transcription of genetic drivers of gliomagenesis. We combined neuroimaging data from 335 adult patients with high- and low-grade glioma to form a replicable tumour frequency map. Using this map, we demonstrated that glioma frequency is elevated in association cortex and correlated with multiple graph-theoretical metrics of high functional connectedness. Brain regions populated with putative cells of origin for glioma, neural stem cells and oligodendrocyte precursor cells, exhibited a high glioma frequency. Leveraging a human brain atlas of post-mortem gene expression, we found that gliomas were localized to brain regions enriched with expression of genes associated with chromatin organization and synaptic signalling. A set of glioma proto-oncogenes was enriched among the transcriptomic correlates of glioma distribution. Finally, a regression model incorporating connectomic, cellular, and genetic factors explained 58% of the variance in glioma frequency. These results add to previous literature reporting the vulnerability of hub regions to neurological disease, as well as provide support for cancer stem cell theories of glioma. Our findings illustrate how factors of diverse scale, from genetic to connectomic, can independently influence the anatomic localization of brain dysfunction.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Conectoma , Glioma/genética , Glioma/patologia , Algoritmos , Atlas como Assunto , Mapeamento Encefálico , Neoplasias Encefálicas/epidemiologia , Córtex Cerebral/patologia , Cromatina/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioma/epidemiologia , Humanos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/patologia , Neuroimagem , Células Precursoras de Oligodendrócitos/patologia , Mudanças Depois da Morte , Sinapses/patologia
9.
RNA Biol ; 17(7): 1040-1052, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32378450

RESUMO

Glioma is the most malignant primary brain cancer which frequently occurred in adults. In recent years, long-non coding RNAs (lncRNAs) have been demonstrated to play pivotal roles in human cancers. However, the role of most lncRNAs in gliomagenesis has not been probed. Presently, through TCGA, a novel lncRNA LINC01198 was found to be up-regulated and associated with clinical outcomes in glioblastoma multiforme (GBM). In our study, LINC01198 was proved to be up-regulated in glioma cell lines, and silenced LINC01198 curbed glioma cell proliferation and accelerated cell apoptosis. Importantly, we corroborated that LINC01198 activated the PI3 K/AKT pathway to aggravate glioma progression by targeting PIK3 CA and PTEN. Subsequently, LINC01198 was validated to localize in both cytoplasm and nucleus of glioma cells. Through mechanistic exploration, we illustrated that LINC01198 increased PIK3CA expression by sponging miR-129-5p in the cytoplasm. Furthermore, PTEN was transcriptionally repressed by REST/RCOR1/HDAC2 complex. More importantly, LINC01198 accelerated the assembly of REST/RCOR1/HDAC2 complex and recruited such complex to PTEN promoter so as to impair PTEN expression in glioma. Finally, we further verified that LINC01198 hindered glioma tumour growth in vivo through AKT-dependent manner. Jointly, LINC01198 activates PI3 K/AKT signalling to exert oncogenic function in gliomagenesis by regulating PIK3CA and PTEN, which highlights a new approach for glioma treatment.


Assuntos
Transformação Celular Neoplásica , Glioma/genética , Glioma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais , Animais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Glioma/diagnóstico , Humanos , Hibridização in Situ Fluorescente , Camundongos , MicroRNAs/genética , PTEN Fosfo-Hidrolase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Adv Exp Med Biol ; 1273: 197-208, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33119883

RESUMO

Microglia are the brain resident phagocytes that act as the primary form of the immune defense in the central nervous system. These cells originate from primitive macrophages that arise from the yolk sac. Advances in imaging and single-cell RNA-seq technologies provided new insights into the complexity of microglia biology.Microglia play an essential role in the brain development and maintenance of brain homeostasis. They are also crucial in injury repair in the central nervous system. The tumor microenvironment is complex and includes neoplastic cells as well as varieties of host and infiltrating immune cells. Microglia are part of the glioma microenvironment and play a critical part in initiating and maintaining tumor growth and spread. Microglia can also act as effector cells in treatments against gliomas. In this chapter, we summarize the current knowledge of how and where microglia are generated. We also discuss their functions during brain development, injury repair, and homeostasis. Moreover, we discuss the role of microglia in the tumor microenvironment of gliomas and highlight their therapeutic implications.


Assuntos
Neoplasias Encefálicas/imunologia , Glioma/imunologia , Microglia/citologia , Microambiente Tumoral/imunologia , Encéfalo/imunologia , Neoplasias Encefálicas/terapia , Glioma/terapia , Humanos , Microglia/imunologia
11.
J Neurooncol ; 141(2): 289-301, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30460631

RESUMO

INTRODUCTION: IDH1 mutation has been identified as an early genetic event driving low grade gliomas (LGGs) and it has been proven to exerts a powerful epigenetic effect. Cells containing IDH1 mutation are refractory to epigenetical reprogramming to iPSC induced by expression of Yamanaka transcription factors, a feature that we employed to study early genetic amplifications or deletions in gliomagenesis. METHODS: We made iPSC clones from freshly surgically resected IDH1 mutant LGGs by forced expression of Yamanaka transcription factors. We sequenced the IDH locus and analyzed the genetic composition of multiple iPSC clones by array-based comparative genomic hybridization (aCGH). RESULTS: We hypothesize that the primary cell pool isolated from LGG tumor contains a heterogeneous population consisting tumor cells at various stages of tumor progression including cells with early genetic lesions if any prior to acquisition of IDH1 mutation. Because cells containing IDH1 mutation are refractory to reprogramming, we predict that iPSC clones should originate only from LGG cells without IDH1 mutation, i.e. cells prior to acquisition of IDH1 mutation. As expected, we found that none of the iPSC clones contains IDH1 mutation. Further analysis by aCGH of the iPSC clones reveals that they contain regional chromosomal amplifications which are also present in the primary LGG cells. CONCLUSIONS: These results indicate that there exists a subpopulation of cells harboring gene amplification but without IDH1 mutation in the LGG primary cell pool. Further analysis of TCGA LGG database demonstrates that these regional chromosomal amplifications are also present in some cases of low grade gliomas indicating they are reoccurring lesions in glioma albeit at a low frequency. Taken together, these data suggest that regional chromosomal alterations may exist prior to the acquisition of IDH mutations in at least some cases of LGGs.


Assuntos
Neoplasias Encefálicas/genética , Amplificação de Genes , Glioma/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Isocitrato Desidrogenase/genética , Adulto , Neoplasias Encefálicas/metabolismo , Aberrações Cromossômicas , Células Clonais/fisiologia , Glioma/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Isocitrato Desidrogenase/metabolismo , Masculino
13.
Acta Neuropathol ; 135(5): 649-670, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29616301

RESUMO

At the time of their clinical manifestation, the heterogeneous group of adult and pediatric gliomas carries a wide range of diverse somatic genomic alterations, ranging from somatic single-nucleotide variants to structural chromosomal rearrangements. Somatic abnormalities may have functional consequences, such as a decrease, increase or change in mRNA transcripts, and cells pay a penalty for maintaining them. These abnormalities, therefore, must provide cells with a competitive advantage to become engrained into the glioma genome. Here, we propose a model of gliomagenesis consisting of the following five consecutive phases that glioma cells have traversed prior to clinical manifestation: (I) initial growth; (II) oncogene-induced senescence; (III) stressed growth; (IV) replicative senescence/crisis; (V) immortal growth. We have integrated the findings from a large number of studies in biology and (neuro)oncology and relate somatic alterations and other results discussed in these papers to each of these five phases. Understanding the story that each glioma tells at presentation may ultimately facilitate the design of novel, more effective therapeutic approaches.


Assuntos
Neoplasias do Sistema Nervoso Central/metabolismo , Glioma/metabolismo , Animais , Progressão da Doença , Humanos
14.
J Neurooncol ; 138(1): 1-15, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29450812

RESUMO

Gliomas are the most common primary intrinsic tumor in the brain and are classified as low- or high-grade according to the World Health Organization (WHO). Patients with high-grade gliomas (HGG) who undergo surgical resection with adjuvant therapy have a mean overall survival of 15 months and 100% recurrence. The renin-angiotensin system (RAS), the primary regulator of cardiovascular circulation, exhibits local action and works as a paracrine system. In the context of this local regulation, the expression of RAS peptides and receptors has been detected in different kinds of tumors, including gliomas. The dysregulation of RAS components plays a significant role in the proliferation, angiogenesis, and invasion of these tumors, and therefore in their outcomes. The study and potential application of RAS peptides and receptors as biomarkers in gliomas could bring advantages against the limitations of current tumoral markers and should be considered in the future. The targeting of RAS components by RAS blockers has shown potential of being protective against cancer and improving immunotherapy. In gliomas, RAS blockers have shown a broad spectrum for beneficial effects and are being considered for use in treatment protocols. This review aims to summarize the background behind how RAS plays a role in gliomagenesis and explore the evidence that could lead to their use as biomarkers and treatment adjuvants.


Assuntos
Angiotensinas/uso terapêutico , Biomarcadores/metabolismo , Neoplasias Encefálicas/terapia , Glioma/terapia , Sistema Renina-Angiotensina/fisiologia , Angiotensinas/química , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Humanos , Fragmentos de Peptídeos/uso terapêutico , Sistema Renina-Angiotensina/efeitos dos fármacos
15.
Int J Mol Sci ; 19(9)2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213051

RESUMO

Neuron glial antigen 2 (NG2) is a chondroitin sulphate proteoglycan 4 (CSPG4) that occurs in developing and adult central nervous systems (CNSs) as a marker of oligodendrocyte precursor cells (OPCs) together with platelet-derived growth factor receptor α (PDGFRα). It behaves variably in different pathological conditions, and is possibly involved in the origin and progression of human gliomas. In the latter, NG2/CSPG4 induces cell proliferation and migration, is highly expressed in pericytes, and plays a role in neoangiogenesis. NG2/CSPG4 expression has been demonstrated in oligodendrogliomas, astrocytomas, and glioblastomas (GB), and it correlates with malignancy. In rat tumors transplacentally induced by N-ethyl-N-nitrosourea (ENU), NG2/CSPG4 expression correlates with PDGFRα, Olig2, Sox10, and Nkx2.2, and with new vessel formation. In this review, we attempt to summarize the normal and pathogenic functions of NG2/CSPG4, as well as its potential as a therapeutic target.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Glioblastoma/metabolismo , Glioma/metabolismo , Proteínas de Membrana/metabolismo , Adulto , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Glioblastoma/patologia , Glioma/patologia , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Humanos , Proteínas Nucleares , Ratos , Fatores de Transcrição
16.
Med Mol Morphol ; 51(4): 194-198, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29633022

RESUMO

To become immortalized, cells need to maintain the telomere length via the activation of telomerase or alternative lengthening of telomere. Mutations in IDH1/2 are strongly associated with the early stage of gliomagenesis. Previous work has shown that the accumulation of 2-HG, which is induced by mutant IDH1/2, inhibits α-KG-dependent deoxygenase and leads to genome-wide histone and DNA methylation alterations. These alterations are believed to contribute to tumorigenesis. H-Ras can transform human astrocytes with the inactivation of p53/pRb and expression of hTERT; however, mutant IDH1 can also transform cells. Moreover, mutant IDH1 can drive the immortalization and transformation of p53-/pRb-deficient astrocytes by reactivating telomerase and stabilizing telomeres in combination with increased histone lysine methylation and c-Myc/Max binding at the TERT promoter. It remains unclear whether mutant IDH1/2 acts only as the initial driver of gliomagenesis or it maintains transformed cells. Clinical studies are being performed to assess the use of mutant IDH1/2 inhibitors for treating gliomas.


Assuntos
Transformação Celular Neoplásica , Glioma/metabolismo , Isocitrato Desidrogenase/genética , Mutação , Astrócitos/metabolismo , Astrócitos/patologia , Glioma/genética , Glioma/patologia , Humanos
17.
Virol J ; 14(1): 216, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116009

RESUMO

Gliomas are the most common brain tumors and include a variety of histologic types and grades of malignancy. They arise from glial cells and represent approximately 70% of the primary brain tumors. According to the criteria of the World Health Organization (WHO), the majority of gliomas can be classified into four grades of malignancy (I-IV). Virus infection, especially by DNA viruses and retroviruses, which may cause insertion of viral DNA sequences into the host genome, often triggers the host defense mechanisms. Particularly, the DNA methylation machinery can be activated to cause the methylation of foreign movable viral sequences and, therefore, silence viral gene expression. Several studies have shown the presence of Human Cytomegalovirus (HCMV) in glioblastoma, suggesting that the virus may participate in tumor pathogenesis. But this relationship is controversial because many other studies did not detect HCMV in these tumors. This study aims to detect the presence of HCMV in several samples of human glioma (94 formalin-fixed, paraffin-embedded samples and 28 snap-frozen samples) by different sensitive techniques. We have been unable to detect HCMV DNA and proteins in glioma samples. Therefore, arguments used so far to conclude that HCMV is an oncomodulator virus in gliomas must be, in our view, seriously reconsidered.


Assuntos
Astrocitoma/virologia , Neoplasias Encefálicas/virologia , Citomegalovirus/isolamento & purificação , Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Citomegalovirus/genética , Infecções por Citomegalovirus/diagnóstico , Infecções por Citomegalovirus/virologia , DNA de Neoplasias/genética , DNA Viral/análise , Feminino , Regulação Viral da Expressão Gênica , Humanos , Masculino , Gradação de Tumores , Carga Viral , Proteínas Virais/análise , Organização Mundial da Saúde
18.
J Neurooncol ; 127(2): 363-72, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26780338

RESUMO

Acquisition of IDH1 or IDH2 mutation (IDHmut) is among the earliest genetic events that take place in the development of most low-grade glioma (LGG). IDHmut has been associated with longer overall patient survival. However, its impact on malignant transformation (MT) remains to be defined. A collection of 210 archived adult LGG previously stratified by IDHmut, MGMT methylation (MGMTmet), 1p/19q combined loss of heterozygosity (1p19qloh) and TP53 immunopositivity (TP53pos) status was analyzed. We used multistate models to assess MT-free survival, considering one initial, one transient (MT), and one absorbing state (death). Missing explanatory variables were multiply imputed. Overall, although associated with a lower risk of death (HR(DEATH) = 0.35, P = 0.0023), IDHmut had a non-significantly higher risk of MT (HR(MT) = 1.84; P = 0.1683) compared to IDH wild type (IDHwt). The double combination of IDHmut and MGMTmet and the triple combination of IDHmut, MGMTmet and 1p/19qloh, despite significantly lower hazards for death (HR(DEATH) versus IDHwt: 0.35, P = 0.0194 and 0.15, P = 0.0008, respectively), had non-significantly different hazards for MT. Conversely, the triple combination of IDHmut/MGMTmet/TP53pos, with a non-significantly different hazard for death, had a significantly higher hazard for MT than IDHwt (HR(MT) versus IDHwt: 2.83; P = 0.0452). Although IDHmut status is associated with longer overall patient survival, all IDHmut/MGMTmet subsets consistently showed higher risks of MT than of death, compared to IDHwt LGG. This supports the findings that molecular events relevant to IDH mutations impact early glioma development prior to malignant transformation.


Assuntos
Neoplasias Encefálicas/patologia , Transformação Celular Neoplásica/patologia , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioma/patologia , Isocitrato Desidrogenase/genética , Mutação/genética , Proteínas Supressoras de Tumor/genética , Adulto , Neoplasias Encefálicas/genética , Transformação Celular Neoplásica/genética , Metilação de DNA , Feminino , Seguimentos , Glioma/genética , Humanos , Masculino , Estadiamento de Neoplasias , Prognóstico , Taxa de Sobrevida
19.
Cancer Sci ; 105(3): 359-62, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24344754

RESUMO

We report on a 24-year-old woman who was diagnosed as having Maffucci syndrome with anaplastic astrocytoma. We analyzed the IDH1 and IDH2 mutations of enchondroma, hemangioma and anaplastic astrocytoma tissues and the same somatic mosaic mutation in IDH2 gene was identified in all these tissues. In addition, we identified additional mutation of the TP53 gene in anaplastic astrocytoma tissue but not in other benign tumors. This is the first report of the detection of an identical IDH2 mutation in multiple tissues and TP53 mutation in anaplastic astrocytoma in a patient with Maffucci syndrome. This case is unique and supports the IDH2-dependent genetic pathway and second-hit model for gliomagenesis.


Assuntos
Astrocitoma/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Encondromatose/genética , Isocitrato Desidrogenase/genética , Proteína Supressora de Tumor p53/genética , Astrocitoma/genética , Astrocitoma/terapia , Sequência de Bases , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Análise Mutacional de DNA , Evolução Fatal , Feminino , Hemangioma/diagnóstico , Hemangioma/genética , Humanos , Mutação de Sentido Incorreto , Radiografia , Adulto Jovem
20.
Br J Neurosurg ; 28(5): 598-605, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24742294

RESUMO

Protein p73 is a member of the p53 protein family that can induce cell cycle arrest or apoptosis by the activation of p53-responsive genes as well as p53-independent pathways. Alternative promoter usage, together with differential splicing of the C-terminal exons, forms several distinct mRNAs that are translated into corresponding protein isoforms containing different domains. While TAp73 isoforms respond to genotoxic stress in a manner similar to tumor suppressor p53, ΔTAp73 isoforms inhibit apoptosis during normal development and in cancer cell lines. Thus, the impact of p73 on tumorigenesis depends on a subtle balance between tumor-promoting and -suppressing isoforms. Due to the structural homology between p53 and p73, a subtle balance among p53 family members and their isoforms could influence glioma cell evolution toward malignancy. Thus, the p73 status has to be considered when studying the regulatory role of p53 protein in gliomagenesis. The presented review summarizes recent knowledge about the issue of p73 and its isoforms with respect to neuro-oncology research.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias do Sistema Nervoso Central/genética , Proteínas de Ligação a DNA/genética , Mutação/genética , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Animais , Transformação Celular Neoplásica/metabolismo , Neoplasias do Sistema Nervoso Central/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Transcrição Gênica , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA